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Classical shadow tomography for continuous

variables quantum systems

Simon Becker, Nilanjana Datta, Ludovico Lami, and Cambyse Rouzé

Abstract—In this article we develop a continuous vari-
able (CV) shadow tomography scheme with wide ranging
applications in quantum optics. Our work is motivated by
the increasing experimental and technological relevance of
CV systems in quantum information, quantum communi-
cation, quantum sensing, quantum simulations, quantum
computing and error correction. We introduce two experi-
mentally realisable schemes for obtaining classical shadows
of CV (possibly non-Gaussian) quantum states using only
randomised Gaussian unitaries and easily implementable
Gaussian measurements such as homodyne and hetero-
dyne detection. For both schemes, we show that # =
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samples of an unknown
<-mode state � suffice to learn the expected value of any
A-local polynomial in the canonical observables of degree ,
both with high probability 1 − � and accuracy &, as long as
the state � has moments of order = >  bounded by "= .
By simultaneously truncating states and operators in energy
and phase space, we are able to overcome new mathematical
challenges that arise due to the infinite-dimensionality of
CV systems. We also provide a scheme to learn nonlinear
functionals of the state, such as entropies over any small
number of modes, by leveraging recent energy-constrained
entropic continuity bounds. Finally, we provide numerical
evidence of the efficiency of our protocols in the case
of CV states of relevance in quantum information theory,
including ground states of quadratic Hamiltonians of many-
body systems and cat qubit states. We expect our scheme
to provide good recovery in learning relevant states of 2D
materials and photonic crystals.

I. Introduction

Obtaining classical descriptions of states of quantum-

mechanical systems is a fundamental ingredient of quan-

tum computing. It is useful for storing and transmitting

quantum information and essential for verification and

benchmarking of quantum devices. However, the under-

lying quantum nature of such systems provides a huge

hurdle in obtaining such a classical description: to learn
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anything about a quantum state one needs to measure it,

but measurements in quantum mechanics are inherently

destructive and furthermore probabilistic, entailing that

individual measurement outcomes only give limited in-

formation about the state of the system. Consequently, in

order to obtain a classical representation of a quantum

state, one requires multiple identical copies of the state

on which successive, appropriate (possibly adaptive)

single-copy measurements can be performed.

This is what is done in the traditional method of

learning an unknown quantum state, known as quantum
state tomography. It is the process of inferring a quantum

state by using suitable measurements on many identical

copies of the state. There is, however, a huge practi-

cal limitation in using quantum state tomography for

many-body quantum systems. This is due to the so-

called “curse of dimensionality”: the number of param-

eters needed to fully specify the state of a quantum-

mechanical system grows exponentially with the system

size. The exponential number of measurements needed

to infer these parameters makes quantum state tomog-

raphy infeasible for large systems. Consequently, full

quantum state tomography has only been realised in

systems with few components, in particular, in a system

of ten qubits, which too required millions of measure-

ments. In a nutshell, obtaining a classical description

of a 3-dimensional quantum mixed state �, given many

copies of it, via quantum state tomography, can be shown

to require Ω(32) copies of the state. (More recently, it

has been shown [1], [2] that O(32) copies also suffice.)

However, this number grows exponentially with the

number = of qubits (since 3 = 2
=
), and the problem

becomes rapidly intractable.

In 2018 Aaronson [3] pointed out that for certain

concrete tasks, obtaining a complete classical charac-

terisation of the quantum state is unnecessary. Instead

it is often sufficient to accurately predict many use-

ful properties of the state. This led him to propose a

novel task called shadow tomography, the aim of which

is not to learn a complete description of the unknown

quantum state but instead to simultaneously estimate

the outcome probabilities associated with a list of "
two-outcome measurements, �1 , . . . , �" , performed on

the state, up to a desired accuracy (say, �). For an

unknown 3-dimensional quantum mixed state �, this

requires the prediction of " expectation values, Tr[�8�]
8 = 1, 2, . . . , ", to within an additive error �. Aaronson

showed that, remarkably, the number of copies of the
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quantum state (i.e. the sample size) needed to make

these predictions, scales polynomially in the system size.

Moreover, to predict the " different expectation values,

only O(polylog(")) number of copies of the state are

needed. In spite of this advantage with respect to the

sample size, implementation of shadow tomography is

impractical because it requires very expensive quantum
processing, including exponentially long quantum circuits

that act collectively across all copies of the unknown

quantum state stored in a quantum memory, as well as

a lot of storage and post-processing to make the desired

predictions. Aaronson’s work was followed by a spate of

papers, with the best result on the sample complexity of

shadow tomography being obtained in [4], [5].

In 2020 Huang et al. [6] improved on the work of

Aaronson, by providing an efficient and experimentally

feasible method to learn an unknown quantum state

from just a few simple, single-copy measurements. The mea-

surement outcomes are used to construct a minimal clas-

sical representation of the state, called its classical shadow,
which can be efficiently stored on a classical computer.

This can thereafter be used to predict many linear (and

possibly polynomial) properties of the quantum state.

For example, the properties could be the expectation

values of a list of " observables in the given quantum

state, as was the goal of Aaronson [3]. However, in con-

trast with the shadow tomography method proposed by

Aaronson, Huang et al. [6] have a strict divide between

the quantum and classical parts of their protocol: after

obtaining a classical shadow of the quantum state, all

processing necessary to predict its properties are done

via classical computations. They proved that, under certain
conditions, it is possible to predict expectation values of

a list of " observables for an unknown quantum state

with a small constant error, with high success probabil-

ity, by using log(") number of copies of the state. They

called this method classical shadow tomography. This novel
method provides a tractable and rigorous procedure to

obtain succinct classical descriptions of quantum many-

body states, using which many useful properties of these

states can be predicted.

Classical shadow tomography was originally devel-

oped for locally finite-dimensional systems. In contrast,

recent years have seen a fast growth of the range of

applications of infinite-dimensional, continuous variable

(CV) quantum systems, e.g. collections of electromag-

netic modes travelling along an optical fibre or massive

harmonic oscillators, in all areas of quantum informa-

tion [7]. Notable applications include quantum com-

munication [8], [9], [10], [11], [12], [13], [14], quantum

sensing [15], [16], [17], [18], quantum simulations [19],

quantum computing and error correction [20], [21], [22],

[23], [24], and have been enabled by a steady develop-

ment of non-classical sources of radiation [25], [26], [27],

[28], [29], [30], [31], [32].

Hence, CV systems are of enormous technological and

experimental relevance. This comes hand in hand with

a pressing need for fast and efficient quantum state

tomography of CV systems. The aim of this paper is

precisely to devise a rigorous procedure for obtaining

classical shadows of states of CV quantum systems,

thus developing an efficient and experimentally feasible

procedure to benchmark CV quantum technologies.

The traditional way of performing tomography of CV

systems consists of measuring a functional characterizing

the state, typically the characteristic function [33], [34],

[35], the Wigner [36] or the Husimi Q-function [37]

from which the quantum state of the system can be

reconstructed, either by inverse linear transformations

or by statistical inference techniques [38], [39], [35],

[40], [41], [42], [43], [44]. This approach has also been

experimentally tested in various settings [36], [38], [45],

[46], [47], [48], [49], [50], [51], [52], [53], [22], [54], [55].

However, as for their discrete analogues, a naive full

tomography of a CV quantum system in terms of a

quasi-probability distribution is highly inefficient. To

remedy this issue, more advanced tomographic schemes

were proposed which involve a displacement of the

state in phase space followed by parity or multiple

photon measurements [50], [52], [53], [48], [16], [56],

[47], [57]. These measurements are then processed to

reconstruct the quasi-probability distributions or their

corresponding states in the Fock basis. On the down side,

these schemes exhibit a trade-off between the number

of measurement points in phase space and the number

of operator expectation values measured at each point.

More recently, a more efficient method of reconstruction

of quasi-probability distributions via Lagrange interpo-

lation was proposed in [58]. However, to the best of

our knowledge, a rigorous analysis of the sample and

computational complexity associated to each of these

methods is missing. Moreover, the latter were mostly

applied to systems of a small number of modes. Here,

instead, we propose a new scheme for building classical

shadows of multi-mode continuous variables quantum

systems. Our proposal comes with rigorous complexity

bounds.

Related works: Results analogous to ours recently ap-

peared in a concurrent and independent work by Gand-

hari et al. [59]. In it too a framework generalizing the

qubit-based classical shadow tomography protocol [6] to

CV systems was developed. A key step in their method

is to express the density matrix of the reconstructed state

in terms of so-called pattern functions. The latter were

originally introduced in the context of optical homodyne

tomography by D’Ariano et al. [60] and have been used

extensively thereafter in quantum tomography of CV

systems (see e.g. [61] and references therein). The au-

thors of [59] obtained bounds on the sample complexity

for estimating quantum states for their protocol by ex-

ploiting known bounds on pattern functions [61]. The

framework of [59] is equivalent to ours in the settings

of homodyne and heterodyne detection (see Section V-C

for an explanation). Even though pattern functions do

not arise explicitly in our work, they are implicit in our
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results. This can be seen by a comparison of our results

with known expressions [62] for the Fourier transform

of pattern functions in terms of Laguerre polynomials.

Other recent works on learning CV quantum states

(and quantum processes) include [63], [64].

A. CV classical shadow tomography
Let us start with a brief summary of our extension of

the protocol of Huang et al. [6] for obtaining a classical

shadow of the quantum state of a continuous variables

quantum system. Assume that multiple (say, #) identical

copies of an unknown quantum state, �, are available,

and one has (i) an ensemble U of unitary operators

and (ii) a quantum measurement described by the set of

measurement operators {"G}G , satisfying
∑
G "

†
G"G = �,

such that elements "G* , * ∈ U , describe a tomograph-

ically complete set of measurements. In Huang et al. [6]

� was considered to be an =-qubit state, and {"G}G was

a measurement in the computational basis, in which case

G ∈ {0, 1}= . In a practical scheme, each ensemble U
should be realisable as an efficient quantum circuit, and

also have a succinct classical description.

In analogy with the discrete setting, our proposal for

a CV classical shadow tomography contains the following

three main ingredients:

(i) An <-mode CV system in an unknown state �.
(ii) A random variable ( taking values in the group

Sp(2<) of 2< × 2< symplectic matrices, and the

associated unitaries *(. For homodyne measure-

ments we consider e.g. random variables distributed

according to the Haar measure on Sp∩ SO .
(iii) A Gaussian positive operator valued measurement{

D(G)#D(−G) 32<G
(2�)

}
G∈R2< , where # .

.= |#〉〈# | is a

fixed pure Gaussian state and D(G) denotes the

unitary displacement operator of phase-space pa-

rameter G ∈ R2<
. In practice, we will consider two

types of Gaussian measurements, namely homo-

dyne detection along a random direction in phase

space and heterodyne detection.

A CV classical shadow of the quantum state � is then

created by using a randomised protocol that involves

repeatedly performing the following simple steps:

(a) A symplectic matrix ( is selected randomly from

Sp(2<) and applied to a copy of �, resulting in the

unitary transformation � ↦→ *(�*†(.
(b) The Gaussian measurement of effect operators "G

is performed on the output of the previous step,

yielding the post-measurement state �̃G = #G .
.=

D(G)#D(−G), when the measurement outcome is G.
One can attempt to partly undo the effect of the

unitary by counter-rotating �̃G , implementing the

transformation �̃G ↦→ *†
(
�̃G*(. Naturally, due to

the measurement such transformation will not yield

back the original state � which is in general mixed.

(c) Averaging over (, -, where - = R2<
is the set

of measurement outcomes equipped the probability

measure derived from the measurement outcomes,

the counter-rotated state yields a quantum channel

ℳ that depends on the measure �:

ℳ(�) ..= E(,-
[
*†( �̃-*(

]
. (1)

For our choice of Gaussian measurements, the effec-

tive quantum channel ℳ is a simple linear bosonic

channel whose action can be represented as a ran-

dom displacement in phase space.

(d) Heuristically, one would like to define the classical
shadow of � as the random operator

�̂(,G .
.= ℳ−1

(
*†( �̃G*(

)
. (2)

Once the nature of the protocol, and in particular the

Gaussian measurement

{
D(G)#D(−G) 32<G

(2�)
}
G∈R2< ,

has been specified, the classical shadow is simply a

function of the particular realisations (, G obtained

in this round of the protocol. Importantly, it is not a
function of the unknown state �. The information on

� is at this point stored only in the probability dis-

tribution associated with the measurement outcome

G. As a matter of fact, �̂(,G is an unbiased estimator

of �:

E(,-
[
�̂(,-

]
=ℳ−1

(
E(,-

[
*†( �̃-*(

] )
=

(
ℳ−1◦ℳ

)
(�) = � .

(3)

This is the final output of one iteration of the protocol. A

purely classical description of the operator �̂(,G —which,

we stress again, does not depend on the unknown state �
— is stored in a classical memory for future processing.

Note that such a description can be produced given (
and G alone, by simply computing the operator defined

by (2).

Let us summarise the whole procedure. The mea-

surement yields �̃G as an approximation for the state

*(�*†(; then one attempts to find an approximation for

the original state, �, by counter-rotating �̃G to obtain

*†
(
�̃G*(. Finally, by applying ℳ−1

one eliminates the

effect of the average noise (represented by the quantum

channelℳ) that the state undergoes in the protocol. This

yields the classical shadow �̂(,- whose description is

stored as a string of classical data in a classical memory

for future processing. Repeating the above protocol on

# independent identical copies of � yields a string of

classical shadows {�̂(1) , . . . , �̂(#)}, where for simplicity

we introduced the shorthand notation �̂(8) .
.= �̂(8 ,G8 .

This string can be further processed for instance by

computing the empirical average

�̂(#) ..=
1

#

#∑
8=1

�̂(8) .

The advantage of our CV quantum tomography protocol

is most clearly visible from the simple structure of the

mapℳ and its inverse at the level of characteristic func-

tions: for any trace class operator / with characteristic
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function "/ : D ∈ R2< ↦→ Tr(/D(D)) and |#〉 ..= *†
)
|0〉, for

any ) ∈ Sp(2<),

"ℳ(/) = "/ 5�,) , where (4)

5�,)(D) ..=
∫
3�(() 4− 1

2
‖)(D‖2

(5)

depends on the Gaussian state |#〉. Therefore, at least

formally the classical shadows �̂(8) can be equivalently

reconstructed by their characteristic functions, which

take the form

"�̂(8) = "*†
(8
�̃G8*(8

5 −1

�,) . (6)

B. Moment constraints
When trying to implement the above strategy, one

faces however two issues that are specific to the contin-

uous variables setting. First, as we will see, the quantum

channel ℳ is in general not surjective on the space of

trace class operators, which implies that the classical

shadow �̂(,- will typically not be a trace class — and,

for that matter, not even a bounded — operator. In other

words, the right-hand side of (6), although well defined

as a function on R2<
, is not the characteristic function of

a quantum state. Second, the parameters ( and - that

need to be stored in the classical memory at each round

of the protocol belong to continuous and unbounded

sets.

To overcome the first problem, we focus on a suitable

characterisation of the classical shadow �̂(,- that is well

defined, namely, its characteristic function "�̂(,- , and

construct the operator �̂(,- itself as defined only on a

restricted domain. To obtain effective estimates of � from

the above scheme, we will further need to assume that �
has controlled moments of low degree. Such an assump-

tion allows us to show that the projection of the state

� onto the finite subspace of Hilbert–Schmidt operators

supported on the space of low energy Fock states is

sufficient for obtaining a good enough approximation of

the state via the Gaussian shadow tomography protocol.

Let us make these considerations more precise. We

consider the maps

P"()) ..=
∑

n1 ,n2∈{0,..,"}<
〈n1 |) |n2〉 |n1〉〈n2 | ,

(7)

where |n〉 is a multivariate Fock state, and n ∈
{0, ..., "}< is a multi-index. Using a simple approxima-

tion scheme, we also approximate the Schwartz opera-

tors |n1〉〈n2 | by Schwartz operators /̃n1n2
with smooth

compactly supported characteristic functions and define

an auxiliary map

P̃"()) ..=
∑

n1 ,n2∈{0,..,"}<
Tr(/̃n2n1

)) |n1〉〈n2 | . (8)

Our goal is to approximate possibly unbounded ob-

servables of an <-mode CV quantum system. For this,

we introduce a norm which captures approximations

of such operators: fix an arbitrary positive integer =;

then given 0 <  < = and two states �, �′ with

Tr(�(�+#<)=), Tr(�′(�+#<)=) < ∞, where #< stands for

the <-mode number operator, we denote �<
.
.= � + #<

and

‖-‖()
1

.

.=

�/2
< -�

/2
<


1

for any trace-class - or which the right-hand side is

finite. Then the following bounds hold which put the

above approximation scheme on a rigorous footing:

Proposition 1. Let #< be the number operator over < modes
and let � be an <-mode state such that Tr(#=

<�) =.. <� < ∞.
Then, for any �2 ≥ 2"2,

‖� − P"(�)‖()
1
≤ 2(1 +") −=2 � ,

‖� − P̃"(�)‖()
1
≤ 2(1 +") −=2 �

+ (3<")6<"+4−
�2<

2 �2"< .

II. Main results

A. CV classical shadows via homodyne detection
We first consider the scenario in which one performs a

homodyne detection along a random direction in phase

space. More precisely, < independent random matrices

(1 , . . . , (< are distributed uniformly (according to the

Haar measure) on the intersection Sp(2)∩SO(2) between

the symplectic and the special orthogonal group, with

corresponding angles �1 , · · · , �< ∈ [−�,�]. The homo-

dyne measurement is then performed along the position

axis and yields the classical outcome G = (G1 , ..., G<) ∈
R2<

. As in the qubit setting, we now restrict ourselves to

an arbitrary subset � of |�| ≤ A modes. In that case, the

characteristic functions of the reduced shadows defined

in (6) are distributions of the form

"
�̂(8)
�

(D�) =
∏
9∈�

√
2�‖D9 ‖ �

(
(( 9D9)2

)
4
−8Dᵀ

9
Ω(9G 9 ,

for any D�
.
.= {D9} 9∈� ∈ R2|�|

, where �(G) is the Dirac

distribution at G ∈ R, where (( 9D9)2 .
.=

∑
:(( 9)2:(D9): ,

and where Ω stands for the canonical symplectic form

as defined in Equation (15). As foreseen in the previous

paragraph, this characteristic function is not square inte-

grable, and therefore cannot be associated to a quantum

state. Indeed, we recall that, by Plancherel’s theorem,

any trace class operator, and thereby any quantum state,

gives rise to a square integrable characteristic function,

and for any two such operators )1 , )2,

Tr[)†
1
)2] =

∫
32|�|G

(2�)|�|
")1
(G)∗")2

(G) ≡ 〈")1
, ")2
〉 . (9)

Instead, we construct a random matrix �̂(8)
�
(") in the

set M("+1)|�| (C) of matrices of size (" + 1)|�| by simply

extending (9):

�̂(8)
�
(") ..=

∑
n1 ,n2∈{0,...,"}�

〈"|n1〉〈n2 | , "�̂(8)
�

〉 |n1〉〈n2 | .
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By (3), we know that the expected matrix E[�̂(8)
�
(")]

coincides with the unknown state �. Moreover, by Bern-

stein’s matrix concentration inequality, we have that,

with high probability the empirical average �(#)
�
(") .

.=
1

#

∑#
8=1

�̂(8)
�
(") will well-approximate P"(��) on all sets

� of size |�| ≤ A for # = O
(
poly

(
4A , log(<)

) )
. Combin-

ing this with the approximation bounds under moment

constraints derived in Proposition (1) leads us to our first

main result:

Theorem 2 (CV classical shadows via homodyne detec-

tion). With the notation introduced above, given 0 ≤  < =

and assuming that �(=)A ..= max|�|≤A Tr(���=
A ) < ∞ for all �

of size |�| ≤ A, we have that for integer " =

⌈(
4�
(=)
A

&

) 2

=−
⌉
,

# = O
(

poly

(
1

&2
, "A+ , log

(
1

�

)
, log(<)

))
and any region

� of size |�| ≤ A, �(#)�
(") − ��

()
1

≤ & (10)

with probability at least 1 − �. Similarly, for # =

O
(

poly

(
1

&2
, "A+ , log

(
1

�

)
, log(!)

))
we have that for any

set of ! observables $ 9 on regions � 9 of size at most A and
with ‖�−


2

A $ 9�
− 

2

A ‖∞ ≤ 1,

max

9

��
Tr[$ 9 (�(#)�

(") − ��9 )]
�� ≤ &

with probability at least 1 − �.

B. CV classical shadows via heterodyne detection
We also consider the case of a heterodyne detection{

1

(2�)</2
|G〉〈G |

}
G∈R2<

, (11)

i.e. ) = �, and all unitaries employed are passive, i.e.

such that

[
*
(
, 1

2
'ᵀ'

]
= 0. In that case, we show that the

function defined in (5) takes the simpler form

5�,)(D) = 4−
1

2
‖D‖2 .

Therefore, the classical shadow will have improper char-

acteristic function

"
�̂(8)
�

(D�) = 4
1

4
‖D�‖2

∏
9∈�

4
−8Dᵀ

9
ΩG 9 .

In this case, we consider the matrices

�̂(8)
�
(") ..=

∑
n1 ,n2∈{0,...,"}�

〈"
/̃n

1
n

2

, "
�̂(8)
�

〉 |n1〉〈n2 | .

From here, repeating essentially the same argument as

in the case of homodyne detection, defining the matrix

�̃(#)
�
(") ..= 1

#

∑#
8=1

�̂(8)
�
("), we arrive at our second main

result:

Theorem 3 (CV classical shadows via heterodyne de-

tection). With the above notation, given 0 ≤  < =

and assuming that �
(=)
A

..= max|�|≤A Tr(���=
A ) < ∞

for all � of size |�| ≤ A, we have that for # =

O
(

poly

(
1

&2
, (�(=)A )A+ , log

(
1

�

)
, log(<)

))
and any region �

of size |�| ≤ A,

‖�̃(#)
�
(") − ��‖()

1
≤ &

with probability at least 1 − �. Similarly, for # =

O
(

poly

(
1

&2
, (�(=)A )A+ , log

(
1

�

)
, log(!)

))
we have that for any

set of ! observables $ 9 on regions � 9 of size at most A and
with ‖�−


2

A $ 9�
− 

2

A ‖∞ ≤ 1,

max

9

��
Tr[$ 9 (�̃(#)�

(") − �� 9 )]
�� ≤ &

with probability at least 1 − �.

III. Notation and basic notions

A. Operators and norms
Given a separable Hilbert space H, we denote by B(H)

the space of bounded linear operators on H, and by

T?(H) the Schatten ?-class, which is the Banach subspace

of B(H) formed by all bounded linear operators whose

Schatten ?-norm, defined as ‖-‖? = (Tr |- |?)1/? , is

finite. Henceforth, we refer to T1(H) as the set of trace
class operators. The set of quantum states (or density

matrices), i.e. positive semi-definite operators � ∈ T1(H)
of unit trace, is denoted by D(H). The Schatten 1-norm,

‖ · ‖1, is the trace norm, and the corresponding induced

distance (e.g. between quantum states) is the trace dis-

tance. Note that the Schatten 2-norm, ‖·‖2, coincides with

the Hilbert–Schmidt norm. We also recall that a quantum

channel with input system � and output system � is any

completely positive, trace-preserving (CPTP) linear map

N : T1(H�) → T1(H�), where H� ,H� are the Hilbert

spaces corresponding to �, �, respectively.

If � is a quantum state with spectral decomposition

� =
∑
8 ?8 |)8〉〈)8 |, and � is a positive semi-definite

operator, the expected value of � on � is defined as

Tr[��] ..=
∑
8: ?8>0

?8
�1/2 |)8〉

2 ∈ R+ ∪ {+∞} ;
(12)

here we use the convention that Tr[��] = +∞ if the above

series diverges or if there exists an index 8 for which ?8 >
0 and |)8〉 ∉ dom

(
�1/2)

. This definition can be extended

to a generic densely defined self-adjoint operator � on

H, by considering its decomposition � = �+ − �− into

positive and negative parts, with �± being positive semi-

definite operators with mutually orthogonal supports.

The operator � is said to have a finite expected value on �
if (i) |)8〉 ∈ dom

(
�

1/2
+

)
∩ dom

(
�

1/2
−

)
for all 8 for which

?8 > 0, and (ii) the two series

∑
8 ?8

�1/2
± |)8〉

2

both

converge. In this case, the following quantity is called

the expected value of � on �:

Tr[��] ..=
∑
8: ?8>0

?8
�1/2
+ |)8〉

2 −
∑
8: ?8>0

?8
�1/2
− |)8〉

2

.

(13)
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Obviously, for a pair of operators �, � satisfying � ≥ �,
we have that Tr[��] ≥ Tr[��].
Let � be an (unbounded) operator � on some Banach

space -, with domain dom(�). Such an operator is called

closed if its graph, that is {(|G〉 , � |G〉); |G〉 ∈ dom(�)} ⊂
- ×-, is closed. The spectrum of a closed operator � is

defined as the set [65, Definition 9.16]

sp(�) ..=
{
� ∈ C : �� − � is not continuously invertible

}
.

Henceforth, we often suppress the identity operator �
in the expression (�� − �) for notational simplicity. We

remind the reader that the spectrum of a self-adjoint pos-

itive operator is a closed subset of the positive real half-

line [65, Proposition 9.20]. Given a possibly unbounded

operator -, !- stands for the left multiplication by -:

!-(.) = -., whereas '- stands for right multiplication

by -: '-(.) = .-, whenever these products are well-

defined.

B. Continuous variable quantum systems
A CV system with < modes is defined on the Hilbert

space H<
.
.= !2(R<), equipped with the multi-mode

Fock basis {|n〉}n∈N< of eigenvectors of the number op-

erator #< :

#< |n〉 =
(∑<

9=1

= 9

)
|n〉 . (14)

We denote the canonical operators on each mode as

-9 , %9 (9 = 1, . . . , <). Define the formal vector

' .
.=

(
-1 , . . . , -= , %1 , . . . , %=

)ᵀ
and the symplectic form

Ω .
.=

(
0 1

−1 0

)
(15)

(where all blocks are < ×< matrices), in terms of which

the canonical commutation relations read (at least when

evaluated on Schwartz functions)

[' 9 , ':] = 8Ω9: . (16)

We also introduce also the annihilation and creation

operators 0†
9
, 0 9 (9 = 1, . . . , <), defined by

0 9
.
.=
-9 + 8%9√

2

, 0†9
.
.=
-9 − 8%9√

2

. (17)

In terms of these operators, the single-mode Fock states

can be constructed as

|=〉 ..= (0
†)=√
=!

|0〉 , (18)

with similar formulae holding for the multi-mode case.

The canonical commutation relations can also be written

as [0 9 , 0†:] = � 9: .
With a slight abuse of notation, we will often denote

by the same symbol Ω the symplectic form for different

sets of modes. The quantum covariance matrix +[�] and

mean vector C[�] associated with a generic state � are

defined by

C[�]9 .
.= Tr

(
�' 9

)
, +[�]9: .

.= Tr

(
�
{
' 9 − C 9 , ': − C:

})
,

(19)

provided that these expressions are well defined. For an

arbitrary G ∈ R2<
, we define the associated displacement

operator by

D(G) ..= 4−8GᵀΩ' . (20)

Note that D(G)† = D(G)−1 = D(−G). By writing G =

G′ ⊕ G′′, where G′ ∈ R<
groups together the first <

components of G and G′′ ∈ R<
the last <, one can also

introduce the complex vector

(G) ..= 1√
2

(G′ + 8G′′) , (21)

in terms of which we have that [66, Eq. (3.3.30)–(3.3.31)]

D(G) = exp

[∑<

9=1

(
 9(G)0†9 −  9(G)

∗0 9
)]

(22)

= 4−
1

4
‖G‖2 4

∑
9  9 (G)0†9 4−

∑
9  9 (G)∗0 9 , (23)

where ‖G‖2 .
.=

∑
9 G

2

9
. In dealing with continuous variable

systems, one can stick to the real notation, employing

real vectors G, or move to the complex one, which uses

the complex vectors (G). In this paper we will mostly

follow the former convention; however, it will be useful,

occasionally, to use the latter too. In general, a prompt

translation between one set of conventions and the other

can be obtained by means of (21).

Another important identity involving displacement

operators is ∫
32<G

(2�)< D(G)/D(−G) = � Tr/ , (24)

valid for all trace class operators / ∈ T1(H<), with the

integral on the left-hand side converging in the weak

sense (see [67, Proposition 3.5.1]). Using displacement

operators, we can re-write (16) in Weyl form as

D(G + H) = 4 8
2
GᵀΩH D(G)D(H) . (25)

Coherent states are instead defined as

|G〉 ..= D(G) |0〉 , (26)

where |0〉 is the vacuum state. We can decompose

|G〉 mode-wise as |G〉 =
⊗<

9=1
|G(9)〉, where G(9) .

.=

(G 9 , G<+9)ᵀ ∈ R2
is the sub-vector of G obtained by pick-

ing the coordinates corresponding to the 9th coordinate

and momentum, and |G(9)〉 is a single-mode coherent

state. In general, the latter can be represented in the

single-mode Fock basis according to the identity

|H〉 = 4−‖H‖2/4
∞∑
==0

(H1 + 8H2)=√
2
= =!

|=〉

= 4−‖H‖
2/4

∞∑
==0

(H)=
√
=!

|=〉 ,
(27)

where (H) ∈ C is defined in (21).
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For an arbitrary trace class operator /, we can con-

struct its characteristic function "/ : R2< → C by

"/(G) ..= Tr

[
/D(G)

]
. (28)

Characteristic functions are always bounded and fur-

thermore continuous, because of the strong operator

continuity of the mapping G ↦→ D(G). Moreover, in the

sense of weak operator convergence it holds that

/ =

∫
32<G

(2�)< "/(G)D(−G) . (29)

By applying (25) and (27), one can prove that

"|G〉〈H |(D)
= Tr[|G〉〈H |D(D)]
= 〈H |D(D)|G〉
= 〈0|D(−H)D(D)D(G)|0〉
= 4−

8
2
DᵀΩG 〈0|D(−H)D(D + G)|0〉

= 4−
8
2
DᵀΩG4

8
2
HᵀΩ(D+G) 〈0|D(D + G − H)|0〉

= 4−
8
2
DᵀΩG4

8
2
HᵀΩ(D+G)4−

1

4
‖D+G−H‖2 .

(30)

As special cases, we conclude e.g. that

"|G〉〈G |(D) = 4−
1

4
‖D‖2−8DᵀΩG ,

"|−G〉〈G |(D) = 4−
1

4
‖D−2G‖2 ,

"|G〉〈−G |(D) = 4−
1

4
‖D+2G‖2 .

(31)

Given two single-mode Fock states |:〉, | 9〉 [68] and G =
G′ ⊕ G′′:

"|:〉〈9 |(G) =



√
:!

9!
4−

�
2
|$ |2(
√
�$)9−:!(9−:)

:
(�|$ |2), 9 ≥ :√

:!

9!
4−

�
2
|$ |2(−

√
�$):−9!(:−9)

9
(�|$ |2), 9 ≤ : ,

(32)

where $ .
.= −G′ + 8 G′′

2� . Above, the functions !
(9)
:

are the

Laguerre polynomials, defined for any two integers :, 9
as

!
(9)
:
(G) ..=

:∑
;=0

(: + 9)!
(: − ;)!(9 + ;)!

(−G);
;!

. (33)

Interestingly, the correspondence between trace class

operators and characteristic functions is injective —

even more strikingly, it can be extended to an isom-

etry between the space of Hilbert–Schmidt operators

and that of square integrable functions R2< → C [67,

Theorem 5.3.3]. A consequence of the existence of this

isometry is the quantum Plancherel theorem, which tells

us that for any two trace class operators /, /′ ∈ T1(H<),

Tr

[
/†/′

]
=

∫
32<G

(2�)< "/(G)∗"/′(G) . (34)

The canonical commutation relations are invariant under

so-called symplectic unitaries, constructed as follows.

A 2< × 2< real matrix ( such that (Ω(ᵀ = Ω (or

equivalently (Ω = Ω(−ᵀ) is called a symplectic matrix.

From the defining relation it can be immediately seen

that any symplectic matrix must satisfy det ( = ±1; how-

ever, remarkably, it turns out that in fact all symplectic

matrices have determinant 1. To any symplectic matrix

we can associate a symplectic unitary *( acting on H< .

This is defined by either of the following relations

*†('*( = (' , *(D(G)*
†
( = D((G) , (35)

where the first identity is to be understood coordinate-

wise: ((')9 =
∑
: ( 9:': . Note that symplectic matrices

form a group, denoted as Sp(2<), and that the cor-

respondence ( ↦→ *( is a group homomorphism. In

particular,

*†( = *
−1

( = *(−1 = *Ω (ᵀΩᵀ . (36)

Also, from (35) we deduce that

C
[
*(�*

†
(

]
= ( C[�] , +

[
*(�*

†
(

]
= (+[�](ᵀ , (37)

where we recall that C[$] and +[$] denote the mean

vector and quantum covariance matrix of the state $ as

defined in (19). A generic Gaussian unitary is obtained as

the product between a symplectic unitary and a displace-

ment operator. States obtained by applying an arbitrary

Gaussian unitary to the vacuum state |0〉 =
⊗<

9=1
|0〉 9 are

called pure Gaussian states. Often times, displacements

can be ignored; we will thus write an arbitrary pure

Gaussian state with zero mean as

|#〉 = *( |0〉 , (38)

where ( ∈ Sp(2<) is an arbitrary symplectic matrix.

A quantum channel that will be particularly useful to

us is the Gaussian white noise channel, defined for � > 0

by

N�(·) ..=
∫

32<G

(2��)< 4−
‖G‖2
2� D(G)(·)D(−G) . (39)

Using this formula one can show that

N� : "/ ↦−→ "N�(/)(G) ..= "/(G) 4−
�
2
‖G‖2 . (40)

Curiously, for � ∈ (0, 1] its action can be expressed

alternatively as

N�(·) =
∫

32<G

(2��)< D(G) �⊗<
1

2�− 1

2

D(G)†(·)D(G) �⊗<
1

2�− 1

2

D(G)†,
(41)

where �� is the single-mode thermal state with mean

photon number �, given by

�� =
1

� + 1

∞∑
==0

( �
� + 1

)=
|=〉〈= | , (42)

where |=〉 stands for the =th Fock state. Since we could

not locate a complete proof of (41) in the existing litera-

ture, we provide a self-contained one in Appendix A.
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A special case of (41) is when � = 1, in which case

� 1

2�− 1

2

= |0〉〈0| (the vacuum state) and

N1(·) =
∫

32<G

(2�)< |G〉〈G | (·) |G〉〈G | . (43)

In terms of the real mean vector and quantum covariance

matrix, for all � > 0 we have that

N� :

{
+ ↦−→ + + 2�� ,
C ↦−→ C .

(44)

The above channel, N�, is just an example within the

larger class of Gaussian channels. To construct the most

general Gaussian channel, take two arbitrary 2< × 2<
real matrices - and . such that

. + 8Ω − 8-Ω-ᵀ ≥ 0 ; (45)

the corresponding Gaussian channel, denoted as G-,. ,
then acts as

G-,. : "/ ↦→ "G-,. (/)(D) ..= "/ (Ωᵀ-ᵀΩ D) 4− 1

4
DᵀΩᵀ.ΩD

(46)

and

G-,. :

{
+ ↦−→ -+-ᵀ + . ,
C ↦−→ -C .

(47)

It is worth observing that (45) implies that . ≥ 0 is

positive semi-definite.

An important class of operators on H< that we con-

sider in this paper is the set of Schwartz operators [69].

They can be defined as those trace class operators whose

characteristic function is a Schwartz function on R2<
.

We denote the set of Schwartz function as S(R2<), and
that of Schwartz operators as S(H<). In particular, we

consider the set S(H<)0 of Schwartz operators whose

characteristic functions are compactly supported.

As spaces of Schwartz functions are usually employed

as test spaces in the rigorous theory of distributions, we

can use the space S(H<)0 to formalise the definition of

objects — called symbols — that would be ill-defined as

operators in the traditional sense. For example, given any
smooth function " on R2<

, we can construct a symbol �"
with ‘characteristic function’ ". This is defined formally

as a functional �" : S(H<)0 → C acting as

�"(/) ..=
∫

32<G

(2�)< "(G)∗"/(G) . (48)

This expression is justified by the fact that, when � ∈
T1(H<), we have �"� (/) = Tr(�/) by Plancherel’s the-

orem (34). The above functional extends to the whole

space S(H<) whenever the function G ↦→ "(G)∗"/(G) is
integrable.

C. Concentration inequalities
In this paper, we make use of Bernstein’s matrix

inequality in order to prove that the probability that, on

a well-chosen finite-dimensional subspace, the output of

our shadow tomography protocol is far from the original

unknown state decays exponentially fast in the number

# of samples used to gather statistics:

Lemma 4 (Bernstein’s matrix inequality [70]). Given #
i.i.d. random matrices -1 , . . . , -# ∈ M=(C) which obey ‖-8−
E[-8]‖∞ ≤ ' almost surely, for some ' > 0, the following
tail bound holds:

P

( 1

#

#∑
8=1

(-8−E[-8])

∞
≥ &

)
≤ 2= 4

− #&2

2Σ2+2'&/3 , (49)

where the constant Σ is defined as Σ2 ..= ‖E[-2

1
]‖∞ < ∞.

IV. Classical shadow tomography of a CV system

In this section, we will have a closer look at the shadow

tomography scheme sketched in Section I-A. The goal

of the procedure is to construct a good estimator of an

unknown <-mode state �, by measuring as few i.i.d.

copies of � as possible. To this end, we repeatedly sam-

ple symplectic matrices from Sp(2<) according to some

probability distribution �, apply the corresponding sym-

plectic unitary *( on one copy of �, implementing the

transformation � ↦→ *
(
�*†

(
, and subsequently perform

a fixed Gaussian measurement

{
#G 32<G

(2�)
}
G∈R2< on that

same state. Here, #G = |#G〉〈#G | with |#G〉 ..= D(G) |#〉; the
Gaussian state |#〉, which uniquely identifies the Gaus-

sian measurement, is a fixed parameter of the shadow

tomography protocol. Without loss of generality, we can

take |#〉 to have zero mean, in which case, according

to (38), we can introduce a symplectic matrix ) ∈ Sp(2<)
satisfying that *†

)
|0〉 = |#〉. The † here is immaterial,

thanks to (36). Now, acting with a displacement operator

on the left and on the right yields immediately

|#G〉 = D(G) |#〉 = *†)
(
*)D(G)*

†
)

)
|0〉 = *†) |)G〉 , (50)

where the last step is due to the action of symplectic

unitaries on displacement operators, see (35), and to the

definition (26) of coherent states.

The measurement makes the system collapse into a

random state �̃G = #G , where G is distributed with

probability distribution

?�(G |() 32<G = 〈#G |*(�*
†
( |#G〉

32<G

(2�)< . (51)

When combined with the probability measure � on

Sp(2<), this yields a joint probability distribution on

Sp(2<) × R2<
.

We then attempt to undo the effect of the symplectic

unitary by applying *†
(
. This amounts to the mapping

�̃G = #G ↦→ *†
(
�̃G*(. Once we average over the random

variable ( and the random variable - whore realisation

we denoted with G, the whole process yields an effective

noisy channel ℳ modelled as (1). Making this more

explicit, we write the action of ℳ on an arbitrary trace

class operator / ∈ T (H<) as

ℳ(/) =
∫
3�(()

∫
32<G

(2�)< 〈#G |*(/*
†
( |#G〉 *

†
(#G*( .

(52)
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Our first result allows us to express the action of ℳ
in a form that is more easily amenable to investigation

with phase space methods.

Lemma 5. The map ℳ : T1(H<) → T1(H<) defined in (1)

can be re-expressed as

ℳ(/) =
∫
3�(() G� , 2()()−1()()−ᵀ(/) , (53)

where G-,. is the Gaussian channel defined in (46). Moreover,
the characteristic function of ℳ(/) satisfies

"ℳ(/)(G) =
∫
3�(() "/(G) 4−

1

2
‖)(G‖2 = "/(G) 5�,)(G) ,

(54)

where
5�,)(G) ..=

∫
3�(() 4− 1

2
‖)(G‖2 . (55)

Proof. We start by noticing that due to (50) and thanks

the fact that ( ↦→ *
(
is a group homomorphism, one

obtains that

*†( |#G〉 = *
†
(*
†
) |)G〉 = (*)*()† |)G〉 = *†)( |)G〉 . (56)

Thus, for any trace class operator / ∈ T1(H<)∫
32<G

(2�)< 〈#G |*(/*
†
( |#G〉 *

†
(#G*(

(i)

=

∫
32<G

(2�)< 〈)G |*)(/*
†
)( |)G〉 *

†
)( |)G〉〈)G |*)(

(ii)

=

∫
32<H

(2�)< 〈H |*)(/*
†
)( |H〉 *

†
)( |H〉〈H |*)( (57)

= *†)(

(∫
32<H

(2�)< |H〉〈H |*)(/*
†
)( |H〉〈H |

)
*)(

(iii)

= *†)(N1

(
*)(/*

†
)(

)
*)(

Here, in (i) we applied (56) twice; in (ii) we changed

variable, defining H .
.= )G, and used the fact that ), being

symplectic, has determinant 1; and in (iii) we employed

the representation in (43) for the action of N1.

Now, let us compute the action of the above trans-

formation at the level of covariance matrices. By apply-

ing (37) and (44), we see that

+
[
*†)(N1

(
*)(/*

†
)(

)
*)(

]
= ()()−1+

[
N1

(
*)(/*

†
)(

)]
()()−ᵀ

= ()()−1

(
+

[
*)(/*

†
)(

]
+ 2�

)
()()−ᵀ

= ()()−1 ()(+[/]()()ᵀ + 2�) ()()−ᵀ

= +[/] + 2()()−1()()−ᵀ .
Comparing the above calculation with (47), we see that

*†)(N1

(
*)(/*

†
)(

)
*)( = G� , 2()()−1()()−ᵀ(/) . (58)

Using this insight in (57) shows that∫
32<G

(2�)< 〈#G |*(/*
†
( |#G〉 *

†
(#G*( = G� , 2()()−1()()−ᵀ(/) .

(59)

In turn, the above identity yields (53) upon integration

in ( with respect to the measure �.
We conclude by computing the characteristic func-

tion (28) of both sides of (53). For an arbitrary G ∈ R2<
,

we obtain that

"ℳ(/)(G) =
∫

3�(() "G
� , 2()()−1()()−ᵀ (/)(G)

(iv)

=

∫
3�(() "/(G)4−

1

2
GᵀΩᵀ()()−1()()−ᵀΩG

(v)

=

∫
3�(() "/(G)4−

1

2
Gᵀ()()ᵀ()()G

=

∫
3�(() "/(G)4−

1

2
‖)(G‖2 .

(60)

Here, (iv) follows from (46), and (v) is due to the fact that

since )( is symplectic, Ωᵀ()()−1 = ()()ᵀΩᵀ
, or upon

transposing ()()−ᵀΩ = Ω()().
We therefore see that the action of ℳ is actually

very simple, amounting to a point-wise multiplication

at the level of the characteristic function. Channels of

this form are particular examples of so-called linear
bosonic channels, introduced and studied by Holevo and

Werner [8]. Although we will not use this observation in

this work, it is worth noting that linear bosonic channels

are always approximable — in the strong operator sense

— by Gaussian dilatable channels, i.e. channels admitting

a Stinespring representation in which the unitary is

Gaussian and the ancilla is arbitrary [71], [72].

As it turns out, ℳ is a special type of linear bosonic

channel whose action is representable as a random dis-

placement. Namely, using (25) one sees that

ℳ(/) =
∫

32<G

(2�)< 5̃�,)(G)D(G)/D(−G) , (61)

5̃�,)(G) ..=
∫

32<D

(2�)< 5�,)(D) 4 8G
ᵀΩD = 5�,)(G) , (62)

i.e. 5�,) coincides with its own Fourier transform. The

rigorous proof of the general validity of (62) is deferred

to Appendix A. In light of this discussion, it is easy to

write down, at least formally, the inverse of ℳ, which

acts as

ℳ−1

: "/ ↦−→ "ℳ−1(/)(G) ..=
1

5�,)(G)
"/(G) . (63)

Note that 5�,)(G) > 0 for all G ∈ R2<
, so the above

expression is always well defined. In particular, ℳ is

injective as a linear map, and thus it is invertible on its

range.

The problem, naturally, is that such a range is in

general significantly smaller than the space of trace class

operators (we will shortly see an example of this). This

entails that the right-hand side of (63) is not always

the characteristic function of a trace class operator. This,

however, does not pose any problem since the classical

shadow obtained at the output of ℳ−1
is, as the name

suggests, just a classical object which we will merely use

as a computational tool.
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Incidentally, also ℳ−1
, just like ℳ, acts as a mere

point-wise multiplication at the level of characteristic

functions. This implies that one can also try, as done

in (61), to represent it as an affine combination of dis-

placement operators, i.e. by writing

ℳ−1(/) =
∫

32<G

(2�)< 6̃�,)(G)D(G)/D(−G) , (64)

where 6�,)(G) ..= 1

5�,) (G) , and

6̃�,)(G) ..=
∫

32<D

(2�)< 6�,)(D) 4 8G
ᵀΩD

(65)

would be its Fourier transform. The trouble, of course,

is that 6�,) will not be absolutely integrable — and not

even bounded — in general, so there is little hope to

define its Fourier transform unless one appeals to the

theory of distributions.

To provide a solution to this apparent issue, let us

return to our original problem. We can now formally

construct the classical shadow

�̂ =ℳ−1

(
*†(D(G)#D(−G)*(

)
=ℳ−1

(
*†)( |)G〉〈)G |*)(

)
.

The shadow, �̂, is more rigorously defined as a func-

tional on the set S(H<)0 of Schwartz operators with

compactly supported characteristic functions via (48).

Its corresponding improper characteristic function can

hence be computed as follows:

"̂(D) ≡ "�̂(D) = "ℳ−1(*†)( |)G〉〈)G |*)()(D)

=
1

5�,)(D)
"*†

)(
|)G〉〈)G |*

)(
(D)

=
1

5�,)(D)
"|)G〉〈)G |()(D)

=
1

5�,)(D)
4−

1

4
‖)(D‖2−8DᵀΩ(−1G ,

(66)

where in the last step we used (31). In other words, for

any / ∈ S(H<):

�̂(/) ..=
∫

32<D

(2�)< "̂(D)∗ "/(D) , (67)

whenever the function D ↦→ "̂(D)∗"/(D) is integrable. In

what follows, we will also consider the reduced shadow

over a subset � of |�| = A modes, formally given by the

partial trace “�̂� .
.= Tr�2 (�̂)” of the shadow �̂. Again, we

will use the characteristic function to rigorously define

it: given a region � of A modes, it is defined for any

D� ∈ R2A
as

"̂�(D�) ≡ "�̂� (D�) ..= "�̂(D� , 0) . (68)

In that case, we write for any /� ∈ S(HA):

�̂�(/�) ..=
∫

32AD�

(2�)A "̂�(D�)∗ "/� (D�) , (69)

whenever the function D� ↦→ "̂�(D�)∗ "/� (D�) is inte-

grable.

The following lemma further justifies the claim made

in (3) that the shadow �̂ has average � by construction.

Lemma 6. For any subset � of |�| = A modes, and all /� ∈
S(HA)0 with corresponding characteristic function "/� , the
random variable �̂�(/�) defined via (69) is integrable and

E
[
�̂�(/�)

]
= Tr[��/�] ,

where the conditional expectation is taken with respect to the
probability density function ?)((, G) ..= 〈)G |*

)(
�*†

)(
|)G〉

with respect to �⊗ 32<G
(2�)< on Sp(2<)×R2< . The result extends

to /� ∈ S(HA) under the condition of integrability with
respect to � ⊗ 32<G

(2�)< ⊗
32AD
(2�)A of the function

((, G, D) ↦→
"/� (D) "|)G〉〈)G |()((D, 0)ᵀ) ?)((, G)

5�,)(D, 0)
. (70)

Proof. We present the proof for |�| = < since the case

|�| = A < < follows the exact same strategy using

that "̂(D� , 0) = "̂�(D�) by definition. Now, on the one

hand, if / ∈ S(H<)0 then the characteristic function

"/ of / is compactly supported; therefore, owing to the

boundedness of "/ we deduce that the function

((, G, D) ↦→
"/(D)"|)G〉〈)G |()(D) ?)((, G)

5�,)(D)
(71)

is integrable with respect to �⊗ 32<G
(2�)< ⊗

32<D
(2�)< . On the other

hand, if only / ∈ S(H<) such integrability is assumed

by hypothesis. Therefore, in both cases thanks to Fubini’s

theorem and (66) we have that

E
[
�̂(/)

]
=

∫
32<D

(2�)<
∫
3�(()

∫
32<G

(2�)< "/(D)
"|)G〉〈)G |()(D) ?)((, G)

5�,)(D)
(i)

=

∫
32<D

(2�)<
∫
3�(() "/(D)

"N1(*)(�*†)()()(D)
5�,)(D)

(ii)

=

∫
32<D

(2�)<
∫
3�(()

"/(D) "*
)(
�*†

)(
()(D) 4− 1

2
‖)(D‖2

5�,)(D)
(iii)

=

∫
32<D

(2�)<
∫
3�(()

"/(D) "�(D) 4−
1

2
‖)(D‖2

5�,)(D)

=

∫
32<D

(2�)< "/(D) "�(D)

= Tr[/�] .

In (i) we changed variable, defining H .
.= )G, used the

fact that ), being symplectic, has determinant 1, and

employed the representation in (43); in (ii) we used (40);

finally, in (iii) we leveraged (35).

In this section, we have made rigorous our first intu-

itive notion of a CV shadow by means of its characteristic

function. We have also seen that the latter reduces to the

characteristic function of the original unknown state �
on average when integrated against sufficiently smooth
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functions. The goal of the next section is to prove that un-

der some physically relevant conditions such as energy

boundedness of the state �, these integrals are enough

to estimate expected values of observables with respect

to the state � to high accuracy.

A. Finite moments assumption
As we saw in the previous section, the shadow �̂,

which we formally defined through its characteristic

function, is in general unbounded. In this section, we

show that this issue can be fixed if we further assume

that the photon number distribution of the unknown

state � satisfies some moment constraints. This allows

us to show that the projection of � onto a certain finite

subspace of Hilbert–Schmidt operators is enough to get

a sufficiently good approximation of it while running the

shadow tomography protocol.

More precisely, we argue that all we need is to ensure

finite rank convergence of density operators and an

energy constraint on the initial state �.
Let / ∈ T2(H<) be a Hilbert Schmidt operator and

denote by "/ its characteristic function. By density, one

can find a function "̃/ ∈ �∞2 (R2<) such that ‖"/ −
"̃/ ‖!2(R2< ) < � and "̃/ is the characteristic function of

some operator /̃, i.e. "
/̃
= "̃/ . The operator /̃ is a

Schwartz operator, and is in particular trace class, and

clearly ‖/ − /̃‖2 < � [69]. Thus, �̂(/̃) is now necessar-

ily a well-defined quantity by the quantum Plancherel

formula (cf. (34)). In particular, we have that, for any

/ ∈ T2(H<),

| Tr(/�) − �̂(/̃)| ≤ | Tr((/ − /̃)�) + | Tr(�/̃) − �̂(/̃)|
≤ � + | Tr(�/̃) − �̂(/̃)| .

This can be used in the above context by choosing

/ = /n1n2
= |n1〉〈n2 |, given two multi-mode Fock states

|n1〉〈n2 | ∈ H< , and defining

P"()) ..=
∑

n1 ,n2∈{0,..,"}<
〈n1 |) |n2〉 |n1〉〈n2 | ≡ %")%" .

(72)

Using the above approximation scheme, we can approxi-

mate the Schwartz operators /n1n2
by Schwartz operators

/̃n1n2
with smooth compactly supported characteristic

functions and define an auxiliary map

P̃"()) ..=
∑

n1 ,n2∈{0,..,"}<
Tr

[
/̃n2n1

)
]
|n1〉〈n2 | . (73)

For sake of simplicity, we will use the same notation for

projected reduced states on subsets of A < < modes. We

further assume that the characteristic function of /̃n1n2
is

obtained from that of |n1〉〈n2 | by point-wise multiplica-

tion by a simple compactly supported function. Namely,

we set

"̃n1n2
(D) ..= "̃/n1n

2

(D) = "|n1〉〈n2 |(D)
<∏
9=1

��,'
(
D(9)

)
, (74)

where as usual D(9) ..= (D9 , D9+<)ᵀ ∈ R2
, and, given some

parameters 0 < � < ', the smooth function ��,' : R2 →
[0, 1] satisfies that

��,'(I) =
{

1, if ‖I‖ ≤ �,

0, if ‖I‖ ≥ '.
(75)

In particular, this allows us to evaluate �"
(
/̃n2n1

)
for

functionals �" defined as in (48).

Lemma 7. For all  > 0, all non-negative integers < (number
of modes) and " (Fock truncation number), and all � ≥ 0, it
holds thatℒ(�+#< )ℛ(�+#< ) (

P" − P̃"
)

2→1

≤ �0(�, ", , <) ,
(76)

where the rapidly vanishing function �0 is defined by

�0(�, ", , <)

..= (<" + 1)2(" + 1)< 3
<" 4−

<
4
�2 ©«

2"∑
?=0

�2?

2
??!

ª®¬
</2

.

(77)

Next, we consider an approximation of � in the follow-

ing norm: given 0 ≤  < = and two trace class operators

�, �′ ∈ T1(H<) with Tr(�(� + #<)=), Tr(�′(� + #<)=) < ∞,

we denote �<
.
.= � + #< and

‖� − �′‖()
1

.

.=

�/2
< (� − �′)�/2

<


1

.

Similar norms were previously defined in [73] under the

name of m-mode bosonic Sobolev norms.

Proposition 8. Let #< be the number operator on H< , �< =

�+#< , and � a state such that for some = > 0 we have �(=)< ..=

Tr[��=
<] < ∞. Define P" and P̃" as in (72) and (73),

respectively. Then for any 0 ≤  < =� − P"(�)()
1
≤ 2(" + 2)− =−2 �

(=)
< , (78)� − P̃"(�)()

1

≤ 2(" + 2)− =−2 �
(=)
< + �0

(
�, ", 

2
, <

)
,

(79)

where �0 was introduced in Lemma 7.

Proof. We use a duality argument for this proof. For any

$ such that

�−/2< $�
−/2
<


∞ ≤ 1, we find��

Tr

[
$(� − P"(�))

] ��
=

���Tr

[
�
− 

2

< $�
− 

2

< �

2

< (� − P"(�))�

2

<

] ���
≤

� 
2

< (� − P"(�))�

2

<


1

≤
�− =−2

< �
=
2

< (� − %")��
=
2

<�
− =−

2

<


1

+
�− =−2

< �
=
2

<%"�(� − %")�
=
2

<�
− =−

2

<


1

(i)

≤
�− =−2

< (� − %")

∞

� =
2

<��
=
2

<


1

�− =−2

<


∞

+
�− =−2

<


∞
‖%" ‖∞

� =
2

<��
=
2

<


1

(� − %")�− =−2

<


∞
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(ii)

≤ 2(" + 2)− =−2 �
(=)
< .

Here, (i) comes from a repeated application of Hölder’s

inequality, and we also observed that %" and �< com-

mute; (ii) is because�− =−2

< (� − %")

∞
=

∑
n∈N<\["]<

(1 + |n|)− =−2 |n〉〈n|

∞

= max

n∈N<\["]<
(1 + |n|)− =−2

= (2 +")− =−2 .
(80)

This proves (78). Next, we have that���Tr

[
$ (P" − P̃")(�)

] ���
=

���Tr

[
�
− 

2

< $�
− 

2

< �

2

< (P"(�) − P̃"(�))�

2

<

] ���
(iii)

≤
�− 

2

< $�
− 

2

<


∞

� 
2

< (P" − P̃")(�)�

2

<


1

(iv)

≤ �0

(
�, ", 

2
, <

)
,

where (iii) is again Hölder’s inequality, and (iv) comes

from our assumptions together with Lemma 7. Combin-

ing this with (78) yields (79) and concludes the proof.

In order to use the approximation bounds of 8, it

remains to estimate how well the empirical average of

the shadows

�̂(#) ..=
1

#

#∑
8=1

�̂(8) , (81)

where �̂(8) are # i.i.d. copies of the shadow �̂ constructed

in (67), approximates P"(�) and P̃"(�) depending on

the choice of the Gaussian shadow tomography scheme.

For this, we introduce, for any set � of |�| = A modes,

the operators

�(#)
�
(") ..=

∑
n1 ,n2∈{0,..,"}A

�̂(#)
�
(|n2〉〈n1 |) |n1〉〈n2 | ,

�̃(#)
�
(") ..=

∑
n1 ,n2∈{0,..,"}A

�̂(#)
�
(/̃n2n1

) |n1〉〈n2 | . (82)

Since both operators are supported on a finite dimen-

sional subspace, we can resort to the matrix Bernstein

inequality (49) in order to prove that, with high prob-

ability, ‖�(#)
�
(") − P"(��)‖1 , ‖�̃(#)�

(") − P̃"(��)‖1 ≤ &
for # large enough. In the next section, we explain in

more detail how we use the matrix Bernstein inequality

in the case of both the homodyne and the heterodyne

detection strategies.

V. Homodyne and heterodyne shadow tomography

A. Local homodyne detection
Let us first consider the scenario in which one per-

forms a homodyne detection along a random direction

in phase space. Here, < independent random matrices

(1 , . . . , (< are distributed uniformly (according to the

Haar measure) on the intersection Sp(2)∩SO(2) between

the symplectic and the orthogonal group. It is useful to

note that Sp(2) ∩ SO(2) ' U(1), where on the right-hand

side we have the unitary group of 1× 1 matrices, so that

the Haar measure on Sp(2) ∩ SO(2) is essentially that on

U(1). In this simple homodyne case the algorithm for

shadow tomography is summarised as follows:

(1) A copy of � is loaded, and < matrices (1 , . . . , (< ∈
U1 are drawn at random according to the Haar

measure. In other words * 9 = '�9 for some angle

�9 ∈ [−�,�], where

'�
.
.=

(
cos� − sin�
sin� cos�

)
.

(2) The rotation *( ≡ *(1
⊗ · · · ⊗ *(< is applied to �,

where ( = (1 ⊕ · · · ⊕ (< , obtaining the state *(�*†(.
(3) The output state of (2) is subjected to a homodyne

measurement along the position axis, yielding the

classical outcome G = (G1 , . . . , G<)ᵀ ∈ R2<
.

(4) We construct the classical shadow �̂, which is the

final output of this round of the protocol.

After several rounds have been conducted, we can pro-

cess the classical shadows as we prefer. A typical method

would be that of computing the empirical average �̂(#)

as defined in (81) for the above protocol. We can then

use that operator e.g. for computing expected values of

observables, or else reduced density operators, etc. To

model homodyning in a rigorous way, let us introduce

a parameter B > 0, which we will later take to infinity,

and let us set

)⊕< = )⊕<B
.
.=

(
4−B 0

0 4 B

)⊕
<

, (83)

These choices of � ∼ Haar(U1) and ) completely de-

termine our shadow tomographic setting. In the limit

B → ∞, the measurement will reproduce a homodyne

measurement along the position axis of each mode. To

make things more concrete, given a threshold " ∈ N
and  ≥ 0 we define

�̂�(") ..=
⊗
9∈�

(∑"

=1 ,=2=0

�̂ 9(")=1 ,=2
|=1〉〈=2 |

)
,

�̂ 9(")=1 ,=2

.

.=

∫
3H |H | 4−8(H,0)(

−ᵀ
9
Ω(9G 9 "|=2〉〈=1 |(( 9(H, 0)ᵀ) ,

(84)

By (32), the absolute value of the characteristic function

"|=2(9)〉〈=1(9)|(( 9(H, 0))) is upper bounded by√
=2(9)!
=1(9)!

4−
�
2
|$ |2(
√
�|$ |)"9−<9 !

("9−<9 )
<9

(�|$ |2) ,

where $ .
.= −G′ + 8 G′′

2� with G = G′ ⊕ G′′ = ( 9(H, 0)) , < 9
.
.=

min{=1(9), =2(9)}, " 9
.
.= max{=1(9), =2(9)}, and where the

Laguerre polynomials !
(:)
9

were defined in (33). Since
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|H |
2� ≤ |$ | ≤ |H |, we therefore have that

� 
2

A �̂�(")�

2

A


∞

is almost surely bounded by

Σ
()
A (")

.

.=


(
((1 + |n1 |)(1 + |n2 |))


2

A∏
9=1

√
=2(9)!
=1(9)!

×
∫
3H |
√
�H |1+"9−<9 4−

|H |2
8�

���!"9−<9

"9

(
�|H |2

) ��� )
n1 ,n2


∞
,

(85)

where n1 , n2 ∈ {0, . . . , "}A , by using the simple fact

that given two matrices � = {(08 9)}8 9 and � = {(18 9)}8 9
with |08 9 | ≤ 18 9 for all 8 , 9, then ‖�‖∞ ≤ ‖�‖∞. This

can be proved as follows. For a vector E with en-

tries E8 and norm ‖E‖2
2
=

∑
8 |E8 |2, define the new

vector F with entries F8
.
.= |E8 |, so that ‖F‖2 = 1.

Using the triangle inequality, it is straightforward to

verify that ‖�E‖2 ≤ ‖�F‖2; this entails that ‖�‖∞ =

sup‖E‖=1
‖�E‖ ≤ sup‖F‖=1

‖�F‖ = ‖�‖∞. Continuing, as
before we then denote

�(#)
�
(") ..= 1

#

#∑
8=1

�̂(8)
�
(") ,

where �̂(8)
�
(") are i.i.d. random matrices of law the one

of �̂�("). With this, we are ready to state our first main

result:

Theorem 9. With the above notation, given 0 ≤  < = such
that �(=)A ..= max|�|≤A Tr(���=

A ) < ∞ and

# ≥ (" + 1)2A
3&2

{
24Σ

()
A (")2 + 4

(
Σ
()
A (") + �()A

)
&
}

× log

(
2

[
<(" + 1)

] A
�

)
,

(86)

where
" =

⌈(
4�
(=)
A /&

) 2

=−
⌉
, (87)

we have that for any region � of size |�| ≤ A, it holds that�(#)�
(") − ��

()
1

≤ & (88)

with probability at least 1 − �. Similarly, for

# ≥ (" + 1)2A
3&2

{
24Σ

()
A (")2 + 4

(
Σ
()
A (") + �()A

)
&
}

× log

(
2!(" + 1)A

�

)
,

(89)

we have that for any set of ! observables $ 9 on regions � 9 of
size at most A and with

�− 
2

A $ 9�
− 

2

A


∞
≤ 1,

max

9

��
Tr

[
$ 9 (�(#)�9

(") − ��9 )
] �� ≤ & (90)

with probability at least 1 − �.
Remark 10. We essentially recover the same dependence

of the number of samples in terms of the logarithm of

the number of observables/total number of modes and

on the exponential of the size of the regions � as in the

qubit setting of [6].

Proof. The first part of the proof consists in computing

the function 5�⊗< ,)⊕< defined as in (55) in the limit B →
∞. It is given by

5�⊗< ,)⊕< (D) ..=
∫
3�⊗<((1 , . . . , (<) 4−

1

2
Dᵀ()⊕<()ᵀ ()⊕<() D

=

<∏
9=1

5�,)(D9) ,

with D = (D1 , . . . , D<)) ∈ R2<
, where for each mode 9 we

have

5�,)(D9)
(i)

=

∫ +�

−�

3�
2�

4
− 1

2
D
ᵀ
9
'
ᵀ
��B'�D9

(ii)

=

∫ +�/2

−�/2

3�
�
4
− 1

2
D
ᵀ
9
'
ᵀ
��B'�D9

(iii)

=

∫ +�/2

−�/2

3�
�
4−
‖D9 ‖2

2
4
ᵀ
1
'
ᵀ
��B'� 41

=

∫ +�/2

−�/2

3�
�
4−
‖D9 ‖2

2
(4−2B

cos
2 �+42B

sin
2 �)

(iv)

= 4−
‖D9 ‖2 cosh(2B)

2 �0

(
− ‖D9 ‖

2
sinh(2B)
2

)
= 4−

‖D9 ‖2 cosh(2B)
2 �0

( ‖D9 ‖2 sinh(2B)
2

)
.

(91)

Here, in (i) we introduced the matrix �B = )2

B ; in (ii)

we noted that the integrand is invariant under rotations

of �, in (iii) we observed that the integral is invariant

under rotations of D9 , and thus chose to compute it for

D9 = ‖D9 ‖41 .
.= ‖D9 ‖(1, 0)ᵀ; and in (iv) we recognised the

integral representation for the modified Bessel function

�0(G) ..=
1

�

∫ �

0

4±G cos�3� .

Plugging this into (66), we have found that

"�̂(D) =
4−

1

4
‖)⊕<(D‖2−8DᵀΩ(G

5�⊗< ,)⊕< (D)

=

<∏
9=1

4
‖D9 ‖2 cosh(2B)

2

�0

( ‖D9 ‖2 sinh(2B)
2

) 4− 1

4
‖)(9D9 ‖2−8Dᵀ

9
Ω(−1

9
G 9

≡
<∏
9=1

"�̂9 (D9) .

In other words, "�̂ is formally the characteristic function

of a tensor product of forms �̂ = �̂1 ⊗ · · · ⊗ �̂< . Moreover,

by the asymptotic expansion of the modified Bessel

function

�0

( ‖D9 ‖2 sinh(2B)
2

)
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=
4
‖D9 ‖2 sinh(2B)

2√
sinh(2B)�‖D9 ‖

(
1 + O((‖D9 ‖2 sinh(2B))−1)

)
,

we see that

"�̂9 (D9) =
√

2 sinh(2B)�‖D9 ‖ 4
‖D9 ‖2 4−2B

2 4
− 1

4
‖)B(9D9 ‖2−8Dᵀ9 Ω(

−1

9
G 9

1 + O((‖D9 ‖2 sinh(2B))−1)
which shows that "�̂(D) can be integrated against any

element of the Fock basis as soon as B > 0. Taking the

distributional limit, we find

"�̂9 (D9) −−−→B→∞ 2�‖D9 ‖ �
(
(( 9D9)2

)
4
−8Dᵀ

9
Ω(−1

9
G 9 .

Next, we fix a region � of size |�| = A and consider for

a fixed squeezing B

�̂�(B, ") ..=
⊗
9∈�

( "∑
=1 ,=2=1

�̂ 9(|=2〉〈=1 | |) |=1〉〈=2 |
)
.

We have from Lemma 6 that

E
[
�̂�(B, ")

]
= P"(��)

which holds for any squeezing parameter B. Therefore,
we can take the limit B →∞ above. We find

�̂�(B, ") =
⊗
9∈�

( "∑
=1 ,=2=1

|=1〉〈=2 |
∫
"�̂9 (D9) "|=2〉〈=1 |(D9)

32D9

(2�)A

)
(92)

so that

�̂�(B, ") −−−→B→∞ �̂�(") ..=
⊗
9∈�

�̂ 9("),

�̂ 9(") ..=
"∑

=1 ,=2=1

|=1〉〈=2 |

×
∫
|H | 4−8(H,0)(

−ᵀ
9
Ω(9G 9 "|=2〉〈=1 |(( 9(H, 0)ᵀ) 3H,

(93)

with E[�̂�(")] = P"(��). Then, we have

seen below Equation (84) that, almost surely,

‖�

2

A �̂�(")�

2

A ‖∞ ≤ Σ
()
A ("). Moreover, we have

that ‖�

2

A P"(��)�

2

A ‖∞ ≤ �
()
A , therefore almost surely

‖�

2

A (�̂�(") − P"(��))�

2

A ‖∞ ≤ �
()
A + Σ()A ("). Finally,

‖E[(�

2

A �̂�(")�

2

A )2]‖∞ ≤ Σ
()
A (")2. We can hence use

the equivalence of matrix norms together with the

matrix Bernstein inequality (49) to get

P
(�(#)

�
(") − P"(��)

()
1
≥ &

)
≤ P

(� 
2

A

(
�(#)
�
(") − P"(��)

)
�


2

A


∞ ≥ &(" + 1)−A

)
≤ 2(" + 1)A exp

(
− 3#&2(" + 1)−2A

6Σ
()
A (")2 + 2(Σ()A (") + �()A )&

)
.

(94)

Therefore, by a union bound, we get that

P
(
∃�, |�| ≤ A :

�(#)
�
(") − P"(��)

()
1
≥ &

)

≤ 2

[
<(" + 1)

] A
× exp

(
− 3#&2(" + 1)−2A

6Σ
()
A (")2 + 2(Σ()A (") + �()A )&

)
. (95)

Next, we use Proposition 8 and choose " =⌈(
4�
(=)
A /&

) 2

=−
⌉
, so that ‖P"(��) − ��‖()

1
≤ &/2 and

P
(
∃�, |�| ≤ A :

�(#)
�
(") − ��

()
1
≥ &

)
≤ P

(
∃�, |�| ≤ A :

�(#)
�
(") − P"(��)

()
1
≥ &

2

)
≤ 2

[
<

(
" + 1

) ] A
× exp

(
− 3#&2(" + 1)−2A

24Σ
()
A (")2 + 4(Σ()A (") + �()A )&

)
.

Therefore, choosing # as in the statement of the theo-

rem, we obtain that the probability that on any subset �

of at most A modes ‖�(#)
�
(")−��

()
1
≥ & is at least 1− �.

The results for a fixed number of ! observables

$1 , . . . , $! supported on regions �1 , . . . , �! of size at

most A follow after replacing the above union bounds

over regions � by a union bound over the observables

$ 9 :

P
(
∃9 : | Tr($ 9�

(#)
�9
(")) − Tr($ 9 P"(��9 ))| ≥ &

)
≤ 2!

[
(" + 1)

] A
exp

(
− 3#&2(" + 1)−2A

6Σ
()
A (")2 + 2(Σ()A (") + �()A )&

)
and the result follows after replacing <A

by ! in the

estimate for # .

B. Local heterodyne detection
Even simpler than homodyne detection, the simplest

Gaussian shadow tomographic setting is that where the

measurement employed is a heterodyne detection{
1

(2�)</2
|G〉〈G |

}
G∈R2<

, (96)

i.e. ) = �, and all unitaries employed are passive, i.e.

such that

[
*
(
, 1

2
'ᵀ'

]
= 0. Naturally, this is the same

as requiring that ( be (not only symplectic but also)

orthogonal. Since passive unitaries send coherent states

to coherent states, amounting to a rotation in that space,

the effective measurement being carried out on � is the

same irrespectively of ( — the only thing changing is

that the outcome is rotated. Mathematically, this means

that the probability distribution of the random variable

*†
(
D(G)#D(−G)*

(
, where G is the outcome of the hetero-

dyne detection (96) on *
(
#*†

(
, is the same as that of the

random variable D(H)#D(−H), where H is the outcome

of the heterodyne on #. This means that in the shadow

tomography protocol we can skip the unitary operation

altogether without losing any data. In what follows we

will therefore set ( = � (deterministically) without loss

of generality.
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With the above simplifications, one can see that

5�,)(D) = 4−
1

2
‖D‖2

, so that ℳ = N1 (cf. (40)). Therefore,

the classical shadow will have improper characteristic

function

"�̂(D) = 4
1

4
‖D‖2−8DᵀΩG .

Once again, the characteristic function tensorises: given

D = (D1 , . . . , D<)ᵀ and G = (G1 , . . . , G<)ᵀ:

"�̂(D) =
<∏
9=1

"�̂9 (D9) (97)

where

"�̂9 (D9) ..= 4
1

4
‖D9 ‖2−8Dᵀ9 ΩG 9 . (98)

Now, if we want to use the classical shadow to compute

expectation values, we can formally use Plancherel’s

relation

�̂($) =
∫

32<D

(2�)< "�̂(D) "$(D)

=

∫
32<D

(2�)< 4+
1

4
‖D‖2−8DᵀΩG "$(D) .

(99)

In order for this to make sense, we should make sure

that not only $ is trace class (instead of bounded),

but also that "$(D) decays sufficiently rapidly, for in-

stance like ∼ 4−
�
4
‖D‖2

, with � > 1. This decay is too

fast — but barely too fast — to be useful in practice.

For instance, if $ has a finite expansion in the Fock

basis then "$(D) ∼ ?(D)4− 1

4
‖D‖2

as ‖D‖ → ∞, where

?(D) is some polynomial of the entries of D. We get

rid of the diverging Gaussian in (99), but not of the

diverging polynomial. In order to take care of this issue,

we make use of the approximations /̃n1n2
of the Schwartz

operators |n1〉〈n2 | as well as of the auxiliary map P̃" and

the corresponding matrices �̃(#)
�
(") introduced in (73),

resp. in (82). We consider the matrices

�̂�(") ..=
∑

n1 ,n2∈{0,...,"} |�|
�̂(/̃n2n1

) |n1〉〈n2 | , where

�̂(/̃n2n1
) ..=

∫
R2A

"̃n2n1
(D) 4 1

4
‖D‖2−8DᵀΩG 3

2AD

(2�)A

where "̃n2n1
is defined in (74). From Lemma 6,

E
[
�̂�(")

]
= P̃"(��). For  ≥ 0, ' > 0 and A, " ∈ N,

we introduce the matrix norm

Σ̃
()
A (", ') ..= ‖ A(", ')‖∞ ,

where the entries of the (" + 1)A × (" + 1)A matrix

 A(", ') are defined by

 A(", ')n1 ,n2

.

.= ((1+|n1 |)(1+|n2 |))

2

∫
|D |≤'
|"̃n2n1

(D)| 4 1

4
‖D‖2 3

2AD

(2�)A ,

and n1 , n2 ∈ {0, . . . , "}A . With these definitions, we can

write the inequality� 
2

A �̂�(")�

2

A


∞
≤ Σ̃()A (", ') . (100)

As before, we then denote

�(#)
�
(") ..= 1

#

#∑
8=1

�̂(8)
�
(") ,

where �̂(8)
�
(") are i.i.d. random matrices of law the one

of �̂�("). Our second main result is stated below:

Theorem 11. With the notation introduced above, given 0 ≤
 < =, A ∈ N such that �(=)A ..= max|�|≤A Tr(���=

A ) < ∞, and
0 < � < ', set

" ..= min

{
"′∈N : �2 > 2"′2

2(1+"′) −=2 �
(=)
A + �0

(
�, "′, 

2
, A

)
≤ &

2

}
,

(101)

with �0 defined as in Proposition 8. Then for any

# ≥ inf

0<�<'

(" + 1)2A
3&2

log

(
2

[
<(" + 1)

] A
�

)
[
24 Σ̃

()
A (", ')2

+ 4

(
Σ̃
()
A (", ') + �()A + �0(�, ", 

2
, A)

)
&
]
,

(102)

we have that for any region � of size |�| ≤ A, it holds that�(#)�
(") − ��

()
1

≤ & (103)

with probability at least 1 − �. Similarly, for

# ≥ inf

0<�<'

(" + 1)2A
3&2

log

(
2!(" + 1)A

�

)
[
24 Σ̃

()
A (", ')2

+ 4

(
Σ̃
()
A (", ') + �()A + �0(�, ", 

2
, A)

)
&
]
,

(104)

we have that for any set of ! observables $ 9 on regions � 9

of size at most A and with
�− 

2

A $ 9�
− 

2

A


∞
≤ 1, it holds that

max

9

��
Tr

[
$ 9 (�(#)� 9

(") − ��9 )
] �� ≤ &

(105)

with probability at least 1 − �.
Proof. By construction, we have almost surely that

‖�

2

A �̂�(")�

2

A ‖∞ ≤ Σ̃()A (", '). Moreover, we have that

‖�

2

A P̃"(��)�

2

A ‖∞
≤ ‖P̃"(��)‖()

1

≤ ‖(P̃" − P")(��)‖()
1
+ ‖P"(��)‖()

1

≤ �0(�, ",

2

, A) + �()A

for �2 > 2"2
, by Lemma 7. Therefore

almost surely ‖�

2

A (�̂�(") − P̃"(��))�

2

A ‖∞ ≤
�
()
A + �0(�, ", 

2
, A) + Σ̃

()
A (", '). Finally,

‖E[(�

2

A �̂�(")�

2

A )2]‖∞ ≤ Σ̃()A (", ')2. We hence use the
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matrix Bernstein inequality (49) to get in terms of a

constant � = �(#, &, ', , A) with

� .
.=

3#&2(" + 1)−2A

6Σ̃
()
A (", ')2 + 2(Σ̃()A (", ') + �0(�, ", 

2
, A) + �()A )&

the estimate

P
(�̃(#)

�
(") − P̃"(��)

()
1
≥ &

)
(106)

≤ 2(" + 1)A exp (−�(#, &, ', , A)) .

Therefore, by a union bound, we get that

P
(
∃�, |�| ≤ A :

�̃(#)
�
(") − P̃"(��)

()
1
≥ &

)
≤ 2

[
<(" + 1)

] A
exp (−�(#, &, ', , A)) .

Next, we use Proposition 8 and choose " = min{"′ ∈
N : 2(1 + "′) −=2 �

(=)
A + �0

(
�, "′, 

2
, A

)
≤ &

2
}, so that

‖P̃"(��) − ��‖()
1
≤ &/2, and

P
(
∃�, |�| ≤ A :

�̃(#)
�
(") − ��

()
1
≥ &

)
≤ P

(
∃�, |�| ≤ A :

�̃(#)
�
(") − P̃"(��)

()
1
≥ &

2

)
.

Therefore, choosing # as in the statement of the theo-

rem, we obtain that the probability that on any subset �

of at most A modes ‖�̃(#)
�
(")−��

()
1
≥ & is at least 1− �.

The results for a fixed number of ! observables

$1 , . . . , $! supported on regions �1 , . . . , �! of size at

most A follow after replacing the above union bounds

over regions � by a union bound over the observables

$ 9 :

P
(
∃9 : | Tr($ 9 �̃

(#)
�9
(")) − Tr($ 9 P̃"(��9 ))| ≥ &

)
≤ 2!

[
(" + 1)

] A
exp (−�(#, &, ', , A))

and the result follows after replacing <A
by ! in the

estimate for # .

C. Comparison to related work
In a concurrent and independent work [23], the au-

thors also developed a shadow tomography protocol

for bosonic systems. Their framework is equivalent to

ours in the homodyne and heterodyne settings. Let

us consider the former in the one-mode setting: the

shadows in [23] are constructed in the Fock basis by

taking �̌<= .
.= 4 8(<−=)� 5<=(G), after making a random

rotation � and obtaining G from a measurement in the

position axis. The functions 5<= = 5=< are the so-called

pattern functions [38], [74] and are defined using Fock

state wavefunctions #< (<Cℎ
energy eigenstate of the har-

monic oscillator) and )= (=Cℎ non-normalizable solution

of the Schrödinger equation of a harmonic oscillator) as

5<=(G) ..=
%

%G
(#<(G))=(G)), = ≥ < .

Then, they construct the following estimator from #
copies of the unknown state:

�̌(#)<=
.
.=

1

#

#∑
8=1

�̌(8)<= =
1

#

#∑
8=1

4 8(<−=)�8 5<=(G�8 ) ,

where the angles �8 are picked uniformly at random,

and G� = G′� ⊕ G
′′
� =
√

2�G′ ⊕ 1√
2�
G′′ in the notations of

Section V-A. It turns out that these pattern functions

can be equivalently defined in terms of their Fourier

transforms (eq. (31) of [75], see also eqs. (20)-(21) of [76]):

for = ≥ <:

5̃<=(C) ..=
∫

4−8CG 5<=(G) 3G

= �(−8)=−<
√

2
<−=<!

=!

|C | C=−<4− C
2

4 !
(=−<)
<

(
C2

2

)
.

Therefore | 5̃<=(G�)| corresponds to the coordinate

Σ
(0)
1
(")<= for <, = ≤ ". As observed in [59], the pattern

functions have been already studied for tomography

purposes (see e.g. Lemma 7.1 in [61]). In particular,∑
0≤ 9≤:≤"

‖ 5: 9 ‖2∞ = O("7/3) .

These bounds can be directly used to get control over

‖Σ(0)
1
(")‖∞. That way, we recover Theorem III.1 of [23].

Slightly better bounds can be achieved using estimates in

Lemma 4 of [76]. It is also worth observing that, from the

proof of Theorem 9, one can extend these results to more

realistic models of homodyning with finitely squeezed

resources.

VI. Learning non-linear functionals of the states

So far, we considered properties of the quantum sys-

tem which could be related to local linear functionals of

the unknown state. In finite dimensions, a simple trick

permits the estimation of non-linear functionals, e.g. the

entropy of entanglement [6], [77]. Here, we show that

the technique developed in these works combined with

recent energy-constrained continuity bounds provide us

with a similar extension. For sake of conciseness, we will

only consider the entropy of a reduced CV state over

A ≤ < modes of the <-mode state:

((��) ..= −Tr(�� ln ��) ,

where we denote by � the set of those modes, so that

|�| = A. We also assume that the unknown state � has

locally finite energy: Tr((� + # (9))� 9) .
.= � < ∞, where

# (9) corresponds to the number operator on mode 9,
and where � 9 is the reduced state on mode 9 ∈ �. Here,

we also restrict ourselves to the shadows constructed in

our local homodyne detection scheme of (V-A), although

similar conclusions can be drawn from shadows arising

from a local heterodyne detection and states with higher

moment constraints. Given the shadow �(#)
�
(") arising
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from the homodyne scheme of (V-A), and 3? ∈ N, we

denote the matrix polynomial

�(3? )(�(#)
�
(")) ..= −Tr(�(#)

�
(") − %")

+
3?∑
:=2

Tr

[
(%" − �(#)�

(")):
]

:(: − 1) .

Theorem 12. With the notation of the previous paragraph,
we have that for any & > 0 and " ∈ N,

P
(
∃�, |�| ≤ A : |((��) − �

(⌈
3("+1)A

&

⌉)
(�(#)
�
("))| ≥ &

)
≤ 2

[
<(" + 1)

] A
exp

(
− 3#&′2(" + 1)−2A

6Σ
(0)
A (")2 + 2(Σ(0)A (") + 1)&′

)
,

where &′ = &2

12("+1)A 4 2
−4("+1)A/&.

Proof. By [78, Theorem 3], we have that for all � ∈
[0, A�/(1 + A�)], and any state �′

�
on subsystem � with

‖�� − �′�‖1 ≤ 2�,

|((��) − ((�′�)| ≤ ℎ(�) + A� ℎ
(
�/(A�)

)
, (107)

where ℎ(.) denotes the binary entropy. Next, we pick

�′
�

.

.= P"(��)/Tr(P"(��)). By Proposition 8, we have

that, assuming 1 +" > 4A2�2
,

‖�� − �′�‖1 =
‖ Tr(P"(��))�� − P"(��)‖1

Tr(P"(��))

≤
| Tr(P"(��)) − 1| + ‖�� − P"(��)‖1

1 − | Tr(P"(��)) − 1|

≤
2‖�� − P"(��)‖1

1 − ‖P"(��) − ��‖1
≤ 4A�

(1 +") 1

2 − 2A�
≡ 2� .

Next, we approximate ((�′
�
) in terms of ((P"(��)),

where the entropy of a sub-normalised positive trace

class operator � is defined as ((�) .
.= −Tr� ln�: de-

noting Tr(P"(��)) ..= � ≤ 1,

((�′�) − ((P"(��))

= −Tr

P"(��)
�

ln

P"(��)
�

+ TrP"(��) lnP"(��)

=
1 − �

1 − (1 − �) ((P"(��)) + ln�

≤
‖�� − P"(��)‖1

1 − ‖�� − P"(��)‖1
((P"(��))

≤ � ((P"(��))
≤ A ln(" + 1) � . (108)

Next, we use a polynomial approximation of ((P"(��))
as was already done in [77]:

�(3? )(P"(��))

.

.= −Tr(P"(��) − %") +
3?∑
:=2

Tr

[
(%" − P"(��)):

]
:(: − 1)

where 3? is the truncation degree which we will choose

later. Since %" projects onto a subspace of dimension

(" + 1)A , a simple extension of the proof leading to [77,

Equation (K46)] gives us

|((P"(��)) − �(3? )(P"(��))| ≤
(" + 1)A

3?
. (109)

Now, we re-express the function �(3? )(P"(��)) as a

linear function of (P"(��))⊗3? :

�(3? )(P"(��))

= −1 + ("+1)A +
3?∑
:=2

1

:(: − 1)

:∑
9=0

(
:

9

)
(−1)9 Tr((P"(��))9)

= −1 + ("+1)A

+
3?∑
9=0

1

9!
Tr(( 9(P"(��))⊗ 9) (−1)9

3?∑
:=max{2, 9}

(:−2)!
(:− 9)!

≡ −1 + ("+1)A +
3?∑
9=0

1

9!
� 9 Tr(( 9(P"(��))⊗ 9) ,

(110)

where ( 9 is a generalised swap operator over 9 sub-

systems. Let us now chose �(#)
�
(") to be the classical

shadow arising from the homodyne scheme of (V-A). We

have, similarly to [77, Lemma 11]

|�(3? )(P"(��)) − �(3? )(�(#)�
("))| (111)

≤
3?∑
9=0

1

9!
|� 9 | ‖(P"(��))⊗ 9 − (�(#)�

("))⊗ 9 ‖1 .

Next, we estimate the trace distances in the above

summand. By an arbitrary labelling �1 , . . . , � 9 of the

subsystems so that (P"(��))⊗ 9 .
.= �′

�1

⊗ · · · ⊗ �′
�9

and

(�(#)
�
("))⊗ 9 .

.= ��1
⊗ · · · ⊗ ��9 , we have

‖(P"(��))⊗ 9 − (�(#)�
("))⊗ 9 ‖1

= ‖�′�1

⊗ · · · ⊗ �′�9 − ��1
⊗ · · · ⊗ ��9 ‖1

=
(�′�1

− ��1
) ⊗ �′�2

⊗ · · · ⊗ �′�9
+ ��1

⊗ (�′�2

⊗ · · · ⊗ �′�9 − ��2
⊗ · · · ⊗ �� 9 )


1

≤ ‖�′�1

− ��1
‖1‖�′�2

‖1 . . . ‖�′�9 ‖1
+ ‖��1

‖1
�′�2

⊗ · · · ⊗ �′�9 − ��2
⊗ · · · ⊗ ��9


1

≤ ‖�′�1

− ��1
‖1

+ (1 + ‖�′�1

−��1
‖1)

�′�2

⊗ . . .⊗�′�9 − ��2
⊗ . . .⊗��9


1
.

(112)

Now, we recall that the homodyne tomography protocol

provides us with the following concentration bound

borrowed from (95)

P
(
∃�, |�| ≤ A :

�(#)
�
(") − P"(��)


1
≥ &′

)
≤ 2

[
<(" + 1)

] A
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× exp

(
− 3#&′2(" + 1)−2A

6Σ
(0)
A (")2 + 2(Σ(0)A (") + 1)&′

)
. (113)

Plugging this bound into (112), we have that with high

probability

‖(�′�)
⊗ 9 − (�(#)

�
("))⊗ 9 ‖1

≤ &′ +
(
1 + &′

)
‖(P"(��))⊗ 9−1 − (�(#)

�
("))⊗ 9−1‖1 .

After iterating the procedure 9 times, we find

‖(P"(��))⊗ 9 − (�(#)�
("))⊗ 9 ‖1

≤ &′
9−1∑
8=0

(
1 + &′

) 8 ≤ (
1 + &′

) 9 − 1 .

Into (111), we have that

|�(3? )(P"(��)) − �(3? )(�(#)�
("))|

≤
3?∑
9=0

1

9!
|� 9 |

((
1 + &′

) 9
− 1

)
≤

( (
1 + &′

)3? − 1

) 3?∑
9=0

|� 9 |
9!

≤
( (

1 + &′
)3? − 1

)
2
3? . (114)

Then, combining (107), (108), (109) and (114), we end up

with

|((��) − �(3? )(�(#)�
("))|

≤ ℎ(�) + A�ℎ
( �
A�

)
+ 2A ln(" + 1)�

+ (" + 1)A
3?

+
( (

1 + &′
)3? − 1

)
2
3? .

Now, the first three terms on the right-hand side above

are small for " large enough, the fourth term is small

for 3? large enough, and the last term is small for #
large enough. The result follows after choosing " so that

the first three terms are smaller than &/3, 3? =
⌈

3("+1)A
&

⌉
so that the fourth term is smaller than &/3, and finally

&′ = &2

12("+1)A 4 2
−4("+1)A/&

so that the last term is smaller

than &/3.

VII. Discretisation scheme via quasi Monte-Carlo

integration

Since the objects we are manipulating in this paper

are defined on continuous metric spaces, we need to

explain how to devise an efficient description �dis

#
of

the estimator state �# in terms of a number of discrete

parameters which scales at most polynomially with the

number < of modes and such that Tr($(�dis

#
− �# )) can

be controlled for the observables $ for which we want to

learn the average Tr(�$). One natural strategy consists

e.g. in approximating the coefficients Tr(/̃n1n2
�# ) of the

matrix P̃"(�# ). Since the characteristic function of /̃n1n2

is compactly supported in a ball �(0, ') around the

origin, it suffices to store its values on a net of small

enough mesh.

In order to evaluate traces Tr(/̃n1n2
�# ), in an efficient

way, we shall employ quasi Monte-Carlo techniques

using the isometry (48). We start by recalling that an

!1
function D : Ω→ R is of bounded variation if

TV(D)

.

.= sup

{∫
Ω

D(G)div()(G));) ∈ �1

2 (Ω,R=); ‖)‖∞ ≤ 1

}
< ∞

and denote by TV( ,R) the space of functions of

bounded variation. In particular, for D ∈ �1(Ω,R=) one
just has

TV(D) =
∫
Ω

|∇D(G)| 3G.

For a complex valued function to be of bounded varia-

tion, we accordingly require that both its real and imag-

inary part are of bounded variation. Let  = [−; 9 , ;9]<
be a compact set and ℓ : [0, 1]< →  a linear map.

We set ( = {C:}:∈N , where C: ∈ [0, 1]< is a Halton
sequence, see [79] for a definition, in a pairwise prime

basis 11 , .., 1< . We then introduce for 5 ∈ TV( ,R), the
numerical integral

� ( 5 , :) =
1

:

:∑
8=1

5 (ℓ (C8)).

It then follows that there exists a constant �(11 , ..., 13)
independent of both 5 and # such that, see [79, Theorem

2.11], ���� ( 5 , :) − ∫
 

5 (G) 3G
���

≤ TV( 5 )�(ℓ (C1), ..., ℓ (C<))
log(:)<

:
.

Thus, this technique allows us to approximate high-

dimensional integrals with errors that depend only very

mildly on the number of modes <. We can then apply

this construction to

5 (G) =
"|n1〉〈n2 |(G)"�# (G)

∏<
9=1

��,'(G 9)
(2�)< ,

with  = [−', ']< .

VIII. Examples

In this section, we test our homodyne classical shadow

tomography method by means of numerical simulations.

A. Vacuum state
We start with the simplest example � = |0〉〈0| to fix

ideas. In this case |〈0|〉|2 = 4−| |2/2. Measurements of 
are then standard normally distributed  ∼ NR2(0, 1).
Considering then # = 50 experimental realisations,
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Fig. 1: The quantum characteristic function of the actual

state is depicted in the first plot on the top left, while

that of the reconstructed state is given in the plot beside

it (for # = 50) and the one below it (for # = 1000). For

# = 50 (above) the quantum characteristic function gets

almost perfectly approximated within the unit square

but diverges outside of it. On the right, we show the his-

togram of numerical measurement outcomes generating

our approximation. For # = 1000 (below) the quantum

characteristic function is well approximated inside the

square [−2, 2]2. In the center, we show the histogram

of numerical measurement outcomes generating our ap-

proximation. On the bottom right, we show the variance

of the approximated characteristic function to the real

characteristic function inside [−2, 2]2.

1 , ..., # ∈ R2 , the trial quantum characteristic function

is

"�# (D) =
4
|D |2

4

#

#∑
8=1

4−8D
)Ω8 .

The function is illustrated in Figure 1. Reduced particle

characteristic functions for up to 1000 oscillators are illus-

trated in Figure 5. This yields an approximation of the

quantum characteristic function on compact sets around

zero. Due to the exponentially increasing function 4
|D |2

4 ,

this approximation is only local for fixed # . We also plot

the variance of the true characteristic function " vs the

reconstructed characteristic function "̃ at # grid points

(G=)#8=1
with G= ∈ � in some domain �

V#,� =

∑#
8=1
|"8(G=) − "̃8(G=)|2

vol(�)# .
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Fig. 2: Real and imaginary parts of the quantum char-

acteristic functions of |0〉
Cat

(top line) and |1〉
Cat

(center

line), respectively, reconstructed with # = 200, with re-

constructed function (left) and true one (right) on [−2, 2]
for  = (1, 1). At the bottom, we illustrate the numerical

measurement outcomes for the above reconstructions

(|0〉
Cat

left, |1〉
Cat

right) and the variance (for |0〉
Cat

) for

fixed  = (1, 1) and varying number of measurements

(left) and fixed number of measurements, # = 200, and

varying  (right).

B. Cat qubit states
For our second example, we consider a non-Gaussian,

one-mode pure quantum state called cat state. These
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Fig. 3: Real and imaginary part of the quantum character-

istic function of |0〉
Cat

(top) with  = 10× (1, 1) and |1〉
Cat

(bottom), with  = 1

10
× (1, 1), respectively reconstructed

with # = 200 with reconstructed function (left) and true

one (right)) on [−2, 2].

states are used in quantum error correction [21], [24].

Given a coherent state |〉, we denote the cat states

|+〉Cat =
|〉 + | − 〉
N+

, |−〉Cat =
|〉 − | − 〉
N−

,

with normalisation constants

N± .
.=

√
(〈 | ± 〈− |)(|〉 ± |−〉)

=
√

2 ± (〈 | − 〉 + 〈− |〉) =
√

2(1 ± 4−2| |2). (115)

Here, 〈G |±〉Cat =
〈G |〉±〈G |−〉

N± , where 〈G |〉 = 4−
|G |2+| |2

4
+ Ḡ

2

such that 〈− |〉 = 〈 | − 〉 = 4−| |
2

. This way, we can

define

|0〉Cat

.

.=
|+〉Cat + |−〉Cat√

2

and |1〉Cat

.

.=
|+〉Cat − |−〉Cat√

2

.

For # = 100 we are able to reconstruct the characteristic

function of states |0〉
Cat

and |1〉
Cat

respectively on [−2, 2],
for  = (1, 1), which is illustrated in Figure 2.

The probability distribution is then��〈G |0〉Cat

��2 = |〈G |+〉|2 + |〈G |−〉|2 + 2<(〈G |−〉〈G |+〉)
2

(116)

5 10 15 20
Oscillators

-40

-30

-20

-10

0

C
o

rr
e

la
ti
o

n

=0.05

=0.5

=0.99

5 10 15 20

Oscillators

-6

-4

-2

0

2

C
o

rr
e

la
ti
o

n

=0.05

=0.5

=0.99

5 10 15 20

Oscillators

-12

-10

-8

-6

-4

-2

0

2

C
o

rr
e

la
ti
o

n

=0.05

=0.5

=0.99

5 10 15 20

Oscillators

-6

-5

-4

-3

-2

-1

0

C
o

rr
e

la
ti
o

n

=0.05

=0.5

=0.99

5 10 15 20

Oscillators

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

C
o

rr
e

la
ti
o

n

=0.05

=0.5

=0.99

5 10 15 20

Oscillators

-5

-4

-3

-2

-1

0

C
o

rr
e

la
ti
o

n

=0.05

=0.5

=0.99

Fig. 4: On the left, we see the correlation coefficient

log(�
1,d</2e) (in the bottom row with ℎ-- replaced by

ℎ-- + 1

2<&
2
, where & is a GUE Matrix and < is the

number of oscillators). Here � refers to the interaction

strength between neighboring oscillators. In the center

and on the right, we see the same correlation coefficient

recovered from the shadow with 1000 and 100,000 nu-

merical experiments sampled from (122).

and��〈G |1〉Cat

��2 = |〈G |+〉|2 + |〈G |−〉|2 − 2<(〈G |−〉〈G |+〉)
2

(117)

This implies that

"|0〉
Cat
〈0|

Cat

=
1

2

(
"|+〉〈+| + "|+〉〈−| + "|−〉〈+| + "|−〉〈−|

)
(118)

=
1

2

( 1

N2

+
+ 1

N2−

)
("|〉〈 | + "|−〉〈− |)

+ 1

2

(
1

N2

+
− 1

N2−

)
("|〉〈− | + "|−〉〈 |)

+
"|〉〈 | − "|−〉〈− |

N+N−
(119)

and

"|1〉
Cat
〈1|

Cat

=
1

2

(
"|+〉〈+| − "|+〉〈−| − "|−〉〈+| + "|−〉〈−|

)
(120)

=
1

2

(
1

N2

+
+ 1

N2−

)
("|〉〈 | + "|−〉〈− |)
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Fig. 5: Plot of "
1,#/2((G1 , 0), (G#/2 , 0)) with 1000 numerical

measurements sampled from the multivariate Gaussian

distribution (122). From left to right we see simulations

for (�, #) = (0.99, 1000), (0.99, 10), (0.99, 4) respectively,
with recovered characteristic functions in the top row

and true ones in the bottom row. We see that correlations

between particles are almost perfectly reproduced.

+ 1

2

(
1

N2

+
− 1

N2−

)
("|〉〈− | + "|−〉〈 |)

−
"|〉〈 | − "|−〉〈− |

N+N−
. (121)

The characteristic functions on the right hand side are

explicitly given by (31).

C. Chain of quadratic harmonic oscillators
We consider a hermitian Hamiltonian matrix ℎ =(
ℎ-- ℎ-%
ℎ%- ℎ%%

)
to which we associate a quadratic chain

with Hamiltonian

� = 〈', ℎ'〉 with ' = (-, %),

where ℎ-% = ℎ%- = 0, ℎ%% =
id

2
and

ℎ-- =

©«

1/2 −�
4
· · · 0 −�

4

−�
4

1/2 −�
4

0

... −�
4

1/2 . . .
...

0

. . .
. . . −�

4

−�
4

0 · · · −�
4

1/2

ª®®®®®®®¬
for some � ∈ [−1, 1]. Here, � refers to the interaction

strength between neighboring oscillators: small � means

weak correlations whereas large � means strong correla-

tions. Let

- = ℎ
−1/2
--

√√
ℎ-- ℎ%%

√
ℎ-- ℎ

−1/2
--

.

The ground state |#〉 of � is a Gaussian state with

covariance matrix given by � = diag(-, -−1) [80]. The
decay of spatial correlations is illustrated in Figure 4.

We will again use our heterodyne tomography protocol

to reconstruct that decay. The distribution of the random

variable arising from the heterodyne detection takes the

following expression:

|〈G |#〉|2 ∝ 4
−G)Ω)

(
�+�

2

)−1

ΩG
. (122)

We recall that for any two modes 8 , 9, the reduced

shadow characteristic function after sampling (G:)#:=1

from the above distribution is defined as

"̂(D8 , D9) ..=
1

#

#∑
:=1

4
1

4
(‖D8 ‖2+‖D9 ‖2)−8(Dᵀ8 Ω(G: )8+D

ᵀ
9
Ω(G: )9 ) ,

where (G:)8 , (G:)9 ∈ R2
are the components of vector

G: ∈ R2<
corresponding to modes 8 and 9. The re-

duced characteristic functions of the marginal of |#〉 over
modes 8 and 9 takes the form

"(D8 , D9) = 4−
1

4
(D8 ,D9 )ᵀ�(D8 ,D9 )

From which the correlations coefficients corresponding

to these two modes can be read-off.
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A. Application of shadow tomography to photonic crystals and
2D materials
Photonic crystals are dielectric solids with a period-

ically modulated refraction index. One of their many

exciting features is that the photonic bandstructure in

photonic crystals, which is accessible to optical mea-

surements, provides insights into the electronic band-

structure in periodic solids. Just like electrons in solids,

photons are prohibited from propagating at band-gap

frequencies inside the medium. While the band struc-

ture of photonic crystals is obtained from the classical

Maxwell equations, the filling of bands by photons relies

on a quantum mechanical description of the electro-

magnetic field. Such a description is also necessary to

understand effects such as spontaneous emission of pho-

tons in photonic crystals [81], [82]. We shall demonstrate

now how shadow tomography can be applied to exhibit

the dispersion surface of the Bloch-Floquet bands. Our

description here is semiclassical, as we treat the photons
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quantum-mechanically and the crystallic band structure

classically.

In our discussion of applications of shadow tomogra-

phy, we will then focus on optical analogues of graphene

called photonic graphene
We start by using classical electrodynamics to describe

the propagation of electromagnetic waves in photonic

crystals. We will then quantise the electromagnetic fields

to convert the classical picture to a quantum picture

involving photons and illustrate how the methods de-

veloped in this article can be used in photonic crystals.

This semiclassical approach is used to simplify the anal-

ysis and get explicit formulas for photonic states and

electromagnetic fields.

1) Derivation of the Helmholtz equation: A mathematical

account of the electromagnetic structure of photonic

crystals can be found in [83]. We shall start by arguing

that the propagation of TE polarised light, with � =

(�1 , �2 , 0) and � = �3 4̂3, where 4̂8 is the 8-th unit vector,

in two dimensional photonic crystals can be reduced to

a periodic eigenvalue problem with Helmholtz operator

ℒ = ∇ · �4∇
ℒ# = $2# (123)

with # = �3. Here, �4 =
�)��
�3

is a periodic function, with

� =

(
0 −1

1 0

)
, that only depends on the permittivity and

permeability of the material and will be specified below.

We start from the Maxwell equations

∇ × � = −%C�, ∇ × � = %C�,

∇ · � = 0, ∇ · � = 0.

We then find that Maxwell’s equation can be written as

a Schrödinger equation with

8%CΨ = "Ψ

with Ψ = (�, �)C and

" = '−1

(
0 8∇×
−8∇× 0

)
.

Here, ' =

(
� �
�∗ �

)
with permittivity tensor �, permeabil-

ity tensor �, and bianisotropy tensor �.
For photonic analogues of 2D material, we shall only

consider matrix entries of ' that vary in the two-

dimensional plane. In addition, we assume that the cou-

pling between the longitudinal and transversal direction

is zero.

This way, we may decouple the 6×6 Maxwell equations

into two coupled equations with matrices

'⊥ =

(
�⊥ �⊥
�⊥ �⊥

)
and ' | | = diag(�| | , �| |)

that are the form

%C(�⊥ , �⊥) = '−1

⊥ (−�∇⊥�3 , �∇⊥�3) and
%C(�3 , �3) = '−1

| | (−�∇⊥ · �3 , �∇⊥ · �3).
(124)

Here ∇⊥ = (%G1
, %G2
). Eliminating (�⊥ , �⊥) and using

'−1

⊥ =:

(
� �
�∗ �

)
, we find under the assumption of pure

TE waves, that is �3 = 0, the wave equation

%2

C�3(G1 , G2 , C) = −ℒ�3(G1 , G2 , C).

Observe that by (124), (�⊥ , �⊥) are directly determined

from �3. By looking at planar waves �3(G1 , G2 , C) =
�3(G1 , G2)4±8$C , we reduce the wave equation to (123).

In magneto-optic materials, one has

'⊥ = diag(��0 − ��2 , ��0),

where �, with |� | < �, is the strength of the Faraday-

rotation. This way, � = �
�2−�2

�0 + �
�2−�2

�2.

2) Bloch-Floquet theory and band structure of photonic
crystals: Photonic crystals are periodic with respect to

some lattice Γ. This is reflected in the periodicity of the

operator ℒ. We can thus apply the standard Gelfand

transform and find that that ℒ is unitarily equivalent

to the direct integral operator∫ ⊕

C/Γ
ℒ(:) 3:|C/Γ| with ℒ(:) = −(∇ + 8:) · �4(∇ + 8:)

for which the eigenvalue problem (123) converts into

ℒ(:)�3(G, :) = $2(:)�3(G, :), �3(G + Γ, :) = �3(G, :)

for : ∈ C/Γ∗, the Brillouin zone. By standard arguments,

the set of admissible $ for given : is discrete ($=(:)2)=∈N
with associated fields (�3,=(G, :)).
The function $(:)2 is also called the dispersion rela-

tion and %:$(:) is the speed of propagation.

Thus, any eigenfunction of ℒ(:) has a Fourier expan-

sion

)(G) =
∑
<∈Z2

)<4
8(<1:1+<2:2)·G ,

where Γ∗ = :1Z + :2Z.

3) The quantisation of the EM field: In order to study

quantum effects such as spontaneous emission, it is

essential to use a field theoretic description of the elec-

tromagnetic field inside a photonic crystal[81], [82].

The filling of bands in photonic crystals by photons

can be described by quantizing the magnetic field and

consider field operators

�̂3(G, :, C) =
∑
=∈N

ℎ=(:)
(
�3,=(G, :)0=(:)4−8$= (:)C

+ �3,=(G, :)0=(:)∗4 8$= (:)C
) ,

where ℎ=(:) = ~$= (:)
2�|C/Γ| and 0=(:), 0=(:)∗ are annihilation

and creation operators of photons with wavevector : in

band =. The macroscopic limit is then obtained by taking

the expectation value of the field vector 〈�̂3(G, :, C)〉 with

respect to the photonic state.
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Fig. 6: Different strain profiles leading to effective con-

stant magnetic fields. Increasing field strenghts from left

to right.

4) Dirac points: As a simple example, we shall consider

the case that �4 , appearing in (123), has honeycomb-

lattice symmetries, i.e. Γ is an equilateral triangular

lattice with 2�/3-rotational symmetry In this case, it is

well-known, see e.g. [83], that the spectrum of ℒ(:) at
suitable energies can be effectively described, close to

some positive energy �� > 0, by a two-dimensional

Dirac operator

�(:) =
(

0 2�Ī + :
2�I + :̄ 0

)
with I ∈ C/(Z + 8Z)

and : ∈ C with periodic boundary conditions where

�I =
1

8 %I . This operator can be diagonalised with Bloch

functions

(
1

± :̄
|: |

)
and eigenvalues ±|: |. This means

that the original frequencies satisfy for : small enough

$(:)2 = �� ± |: |, where �� is the energy level of the

Dirac cones in the spectrum of ℒ(:).
5) Strain-induced pseudomagnetic fields: Since photons

do not directly interact with electromagnetic fields, the

effect of electromagnetic fields on the electronic band

structure cannot be modelled directly using external

fields. However, it has been observed that physical strain

can be used to imitate the effect of electromagnetic fields,

see e.g. [84]. Indeed, consider the displacement field

)(I) = I + D(I) with D a displacement vector. In the case

of a honeycomb-lattice symmetries, the effective strain-

induced magnetic potential is then given as

�(I) ∝ Tr(*(I)�3) − 8 Tr(*(I)�1)

where*(I) = 1

2
(�D+�DC), with Jacobi matrices �D. This

way, by applying suitable strain, we obtain a pseudo-

magnetic potential �(I) = 8�I
2

associated with a constant

magnetic field � > 0 and the effective Hamiltonian is the

magnetic Dirac operator

� =

(
0 2�Ī − 1

2
8�I

2�I + 1

2
8�Ī 0

)
, (125)

with constant magnetic field � > 0.

An example of, up to a change of gauge, pseudomag-

netic field inducing strain is

)(I) = I + �2=(I)2.

We then have the conjugation relation

4−�|I |
2/4(2�Ī)4�|I |

2/4 = 2�Ī −
8

2

�I.

Fig. 7: Reconstruction error for single particle charac-

teristic function with = = 5 particles for �� = 0.5 and

�� = 5 with # = 150. High energies are harder to

reconstruct, as they are more

The infinitely degenerate ground state satisfies then

D(I) = 5 (I)4−
�|I |2

4 , 5 ∈ �(C),
∫
C
| 5 (I)|24−�|I |2/23I < ∞,

where �(C) is the space of entire functions. The infinitely
degenerate ground state can be equivalently interpreted

as a flat band, see e.g. [85].

Let 0 = 2�I − �(I), one then has that [0∗ , 0] = 2�
which means that to find the zero energy band for the

Hamiltonian (125), we have to find zero modes to 0∗

satisfying Bloch-Floquet boundary conditions.

Let �� > 0 be the energy of the Dirac point, then the

lowest band is just $(:)2 = �� for all :. Correspondingly,
by the commutation relation of the ladder operators,

we find that the other (also flat) bands are of the form

$(:)2 = �2

�
±
√

2=� with = ∈ {0, ..., #} for some large

enough # which is in fact independent of :, since the

band is flat.

As a simple example, we may choose photons in the

strained crystal with state

|#〉 =
=∏
8=1

|0〉:8

with harmonic oscillator frequencies $(:8) ≡ �� . In

Figure 7 we see that high-energy states are in general

harder to reconstruct as their characteristic function is

more extended in phase space.
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Appendix

The purpose of this appendix is to provide a self-

contained proof of the representation (41) of the Gaus-

sian white noise channel. We start by observing that

it suffices to test (41) on all projectors |B〉〈B | on the

coherent states, where B ∈ R2<
. This is because the

linear span of such projectors is dense in the space of

Hilbert–Schmidt operators. To prove this latter claim,

we can take an arbitrary Hilbert–Schmidt operator -
and assume that it is orthogonal to span{|B〉〈B |}B∈R2< ,

in formula Tr [- |B〉〈B |] = 〈B |- |B〉 = 0 for all B ∈ R2<
.

We can express this in words by saying that the Husimi

Q-function &-(B) .
.= 1

(2�)< 〈B |- |B〉 of - vanishes every-

where. Since the characteristic function (28) of - is a

point-wise multiple of the Fourier transform of &- , in

formula [66, § 4.5]

"-(C) = 4 ‖C‖
2/4

∫
32<B &-(B) 4 8B

ᵀΩC , (126)

we have that also "- ≡ 0 identically. Since the corre-

spondence between Hilbert–Schmid operators and char-

acteristic functions is an isometry and in particular in-

jective [67, Theorem 5.3.3], we conclude that - = 0.

Since - ∈ span{|B〉〈B |}⊥
B∈R2< was arbitrary, this entails

that span{|B〉〈B |}B∈R2< is dense.

Therefore, let us verify (41) by letting the right-hand

side act on an arbitrary |B〉〈B |. We obtain that∫
32<G

(2��)< D(G) �⊗<
1

2�− 1

2

D(G)† |B〉〈B |D(G) �⊗<
1

2�− 1

2

D(G)†

(i)

=

∫
32<G

(2��)< D(G) �⊗<
1

2�− 1

2

|B − G〉〈B − G | �⊗<
1

2�− 1

2

D(G)†

(ii)

=

(
2�

1+�

)
2<∫

32<G

(2��)< 4
− 2�
(1+�)2 ‖B−G‖

2

· D(G)
�� 1−�
1+� (B−G)

〉〈
1−�
1+� (B−G)

�� D(G)†
(iii)

=

(
2�

1+�

)
2<∫

32<H

(2��)< 4
− 2�
(1+�)2 ‖H‖

2

· D(B − H)
�� 1−�
1+� H

〉〈
1−�
1+� H

�� D(B − H)†
(iv)

=

(
2�

1+�

)
2<∫

32<H

(2��)< 4
− 2�
(1+�)2 ‖H‖

2 ��B− 2�
1+� H

〉〈
B− 2�

1+� H
��
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(v)

=

∫
32<I

(2��)< 4−
‖I‖2
2� |B+I〉〈B+I |

(vi)

=

∫
32<I

(2��)< 4−
‖I‖2
2� D(I) |B〉〈B |D(I)†

(vii)

= N�(|B〉〈B |) .

Here, (i), (iv), and (vi) follow from (26) and (25); in (ii)

we employed the identity

�� |C〉 =
1

� + 1

4
− 2�+1

4(�+1)2 ‖C‖
2 �� �

�+1
C
〉
, (127)

which is readily verified in Fock basis by combining (27)

and (42); in (iii) we performed the change of variables

H .
.= B − G; in (v) we set I .

.= − 2�
1+� H; finally, (vii) is

simply (39). The proof of (41) is complete.

Throughout this appendix, we will prove rigorously

that the function 5�,) defined by (55) has a well-defined

Fourier transform, which moreover coincides with itself.

This will establish (62). We formalise these facts as

follows:

Lemma 13. For every measure � on the symplectic group and
for every symplectic ), the function 5�,) defined in (55) is in
!1(R2<) ∩ !2(R2<); more precisely,∫

32<G
�� 5�,)(G)�� = (2�)< , ∫

32<G 5 2

�,)(G) ≤ �< .

(128)

Moreover, 5̃�,)(G) = 5�,)(G).

Proof. We start with the first identity, which follows by

writing∫
32<G

�� 5�,)(G)�� = ∫
3�(()

∫
32<G 4−

1

2
Gᵀ()()ᵀ ()() G

(ii)

= (2�)< .

Here in (ii) we combined the Gaussian integral formula∫
3#G 4−

1

2
Gᵀ�G+8CᵀG =

√
(2�)#
det�

4−
1

2
Cᵀ�−1C , (129)

valid for # × # positive definite matrices � > 0, with

the observation that det()() = 1 because both ) and (
— and hence )(, too — are symplectic.

Since 5�,) is in !1(R2<), positive, and bounded by 1,

it is clear that it must be also in !2(R2<). However, it

requires little effort to prove directly the second inequal-

ity, which is anyway tighter than what one would obtain

simply by the above observation. It suffices to compute∫
32<G 5 2

�,)(G)

(iii)

=

∫
3�(() 3�((′)

∫
32<G 4−

1

2
GT (()()ᵀ()()+()(′)ᵀ()(′))G

(iv)

=

∫
3�(() 3�((′) (2�)<√

det (()()ᵀ()() + ()(′)ᵀ()(′))
(v)

≤
∫
3�(() 3�((′) (2�)< 1

2
<
= �< .

(130)

Here, (iii) is just Tonelli’s theorem, (iv) is again an

application of (129), and (v) follows from the Minkowski

determinant inequality, which states that the function

� ↦→ (det�)1/# is concave on the set of positive semi-

definite # × # matrices [86, Eq. (4.21)], combined with

the fact that det()() = 1.

Now that we know that 5�,) is highly regular, we can

manipulate the integrals in its Fourier transform more

safely:

5̃�,)(G) =
∫

32<D

(2�)< 5�,)(D) 4 8G
ᵀΩD

=

∫
3�(()

∫
32<D

(2�)< 4−
1

2
Gᵀ()()ᵀ()()G+8GᵀΩD

=

∫
3�(() 4− 1

2
GᵀΩ()()−1()()−ᵀΩᵀG

=

∫
3�(() 4− 1

2
Gᵀ()()ᵀ()()G = 5�,)(G) .

In the above derivation, we have used (129) together with

the fundamental identity ,Ω = Ω,−ᵀ, valid for any

symplectic matrix , .

Lemma 7. For all  > 0, all non-negative integers < (number
of modes) and " (Fock truncation number), and all � ≥ 0, it
holds thatℒ(�+#< )ℛ(�+#< ) (

P" − P̃"
)

2→1

≤ (<" + 1)2(" + 1)< 3
<"

©«
Γ

(
2" + 1,

�2

2

)
(2")!

ª®®¬
</2

= (<" + 1)2(" + 1)< 3
<" 4−

<
4
�2 ©«

2"∑
?=0

�2?

2
??!

ª®¬
</2

,

(131)

where in the second line we introduced the incomplete Gamma
function, given by [87, § 6.5]

Γ(#, G) ..=
∫ ∞

G

3B 4−B B#−1 = (# − 1)! 4−G
#−1∑
?=0

G?

?!

(132)

for # > 0 and G ≥ 0.

Proof. Let ) be an arbitrary Hilbert–Schmidt operator

acting on H< , the Hilbert space of an <-mode system. In

what follows, we denote by ["]< .
.= {0, . . . , "}< the set

of possible Fock number vectors with all entries bounded

by ", and for n ∈ ["]< we will use the notation

|n| ..= ∑<
9=0

n(9) to denote the corresponding total photon
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number. We start by writingℒ(�+#< )ℛ(�+#< ) (
P"()) − P̃"())

)
1

≤
∑

n1 ,n2∈["]<
(1+|n1 |)(1+|n2 |)

���Tr

[(
/̃n1n2

− |n1〉〈n2 |
)
)
] ���

≤
∑

n1 ,n2∈["]<
(1+|n1 |)(1+|n2 |)

/̃n1n2
− |n1〉〈n2 |


2

‖)‖2

≤ (<"+1)2("+1)< max

n1 ,n2∈["]<

/̃n1n2
− |n1〉〈n2 |


2

‖)‖2
(133)

We can then continue by estimating/̃n1n2
− |n1〉〈n2 |

2

2

(i)

=

<∏
9=1

∫
32D9

2�

���"/̃n
1
(9)n

2
(9)
(D9) − "|n1(9)〉〈n2(9)|

(
D(9)

) ���2
(ii)

=

<∏
9=1

∫
32D9

2�

��"|n1(9)〉〈n2(9)|(D9)
��2 (

1 − ��,'(D9)
)
2

(iii)

≤
<∏
9=1

∫
‖D9 ‖≥�

32D9

2�

��"|n1(9)〉〈n2(9)|(D9)
��2

(134)

Here, (i) comes from (34), in (ii) we remembered (74),

and in (iii) we observed that 1 − ��,'(D9) = 0 if ‖D9 ‖ ≤ �,
and estimated 1 − ��,'(D9) ≤ 1 otherwise. In order to

continue, we should upper bound "|=〉〈=′ |(D) for vectors

D ∈ R2
of sufficiently large modulus, and for arbitrary

integers =, =′ ≤ ". To this end, let us write��"|=〉〈=′ |(D)��2 = |〈=′ |D(D)|=〉|2
(iv)

= 4−
1

2
‖D‖2

���〈=′ |4(D)0† 4−(D)∗0 |=〉���2
(v)

≤ 4− 1

2
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2
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2
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)
2
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The steps of the above derivation can be justified as

follows: (iv) is an application of (23), and we recall that

(D) .
.= 1√

2

(D1 + D2); (v) is simply the Cauchy–Schwarz

inequality; (vi) can be verified by a repeated application

of (18); in (vii) we introduced the Laguerre polynomials

!=(G) ..=
=∑
:=0

(
=

:

)
(−G):
:!

; (135)

and in (viii) we noted that !=(−G) is monotonically non-

decreasing in the integer = for G ≥ 0, essentially because(
=
:

)
is monotonically non-decreasing in = for fixed :.

Continuing, we deduce that∫
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32D

2�

��"|=〉〈=′ |(D)��2
≤

∫
‖D‖≥�

32D

2�
4−

1

2
‖D‖2!"

(
− 1

2
‖D‖2

)
2

(ix)

=

∫
B≥�2/2

3B 4−B!"
(
− B

)
2

(x)

=

"∑
ℎ,:=0

(
"

ℎ

) (
"

:

)
1

ℎ!:!

∫
B≥�2/2

3B 4−B Bℎ+:

(xi)

=

"∑
ℎ,:=0

(
"

ℎ

) (
"

:

)
1

ℎ!:!
Γ

(
ℎ + : + 1,

�2

2

)
=

"∑
ℎ,:=0

(
"

ℎ

) (
"

:

) (
ℎ + :
ℎ

) Γ (
ℎ + : + 1,

�2

2

)
(ℎ + :)!

(xii)

≤
"∑

ℎ,:=0

(
"

ℎ

) (
"

:

)
2
ℎ+:

Γ

(
2" + 1,

�2

2

)
(2")!

(xiii)

= 3
2"

Γ

(
2" + 1,

�2

2

)
(2")!

Here: in (ix) we introduced the new variable B .
.=

1

2
‖D‖2; in (x) we expanded the square thanks to the

expression (135) for the Laguerre polynomials; in (xi)

we introduced the incomplete Gamma function (132);

in (xii), besides using that

(
#
:

)
≤ 2

#
for all non-negative

integers #, :, we also observed that by virtue of the

expansion in (132) it is easy to verify that
1

(#−1)!Γ(#, G) is
a monotonically non-decreasing function of the integer

# ≥ 1 for all fixed G > 0; finally, (xiii) is just the binomial

theorem, applied twice to 3
" = (1 + 2)" .

Plugging the above estimate into (134), we find that/̃n1n2
− |n1〉〈n2 |


2
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(136)

for all n1 , n2 ∈ ["]< . From (133) we then deduce thatℒ(�+#< )ℛ(�+#< ) (
P"()) − P̃"())

)
1

≤ (<"+1)2("+1)< 3
<"

©«
Γ

(
2"+1,

�2

2
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</2

‖)‖2 ,

(137)

concluding the proof.
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