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Bounds on the Free Distance of Periodically
Time-Varying SC-LDPC Codes

Massimo Battaglioni, Marco Baldi, and Franco Chiaraluce

Abstract—Time-invariant spatially coupled low-density parity-
check (TI-SC-LDPC) codes can be obtained by unwrapping
quasi-cyclic (QC) LDPC codes. This results in a free distance
that is lower bounded by the minimum distance of the under-
lying QC-LDPC codes. By introducing some variability in the
syndrome former matrix, time-varying (TV) SC-LDPC codes are
obtained, which trade an improved error correction performance
for an increased decoding memory requirement and decoding
complexity. A family of codes able to combine the advantages
of TI-SC-LDPC codes with those of TV-SC-LDPC codes is that
of periodically time-varying (PTV) SC-LDPC codes, based on
a finite and periodic variation of the syndrome former matrix.
In this paper we focus on such codes, and derive new upper
bounds on the free distance of PTV-SC-LDPC code ensembles as
well as on specific codes. By using these bounds, we show that
PTV-SC-LDPC codes can achieve important improvements in the
free distance over TI-SC-LDPC codes even using a very small
period of variability, which corresponds to a minimal increase in
memory and complexity. We also validate the new upper bounds
through numerical experiments and assess the error correction
performance of the corresponding codes through Monte Carlo
simulations.

Index Terms—Convolutional codes, free distance, LDPC codes,
spatially coupled codes, time-invariant codes, time-varying codes.

I. INTRODUCTION

The proof that spatially coupled low-density parity-check
(SC-LDPC) codes achieve the channel capacity for a large
number of channels [1] has led to a renewed interest toward
this class of codes, which were first proposed as counterparts
of LDPC block codes under the name of LDPC convolutional
codes [2]. Many properties of SC-LDPC codes, such as their
girth and free distance (that is, the minimum distance in the
convolutional domain), are at least as good as those of the
underlying block codes (see, for example, [3], [4]).

The decoding complexity and latency of SC-LDPC codes
are proportional to the code constraint length which, in turn, is
proportional to the product between the block length a (that is,
the number of rows of the syndrome former matrices forming
the parity-check matrix) and the code memory ms (for these
quantities we use the same nomenclature and definition as in
[5]). Therefore, in order to keep reasonably small values of
complexity and latency, either a or ms are usually chosen
relatively small.

Time-invariant (TI) SC-LDPC codes [4] can be obtained
by unwrapping [2] quasi-cyclic LDPC (QC-LDPC) codes and
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have recently attracted a lot of attention, given the extreme
simplicity with which they can be represented (they have
unitary period T ), and their nice features under different
perspectives (error rate, girth, trapping set size) [6]–[8]. It is
also shown in [4] that the free distance of a TI-SC-LDPC
code is lower bounded by the minimum distance of the
associated QC-LDPC code. However, the unitary period of
time-invariant SC-LDPC codes imposes some upper bounds
on their characteristics, such as girth and free distance, which
cannot be improved by just increasing their memory, given a
fixed value of the block length, or vice versa.

These shortcomings can be overcome by employing period-
ically time-varying (PTV) SC-LDPC codes. For instance, for a
fixed small block length a, the behavior of time-varying code
ensembles can be improved by letting the period T increase
with ms, as done for example in [2], [9], [10]. However,
the large number of degrees of freedom afforded by PTV-
SC-LDPC codes, especially those with a substantial period,
entail a considerable representation cost, scaling as O(T ). This
necessitates a significant increase in storage requirements and
escalates the complexity involved in designing good codes.

Therefore, it is worth investigating the properties of PTV-
SC-LDPC codes with period only slightly larger than one.
The girth of these codes has already been studied in [5], [11],
where it is shown that a slight increase in the period yields
a significant increase in an upper bound on their girth and
enables the practical design of codes achieving such an upper
bound. Moreover, in the same works, the finite length perfor-
mance of the corresponding codes is assessed, showing that
PTV-SC-LDPC codes with period 2 significantly outperform
TI-SC-LDPC codes with the same code rate, period, memory
and girth. We argue that, among some other factors, such a
significant improvement in the finite length performance is
also due to a potentially large increase in the free distance
of these PTV-SC-LDPC codes with small period with respect
to their time-invariant counterparts. In this paper, we address
such an issue and introduce new tools for the study of the free
distance of PTV-SC-LDPC codes.

A. Related works

Costello proved in [12] that (standard, non-LDPC) PTV
convolutional codes have larger free distances than TI con-
volutional codes. In the same paper, asymptotic lower and
upper bounds on the free distance are provided. The free
distance of TV-SC-LDPC codes has also been studied in [13]
in the asymptotic regime, where it is shown that (for a certain
ensemble) it grows linearly with the constraint length. Based
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on a similar approach, existence-type lower bounds on the free
distance are given for an ensemble of PTV-SC-LDPC codes
and tail-biting codes in [14]. For protograph-based codes, the
ensemble average free distance of PTV-SC-LDPC codes is
lower bounded in [15] and upper bounded in [16] (again
by probabilistic, existence-type bounds). Smarandache and
Vontobel derive upper bounds on the free distance of all the
codes belonging to any ensemble of TI-SC-LDPC codes in
[17] and also provide bounds that are tailored to any specific
code in the ensemble.

B. Our contribution

In this paper, we introduce some new upper bounds on the
free distance of PTV-SC-LDPC codes with period T , which
also highlight some important advantages of these codes over
TI-SC-LDPC codes. Moreover, the derived bounds can be
extended to general TV-SC-LDPC codes by considering a
period T → ∞. We show that, by fixing the period T of
a PTV-SC-LDPC code and increasing its memory, the free
distance can increase only up to a certain value, given by one
of the upper bounds we propose.

We prove that, in any particular ensemble, the upper bound
on the free distance of PTV-SC-LDPC codes is lower bounded
by the upper bound on the free distance of their associated TI-
SC-LDPC codes. Then, we show that for small values of T ,
if the code parameters are accurately chosen, the free distance
of these codes can grow more than linearly with the period.
Differently from the approach in [14], [15], we do not tailor
the bound to the tail-biting version of the code. Moreover,
differently from [16], we do not consider a version of the code
with coupling length equal to the period. Rather, we generalize
the approach introduced for TI codes in [17] to the periodically
time-varying case. This approach has the important benefit that
the newly derived bounds can be computed mathematically
in a relatively easy way, whereas those in [14], [15] require
the computation of the minimum distance of tail-biting codes,
that is a computationally heavier task. In fact, the minimum
distance computation problem is known to be nondeterministic
polynomial time (NP)-hard, as first conjectured in [18] and
later confirmed in [19]. So, even though the tail-biting codes
are block codes, the lower bounds on the free distance of
their convolutional counterparts become tighter and tighter for
increasing values of their block length, requiring a significant
computational effort for the evaluation of their minimum
distance. Still, we remark that our approach can be used
together with that in [14], [15], in order to find both a lower
and an upper bound on the free distance of a PTV-SC-LDPC
code.

C. Paper outline

The paper is organized as follows. In Section II we introduce
the notation used throughout the paper and give some back-
ground notions. In Section III we derive bounds on the free
distance of ensembles of PTV-SC-LDPC codes. In Section IV
we provide some numerical examples. In Section V we assess
the error rate performance of some PTV-SC-LDPC codes with
small period. Conclusions are finally drawn in Section VI.

II. NOTATION AND BACKGROUND

In this section we introduce the notation we use throughout
the paper and we provide some background notions.

Given two integers a and b, we denote by [a, b] the set of
integers {y |a ≤ y ≤ b}. F2[x] is the ring of polynomials
with coefficients in the binary Galois field and F2[x]/(x

p+1)
is the same ring modulo (xp + 1). According to the isomor-
phism between p × p circulant matrices and polynomials in
F2[x]/(x

p+1), any polynomial q(x) univocally corresponds to
a p×p circulant matrix, and the exponents of q(x) represent the
positions of the non-zero elements in the first column (or row)
of the corresponding circulant matrix. We use bold upper case
letters (resp., lower case) to denote matrices (resp., vectors).
For a vector a of length n, the ith entry is indicated as ai. For
an m×n matrix A, the entry at position (i, j) is indicated as
ai,j , the ith row as Ai,: and the jth column as A:,j . Given
an m × n matrix A, and a set K ⊂ [0, n − 1], AK is the
submatrix of A formed by the columns of A with indexes in
K.

Given a set S, |S| represents its cardinality. Transposition
is denoted with ⊤. We define W(·) as a function returning the
Hamming weight of its argument, if the argument is a vector,
or the number of non-zero coefficients, if the argument is a
polynomial. If the argument is a polynomial matrix (or vector),
W(·) returns a matrix (or vector) containing the weights of
its polynomial entries. If the argument is a binary matrix (or
vector), the function returns its Hamming weight. The operator
perm(·) returns the permanent of its argument, that is,

perm(A) ≜
∑
σ∈Sn

n−1∏
j=0

aj,σ(j),

where A is an n× n matrix and Sn is the symmetric group.
The min∗ operator, introduced in [20], returns the smallest
positive entry of a list if the list contains only positive entries,
otherwise it returns +∞.

A. SC-LDPC codes

Let us briefly recall time-invariant, periodically time-
varying and time-varying codes. Time-varying SC-LDPC
codes with asymptotic rate R∞ = a−c

a and minimum distance
dfree are characterized by a parity-check matrix H such that

H⊤ =


. . . . . .

H⊤
0 (0) ··· H⊤

ms
(ms) 0

. . .
0 H⊤

0 (t) ··· H⊤
ms

(t+ms) 0

. . . . . .

 (1)

where each block Hi(t), i ∈ [0,ms], is a binary matrix with
size c× a, namely,

Hi(t) =

 (hi)0,0 (t) . . . (hi)0,a−1 (t)
...

. . .
...

(hi)c−1,0 (t) . . . (hi)c−1,a−1 (t)

 , (2)

where a is defined as the block length of the code.
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The parity-check matrix H is said to be (dv, dc)-regular
if all its rows have Hamming weight dc and all its columns
have Hamming weight dv . If only one of these conditions
is verified, the code is said to be row-regular or column-
regular, respectively. Otherwise, when none of the conditions
is satisfied, the code is called irregular. We also define

Hs(t) ≜
[
H⊤

0 (t)|H⊤
1 (t)| . . . |H⊤

ms
(t)

]
(3)

as the t-th syndrome former matrix. The variable ms is the
syndrome former memory order (that will be denoted as
memory in the following, for brevity) and νs = (ms + 1)a is
the syndrome former constraint length. If Hi(t) = Hi(t+ T )
for a finite value of T , the corresponding code is said to be
periodically time-varying with period T . When T = 1, we
say that the code is time-invariant. Time-invariant codes are
characterized by a fixed Hs, that is, the matrix in (3) does not
depend on the variable t.

The convolutional counterpart of the minimum distance for
block codes is called free distance (denoted as dfree), and
is defined as the minimum Hamming weight of a non-zero
code sequence. We also define the girth g as the length of the
shortest cycle(s) in the Tanner graph of a code.

The syndrome former matrix of a TI-SC-LDPC code can
also be defined through a symbolic representation exploiting
polynomials in F2[D]. According to such a representation, the
code is described by a c×a symbolic matrix having polynomial
entries, that is

HTI(D) ≜

 h0,0(D) . . . h0,a−1(D)
...

. . .
...

hc−1,0(D) . . . hc−1,a−1(D)

 , (4)

where each hi,j(D), i ∈ [0, c − 1], j ∈ [0, a − 1], is a
polynomial in F2[D]. If HTI(D) contains only (non-zero)
monomial entries, the code is said to be a fully-connected
monomial code. The code representation based on Hs can be
converted into that based on HTI(D) by setting

hi,j(D) =

ms∑
m=0

(hm)i,j D
m, (5)

where (hm)i,j is the (i, j) entry of Hm. Next we provide a
toy example of conversion of Hs into HTI(D).

Example 1. Let us consider a code with T = 1, a = 3 and
c = 2, characterized by

H⊤
s =


1 1 1
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1


H0

H1

H2

.

Then, according to (5), we obtain

HTI(D) =

[
1 1 1
1 D D2

]
,

where entries of the same color in Hs and H(D)TI correspond
to each other.

Let us define the base matrix of the code as B ≜ W(H(D)).
We also define an ensemble of codes E(B) as the collection
of all codes characterized by the same B. In the time-varying
case, if W(Hi(D)) = W(Hj(D)), ∀i ̸= j, without loss of
generality we assume that B = W(H0(D)).

B. Tail Biting SC-LDPC Codes
Practically speaking, we need to terminate SC-LDPC codes

at some point. By starting from the following section of the
semi-infinite parity-check matrix (1)

H⊤
[0,L] =

H⊤
0 (0) ··· H⊤

ms
(ms)

. . . . . . . . .
H⊤

0 (L) ··· H⊤
ms

(L+ms)

 (6)

we obtain a SC-LDPC code terminated in tail-biting fashion
(or simply, tail-biting SC-LDPC code) with coupling length
L > ms, by wrapping back the last msc columns of (6) after
L time instants. Matrix (7) is thus obtained.

The inverse of this procedure is called unwrapping and was
initially proposed in [2]. If the tail-biting termination is applied
to a time-invariant code, (7) is the parity-check matrix of a QC-
LDPC code with block length a(L + 1), as initially defined
in [21]. The more common circulants (of size L) block form
of the parity-check matrix of this QC-LDPC (introduced in
[22]) can be obtained by a simple reordering of the rows and
columns of (7).

It has been proven in [15, Theorem 4] that the free distance
of the unterminated version of a SC-LDPC code C is lower
bounded by the minimum distance of its tail-biting version,
as long as the coupling length is larger than the memory.
Therefore, in order to practically find this lower bound on
dfree, one can terminate a SC-LDPC code in tail-biting fashion
(obtaining a full-fledged QC-LDPC code) and compute its
minimum distance. Clearly, there is a trade-off between the
tightness of the bound and the complexity of the computation
of the minimum distance. Practically speaking, for values the
minimum distance dmin in the order of 102 or larger, the exact
computation of the lower bound is unfeasible, since the best
known solvers of the Codeword Finding Problem (CFP) have a
computational complexity which is exponential in the weight
of the searched codeword(s) [23]. The use of tools for the
approximation of the minimum distance is thus enforced. In
this paper, we take advantage of the approach proposed in
[24]. These aspects will be further discussed in Section V.

III. BOUNDS ON THE FREE DISTANCE OF PTV-SC-LDPC
CODES

In order to find bounds on the free distance of PTV-SC-
LDPC codes, we need the following results that links their
representation to that in (4) used for TI-SC-LDPC codes.

Remark 1. The T syndrome former matrices representing a
PTV-SC-LDPC code with memory ms, each of size (ms +
1)c×a, can be included into a single larger syndrome former
matrix, representing a TI-SC-LDPC code, i.e.,

H⊤
s ≜

H⊤
0 (0) ··· H⊤

ms
(ms) 0 ··· ··· 0

0
. . .

. . .
. . .

. . .
. . . 0

0 ··· ··· 0 H⊤
0 (T−1) ··· H⊤

ms
(T+ms−1)

 , (8)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3362387

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



4

H̃⊤
[0,L] =



H⊤
0 (0) H⊤

1 (1) . . . H⊤
ms

(ms) 0 . . . 0

0 H⊤
0 (1) . . . . . . H⊤

ms
(ms + 1) . . .

...
. . .

...
. . . . . .

...
H⊤

ms
(L+ 1) 0 H⊤

0 (L−ms + 1) . . . . . . H⊤
ms−1(L)

H⊤
ms−1(L+ 1) H⊤

ms
(L+ 2) 0

. . . . . .
...

... H⊤
0 (L− 1) H⊤

1 (L)
H⊤

1 (L+ 1) . . . H⊤
ms

(L+ms) 0 H⊤
0 (L)


(7)

with all zeros outside the main block diagonal. Such a TI-SC-
LDPC code, having block length aT and cT parity-symbols,
can also be represented through a Tc × Ta symbolic matrix
in the form (4), having the structure that will be discussed in
Lemma 1. By definition, the memory of the resulting TI-SC-
LDPC code, denoted as m̂s, is given by the number of rows
in (8), divided by the number of parity-symbols (Tc), minus
1, i.e.,

m̂s =

⌈
c(ms + 1) + c(T − 1)

Tc

⌉
− 1 =

⌈ms

T

⌉
.

This implies that (8) can also be written as

Hs ≜
[
Ĥ⊤

0 |Ĥ⊤
1 | . . . |Ĥ⊤

⌈ms
T ⌉

]
, (9)

where

Ĥ0 =


H0(0) 0 . . . . . . 0
H1(0) H0(1) 0 . . . 0

...
...

. . .
. . .

...
HT−1(0) HT−2(1) . . . . . . H0(T − 1)

 ,

(10)

Ĥi =

 HiT (0) HiT−1(1) ··· H(i−1)T+1(T−1)

...
...

. . .
...

H(i+1)T−1(0) H(i+1)T−2(1) ··· HiT (T−1)

 ,

(11)

Ĥ⌈ms
T ⌉ =



H⌈ms
T ⌉T

(0) H⌈ms
T ⌉T−1

(1) ··· ··· H
(⌈ms

T ⌉−1)T+1
(T−1)

0 H⌈ms
T ⌉T

(1) ··· ··· H
(⌈ms

T ⌉−1)T+2
(T−1)

...
. . .

. . .
...

...
0 ··· 0 H⌈ms

T ⌉T
(T−2) H⌈ms

T ⌉T−1
(T−1)

0 ··· ··· 0 H⌈ms
T ⌉T

(T−1)

 .

(12)

with i ∈ [1,
⌈
ms

T

⌉
− 1]. We remark that Hj(k) = 0, ∀j >

ms,∀k.

Lemma 1. A PTV-SC-LDPC code with period T , block length
a, c parity symbols per time instant and constraint length
(ms + 1)a can be represented through a Tc × Ta symbolic
matrix of the type in (4), having the following form

HPTV(D,T ) =

 h0,0(D) ··· h0,T (a−1)(D)

...
. . .

...
hT (c−1),0(D) ··· hT (c−1),T (a−1)(D)

 ,

(13)
where the following necessary and sufficient conditions hold

1) for i ∈ [(k − 1)c, kc − 1] and j ∈ [ka, Ta − 1], ∀k ∈
[1, T − 1], hi,j(D) cannot contain constant terms,

2) for i ∈ [krowc, (krow + 1)c− 1], and j ∈ [kcola, (kcol +
1)a − 1], ∀krow, kcol ∈ [0, T − 1], the largest possible
degree of hi,j(D) is ⌊ms−krow+kcol

T ⌋ ≤
⌈
ms

T

⌉
,

3) if ms < T−1, for i ∈ [(ms+k)c, T c−1], j ∈ [0, ka−1],
∀k ∈ [1, T −ms + 1], then hi,j(D) = 0.

Proof: By employing (5) to convert (8) in symbolic form,
we obtain a typical symbolic matrix of a TI-SC-LDPC code
in the form (13). However, the particular form of Hs imposes
some constraints on the entries of HPTV(D,T ), as shown
next.

1) From (10) we notice that, by construction, all the entries
(ĥ0)i,j , where i ∈ [(k−1)c, kc−1] and j ∈ [ka, Ta−1],
∀k ∈ [1, T −1], are equal to 0 (corresponding to the all-
zero portion on the top right part of H⊤

s ). Substituting
into (5), we readily obtain that, for the same set of
indices i, j, k, hi,j(D) cannot contain constant terms,
but only entries with degree strictly larger than 0.

2) Let us consider the 0-th time instant, i.e., columns of
H⊤

s with indexes in [0, a − 1]. Let us also consider
m ∈ [0, ⌈ms

T ⌉]; then, the largest value of m for which
HzT+krow(0), krow ∈ [0, T − 1], is not necessarily an-
all zero matrix is m∗ such that m∗T + krow ≤ ms, i.e.,
m∗ ≤ ⌊ms−krow

T ⌋. Thus, when substituting into (5), the
largest value of m in the sum is m∗ which, in its turn,
cannot be larger than ⌊ms−krow

T ⌋. This implies that the
degree of hi,j(D) is upper bounded by ⌊ms−krow

T ⌋, with
i ∈ [kc, (k+1)c−1], ∀k ∈ [0, T −1], and j ∈ [0, a−1].
We can extend the same reasoning to the other time
instants, taking into account that the kcol-th syndrome
former matrix of the PTV-SC-LDPC code is shifted kcolc
rows down with respect to the 0-th one. Therefore, m∗ ≤
⌊ms−krow+kcol

T ⌋. We notice that kcol−krow ≤ T−1, and
thus m∗ ≤ ⌊ms−krow+kcol

T ⌋ ≤
⌈
ms

T

⌉
, coherently with the

fact that HPTV(D,T ) cannot have entries with degree
larger than the memory of the code.

3) If ms < T −1, all the entries (ĥ0)i,j , where i ∈ [(ms+
k)c, T c− 1] and j ∈ [0, ka− 1], ∀k ∈ [1, T −ms + 1],
are equal to 0, and so are all the entries below them in
H⊤

s . By substituting again into (5), we readily obtain
that, for the same set of indices i, j, k, hi,j(D) = 0.
This characterizes the zero portion on the bottom left of
Ĥ0, existing only when ms < T − 1.

If any of the above conditions is not met, then (13) does
not correspond to a syndrome former matrix as in (8), mak-
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ing those three conditions necessary. Furthermore, conditions
2) and 3) enforce the existence of a diagonal-like pattern
containing T (ms + 1)c × a transposed syndrome former
matrices, with an all-zero region beyond its bottom-left border.
Instead, condition 1) determines the existence of an all-zero
region beyond the top-right border of such a diagonal pattern,
respectively. Therefore, these conditions are also sufficient to
describe any PTV-SC-LDPC code with period T , block length
a, and c parity symbols per time instant.

By considering a symbolic matrix of the type (13), we
can derive an upper bound on the ensemble and code free
distance as follows. Notice that, given a code C described by
HPTV(D,T ) in (13), the following Theorem 1 gives an upper
bound which holds for all the codes belonging to the same
ensemble as C, since the permanent operator is only applied
on (portions of) the base matrix W(HPTV(D,T )) and not on
the symbolic matrix itself. The subsequent Theorem 2, instead,
provides a tighter bound that is specific for a code C, since
the permanent operator is applied to (portions of) the symbolic
matrix.

Theorem 1. The free distance dfree of any PTV-SC-LDPC
code with period T , block length a and c parity symbols per
time instant, belonging to the ensemble E(W(HPTV(D,T ))),
is bounded as follows

dfree ≤ min∗
L⊆[0,Ta−1]
|L|=Tc+1

∑
i∈L

perm(W(HPTV
L\i (D,T ))) ≜ dE,T .

(14)

Proof: Due to Lemma 1, we can represent an ensemble of
PTV-SC-LDPC codes with a Tc×Ta base matrix. Therefore,
the theorem follows from the same arguments as in [17,
Theorem 8], applied to such a larger matrix.

Theorem 2. The free distance of any PTV-SC-LDPC code
with period T , block length a and c parity symbols per time
instant described by HPTV(D,T ) is bounded as follows

dfree ≤ min∗
L⊆[0,Ta−1]
|L|=Tc+1

∑
i∈L

W(perm(HPTV
L\i (D,T ))) ≜ dC,T .

(15)

Proof: Due to Lemma 1, we can represent a PTV-SC-
LDPC code with a Tc × Ta symbolic matrix. Therefore, the
theorem follows from the same arguments as in [17, Theorem
7], applied to such a larger matrix.

We remark that, for both Theorems 1 and 2, the min∗

operator is computed over all possible subsets of [0, Ta−1] of
size Tc+1. Also notice that, due to the definition of the min∗

operator, the trivial bound dfree < ∞ may be found, depending
on the code symbolic matrix. Also note that, for any C ∈ E ,
dC,T ≤ dE,T . Hence, dE,T provides an ultimate bound on the
free distance achievable by a given family of PTV-SC-LDPC
codes. This concept is formalized in the following statement.

Corollary 1. The free distance dfree of any PTV-SC-LDPC
code with period T , block length a and c parity symbols per

time instant, belonging to the ensemble E(W(HPTV(D,T ))),
is upper bounded by dE,T , independent of its memory ms.

Proof: As shown in Theorem 1, dE,T is computed by
calculating

perm(W(HPTV
L\i (D,T ))),

for each element of all the possible subsets of [0, Ta − 1] of
size Tc+1. We notice that the permanent operation is applied
on portions of the base matrix, which does not contain any
information on the memory of the code. Therefore, the upper
bound given by (14) does not depend on ms, and the free
distance of any code in the ensemble is upper bounded by
dE,T , independent of its memory.

Therefore, Corollary 1 states that, given a certain ensemble,
we can design PTV-LDPC codes with as large memory as
possible, but upon reaching dE,T , the free distance will stop
improving. It is therefore interesting to study lower and upper
bounds on dE,T for PTV-SC-LDPC codes, which is done
through the following further results.

Lemma 2 ([25, Equation (10)]). The permanent of a square
matrix A in Fn×n

2 with row sums ri = W(Ai,:), i ∈ [0, n−1]
is upper bounded by

n−1∏
i=0

(ri!)
1
ri .

Lemma 3 ( [26, Theorem 2]). The permanent of a square
matrix A in Fn×n

2 (admitting non-zero permanent) with row
sums ri = W(Ai,:) ≥ t, i ∈ [0, n − 1] is lower bounded by
t!.

Lemma 4. Given A ∈ Fn×(n+1)
2 with column sums ci =

W(A:,i) = c, ∀i ∈ [0, n], it holds that

perm
(
A[0,n]\j

)
= 0

for either at most n− c values of j, or all j ∈ [0, n].

Proof: We define A∗ = A[0,n]\j∗ , for a value j∗ ∈ [0, n].
Let us assume that perm (A∗) ̸= 0. Since A is binary, the
permanent of A∗ is positive, and this implies that there exists
at least an element σ∗ of the symmetric group Sn such that∏n−1

i=0 a∗i,σ∗(i)−1 > 0. In other words, A∗ can be written as
A∗ = P∗+E∗, where P∗ is a permutation matrix of size n and
E∗ ∈ Fn×n

2 is such that ek,l = 0 if pk,l = 1 and each column
contains c − 1 ones. We now notice that considering ĵ ̸= j∗

corresponds to replacing a column of A∗ (in particular, the
one coinciding with the ĵth column of A) with A:,j∗ . Then,
since by hypothesis A:,j∗ contains c ones, there are exactly c
values of j (j0, j1, . . . , jc−1 ̸= j∗) such that

|P∗
:,jm ∩A:,j∗ | = 1, ∀m ∈ [0, c− 1]. (16)

This implies that perm
(
A[0,n]\jm

)
> 0, ∀m ∈ [0, c − 1],

since the permanent of any permutation matrix is unitary.
Therefore, there are at least c+1 values of j (the above c ones
and j∗) having non-zero permanent, since (16) is a sufficient,
but not necessary, condition. In other words, there are at most
n+ 1− c− 1 = n− c values of j such that

perm
(
A[0,n]\j

)
= 0.
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This proves the first part of the lemma.
Removing the initial hypothesis that perm

(
A[0,n]\j∗

)
̸= 0,

for some j∗ ∈ [0, n] leaves the possibility that

perm
(
A[0,n]\j

)
= 0

for all j ∈ [0, n], which is the second part of the lemma.

We now prove an upper bound on the ensemble free
distance, which holds for both regular and irregular PTV-SC-
LDPC codes.

Theorem 3. Let C be a PTV-SC-LDPC code with period T
drawn from the ensemble E , described by a base matrix B ∈
FTc×Ta
2 (and associated vector b), with block length a and c

parity symbols per time instant. Then, if dE,T is finite,

dC,T ≤ dE,T ≤ (Tc+ 1) max
S⊆[0,Ta−1]

|S|=Tc

∏
j∈S

bj !
1
bj . (17)

Proof: According to (14), dE,T is computed as the sum
of Tc+1 permanents of Tc×Tc matrices. Therefore, if dE,T
is finite,

dC,T ≤ dE,T ≤ (Tc+ 1)λ,

where λ is the largest value that the permanent of any valid
Tc×Tc matrix can assume. In order to compute λ, we resort
to Lemma 2, which gives an upper bound on the permanent of
a square matrix with known row sums. Since it is convenient
to operate with column sums, we can work on the transpose
of the considered matrix, and the lemma holds, as well. In our
case, by definition, the column sums of W(HPTV(D,T )) are
given by the elements of the vector b. Therefore, λ is obtained
as the largest permanent over all subsets S of [0, Ta − 1],
having size Tc, that is,

max
S⊆[0,Ta−1]

|S|=Tc

∏
j∈S

bj !
1
bj .

The above considerations become simpler when column-
regular codes are considered, as shown below.

Corollary 2. Let C be a dv column-regular PTV-SC-LDPC
code with period T drawn from the ensemble E , described
by the base matrix B ∈ FTc×Ta

2 (and the associated vector
b), with block length a and c parity symbols per time instant.
Then, if dE,T is finite,

dC,T ≤ dE,T ≤ (Tc+ 1)dv!
Tc
dv . (18)

Proof: Eq. (18) follows from the following equality,
holding when all the columns of B have the same Hamming
weight dv

max
S⊆[0,Ta−1]

|S|=Tc

∏
j∈S

bj !
1
bj =

Tc−1∏
j=0

bj !
1
bj =

(
dv!

1
dv

)Tc

.

Starting from the previous general analysis, we devote
special attention to the family of fully-connected monomial
codes [4], [17], [27], for which some interesting results can
be derived. In order to perform a fair comparison between the
upper bounds of TI- and PTV-SC-LDPC codes and to simplify
the analysis, we make the following assumption.

Assumption 1. From now on we consider PTV-SC-LDPC
codes with period T drawn from the ensemble E(B) such
that W(Hi(D)) = W(Hj(D)), ∀i ̸= j ∈ [0, T − 1], and
B = W(H0(D)).

Notice that this is a pessimistic assumption, since it reduces
the degrees of freedom on the design of PTV-SC-LDPC codes.

We now focus on the family of fully-connected monomial
codes, for which the following result holds.

Corollary 3. Let C and C′ be a TI-SC-LDPC fully monomial
code and a PTV-SC-LDPC fully monomial code with period
T , respectively, with syndrome former matrices drawn from
the same ensemble E(B) with the same block length a, and c
parity symbols per time instant. Then, if dE,T is finite,

dE,1 ≤ dE,T ≤ (Tc+ 1)c!T . (19)

Proof: The rightmost part of the inequality follows from
the fact that, for fully connected monomial codes, dv = c,
which is substituted into (18).

In order to prove the leftmost part of the inequality, we
need to prove that dE,T ≥ (c + 1)! = dE,1. Owing to the
fact that dv = c, ∀i, we can apply Lemma 3 (working on
the transpose of the considered matrix, since column sums are
known, rather then row sums) to each Tc× Tc submatrix of
W

(
HPTV(D,T )

)
, thus obtaining that their permanents are

lower bounded by c!. We now consider the Tc × Tc + 1
submatrices W

(
HPTV

L (D,T )
)
, L ⊆ [0, Ta−1], |L| = Tc+1,

needed to compute (14). Due to Lemma 4, at least c + 1
permanents of any Tc × Tc submatrix of W

(
HPTV

L (D,T )
)

are non-zero, leading to

dE,T ≥ (c+ 1)c! = (c+ 1)! = dE,1.

We stress the fact that dE,T provides a bound on the
ensemble free distance. Therefore, once a suitable ensemble
has been chosen, in order to adhere as much as possible to
the proposed upper bounds, the entries of HPTV should be
chosen in such a way that also the upper bound on the code
free distance, dC,T , computed as in Theorem 2, is maximized.
It is important to stress that the exact achievable improvement
depends on the considered ensemble. In the next sections,
we provide some numerical examples which permit us to
quantitatively assess the improvement in the free distance
achievable by PTV-SC-LDPC codes over TI-SC-LDPC codes.

IV. NUMERICAL RESULTS

In order to provide some practical evidence of the new
bounds and of their tightness, in this section we numerically
compute the upper bound dE,T , and the upper and lower
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bounds on its value, as explained in the previous sections. In
the next section, instead, we assess the error rate performance
of some randomly generated codes in the ensemble described
next.

Let us assume that all the syndrome former matrices of the
PTV-SC-LDPC codes are randomly drawn from the ensemble
of (3, 4)-regular fully-connected monomial codes, defined by

B =

1 1 1 1
1 1 1 1
1 1 1 1

 . (20)

By applying (14) with T = 1, as first shown in [27], we
obtain that the free distance of any TI-SC-LDPC code in this
ensemble is upper bounded by 24. We have considered 10 000
randomly generated PTV-SC-LDPC codes with the same base
matrix, corresponding to a few values of T > 1.1 We remark
that, when represented as TI-SC-LDPC codes, the generated
codes can belong to different ensembles. In Figs. 1 and 2 we
show with dots the upper bound dE,T on the free distance
of these codes, computed by using (14), for T = 2 and
T = 3, respectively. We observe that the free distance of these
PTV-SC-LDPC codes is upper bounded by values that are
significantly larger than 24, and that the difference increases
as T increases. The dashed lines in Figs. 1 and 2 represent
the lower (red) and upper (black and blue) bounds given by
(19). We notice that the potential increase in the bound on
the free distance passing from T = 1 to T = 2 is more than
linear, since it passes from 24 to 120 (largest value found
empirically). Similarly, passing from T = 1 to T = 3, the
upper bound on the free distance goes from 24 to 312 (largest
value found empirically). We notice that, since the value of
ms does not influence dE,T (see Corollary 1), increasing the
memory alone does not help in achieving higher upper bounds
on the code free distance.

We remark that this substantial increase in the upper bound
on the ensemble free distance does not necessarily imply that
any PTV-SC-LDPC code has a larger free distance than the
TI-SC-LDPC codes in the same ensemble E . Therefore, in
order to provide a tighter upper bound on the free distance of
these codes, we have repeated the experiment by computing
∆ =

dE,T

dC,T
, for 10 000 codes with T = 2 and T = 3 such that

ms ≤ 300 (the value of the memory has been chosen as an
example, others can be easily considered), thus comparing (14)
and (15). The parameter ∆ is quite relevant, since it measures
the impact of the entries of the code symbolic matrix on the
upper bound on the free distance. On the one hand, if for the
same ensemble many high values of ∆ occur, they may denote
that dE,T is a loose bound, probably due to a relatively small
value of the memory ms. Instead, sporadic high values of ∆
may correspond to bad choices of the symbolic matrix entries.

We remark that, in order to compute ∆, we need to specify
the value of the memory because, differently from dE,T , for
which the permanent is computed on the base matrix, dC,T
must be computed on the symbolic matrix of the code, as
follows from Theorem 2.

1The code ID in Figs. 1 and 2 stops slightly before 10 000 because the
randomly generated codes for which the trivial bound dfree ≤ ∞ was
obtained were discarded. This is also true for Fig. 3.

The normalized frequency of the obtained values of ∆ is
shown in Fig. 3 for T = 2 and T = 3.2

It is apparent from Fig. 3a that, when T = 2, despite the
moderate value of the memory (m̂s = ms

T = 150), there
exist many codes for which dC,2 is equal to the corresponding
value of dE,2 (precisely, this happens in 58.5% of the tested
cases). Moreover, ∆ ≤ 1.5 in 99.2% of the tested cases.
The mean value of ∆ is 1.04 and its variance is 0.012. This
clearly highlights that codes for which the bounds on the code
and the ensemble free distance are close can be designed.
The relatively small mean and variance values observed also
suggest that it should be possible (although not theoretically
guaranteed) to find codes with relatively large values of the
free distance, after a careful design phase. Similar conclusions
can be drawn for the case of T = 3, shown in Fig. 3b.
However, in the latter case the values of ∆ are slightly more
dispersed. In fact, we notice that ∆ = 1 in 27.5% of the
tested cases. We argue that this is due to the fact that, when
T = 3, we have m̂s = ms

T = 100, i.e., the memory of
the corresponding TI-SC-LDPC code is smaller. This implies
that more terms in the computation of (15) are likely to be
canceled in the computation of the permanent of the matrices
HPTV

L\i (D, 3). Still, the largest found value of ∆ does not
change (it is 3.5 in both cases) and ∆ ≤ 1.5 in 97.5% of
the tested cases. Moreover, the mean value of ∆ is 1.08 and
its variance is 0.02. Smaller values of the constraint on ms

yield larger values of ∆. The converse holds for larger values
of the constraint.

V. ERROR RATE PERFORMANCE

In order to investigate the performance of the studied codes
when used in a real error correction setting, let us assess the
bit error rate (BER) performance of some of the TI- and
PTV-SC-LDPC fully monomial codes with period T = 2
and T = 3 considered in Section IV. For such a purpose,
we resort to Monte Carlo simulations of binary phase shift
keying (BPSK) modulated transmissions over the Additive
White Gaussian Noise (AWGN) channel, using the Log-
Likelihood Ratio Sum-Product Algorithm (LLR-SPA) decoder
[28] running 100 iterations.

The first code we consider (C1) is a TI-SC-LDPC code with
a = dc = 4, c = dv = 3, ms = 150 and g = 6 (and, obviously,
T = 1), described by the following symbolic matrix

HTI
C1
(D) =

 1 D144 D5 D106

D41 D73 1 D4

D150 1 D128 1

 . (21)

The syndrome former constraint length of the code is νs =
(150 + 1)4 = 604. The matrix HTI

C1
(D) in (21) has been

randomly picked from its ensemble (performing rejection
sampling only to avoid codes having g = 4) and, according
to Theorem 2, the free distance of the corresponding TI-SC-
LDPC code is upper bounded by 24. We have estimated the
lower bound given in [15, Theorem 4] by using the tool in

2For the sake of reproducibility, we specify that the width of the bins of
the histograms has been chosen equal to 0.01.
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code ID

Fig. 1. Bounds on the ensemble free distance of (3, 4)-regular fully-connected monomial TI- and PTV-SC-LDPC codes with T = 2.

code ID

Fig. 2. Bounds on the ensemble free distance of (3, 4)-regular fully-connected monomial TI- and PTV-SC-LDPC codes with T = 3.

[29], based on the method described in [24], and obtained
that 22 ≤ dfree ≤ 24.

The second code we consider (C2) is a PTV-SC-LDPC fully
monomial code with T = 2, a = dc = 4, c = dv = 3,
ms = 142 and g = 6. In this case, the syndrome former
constraint length is νs = 572.3 is slightly smaller than that
of C1. We remark that, this way, the performance of these
PTV codes is evaluated pessimistically, since larger memories
(combined with a good design) can yield better performances.

3Notice that the value of the memory ms = 150 is provided as an upper
bound to our search algorithm, and therefore the memory of all Ci’s, with
1 < i ≤ 5,

It is described by the following symbolic matrix

HPTV
C2

(D) =


D61 0 1 0 0 D6 0 D59

D32 0 D12 0 0 0 D52 D
0 D44 0 D29 D2 D60 0 0
0 1 0 D59 1 0 1 0
0 D27 0 1 D30 1 0 0
1 0 D15 0 0 0 D71 D3

 ,

(22)
which was extracted from its ensemble since Theorem 2
gives dC,T = 116 as the upper bound on the code free
distance. For ms ≤ 150, codes with larger values of dC,T
have not been found. Also in this case, we have combined
our method with that in [15], operating on the QC version
of C2 of block length 1 440. However, in this case the tool
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Fig. 3. Normalized frequency of the ratio between dE,T and dC,T , for 10 000 PTV-SC-LDPC codes with (a) T = 2 and (b) T = 3.

in [29] found no codewords of weight smaller than 116,
hinting that the free distance is close to the upper bound.
In fact, in this case we were unable to estimate the lower
bound in [15], due to the larger block length of the code and
the resulting increase in the computational complexity of the
minimum distance estimate. The upper bound on the block
code minimum distance provided by [17] states that, for the
QC version of C2, dmin ≤ 108. We also consider two other
PTV-SC-LDPC codes with T = 2 and ms comparable to
that of C2 (and the same values of g, a, c, dv and dc), but
characterized by smaller values of dC,T . They are described
by the following symbolic matrices:

HPTV
C3

(D) =


1 D61 1 D29 D9 0 D47 0

D61 D72 0 0 D45 D11 D D
D32 1 0 D53 0 0 D28 D62

0 0 0 0 0 D50 0 D58

0 0 D64 1 0 0 0 0
0 0 D50 0 1 1 0 0

 ,

(23)

HPTV
C4

(D) =


0 0 0 D3 0 0 D71 D71

0 D51 D5 1 D21 D8 0 D38

0 D60 0 0 0 D3 0 0
D43 1 1 0 1 1 0 0
D7 0 0 0 0 0 1 0
1 0 D50 D38 D7 0 D68 1

 ,

(24)
and have dmin ≤ 48 and dmin ≤ 56, respectively. Their syn-
drome former constraint length is 580 and 576, respectively,
hence slightly larger than that of C2.

In order to further investigate the effect of the period of the
performance, we consider a code denoted as C5, that is a PTV-
SC-LDPC fully monomial code with T = 3, a = 4, c = 3,
ms = 138 and g = 6, from which νs = 556. It is described
by the following symbolic matrix:

HPTV
C5

(D) =


0 0 0 0 0 D2 D 0 D27 0 0 0
0 D16 0 D20 0 0 0 0 0 0 D15 0
0 1 0 0 0 0 0 D 0 0 D2 D26

0 0 D9 0 0 0 0 0 0 D45 0 D
D 0 0 0 1 D21 0 0 0 0 0 D23

0 0 0 D14 D42 0 D10 0 D18 0 0 0
1 D5 0 1 D23 0 0 D8 0 0 D46 0
0 0 D29 0 0 0 D39 D8 1 1 0 0

D34 0 1 0 0 1 0 0 0 D21 0 0

 ,

(25)

for which Theorem 2 gives dC,T = 214. No codewords of
weight smaller than 214 were found either in this case by the
tool in [29] for the QC version of C5 of block length 1 440.
On the other hand, according to [17], its minimum distance is
upper bounded by 200.

Finally, in order to investigate the effect of the memory on
the performance, we consider the PTV-LDPC fully monomial
code with T = 2, a = dc = 4, c = dv = 3, and g = 6,
described by:

HPTV
C6

(D) =


0 D45 D33 D214 0 0 D 0
1 1 D78 D44 0 0 0 0
0 D83 1 0 D53 0 D272 0

D169 0 0 0 1 D152 0 D45

0 0 0 0 D41 1 D206 1
D32 0 0 1 0 D40 0 D104

 ,

(26)
characterized by ms = 544, and for which dfree ≤ 114. The
syndrome former constraint length of this code is 2180. Table
I summarizes the parameters of all the considered codes.

TABLE I
Parameters of the considered PTV-SC-LDPC codes, all with a = dc = 4,

c = dv = 3, and g = 6.

Code T ms νs dC,T
C1 1 150 604 24
C2 2 142 572 116
C3 2 144 580 48
C4 2 143 576 56
C5 3 138 556 214
C6 2 544 2180 114

The results of Monte Carlo simulations are shown in Fig. 4.
We notice that the PTV codes with period T = 2 and T = 3
significantly outperform the time invariant one. For example,
at BER = 10−4, C2 shows a 2.22 dB gain with respect to C1;
the gain becomes even larger for C5, which shows a 2.47 dB
gain with respect to the time invariant code C1. We also notice
in Fig. 4 that the performance of C3 and C4 follows the trend of
the upper bounds on the free distance. Even though this is not
to be intended as a general rule, it hints that the maximization
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Fig. 4. Bit error rate vs signal-to-noise ratio, for codes with different period
and memory.

of the proposed upper bounds can be considered as a broad
design method. We remark that, despite the fact that C3 and
C4 perform worse than C2, they still achieve a noticeable gain
with respect to C1. We note that all the previously mentioned
codes have the same rate (R = 1

4 ) and comparable memory
and syndrome former constraint length. Instead, regarding the
code with larger memory, namely C6, we note that it exhibits
some gain with respect to all the other codes, which however is
achieved at the cost of more than tripling the syndrome former
constraint length. This hints that, even if we further increase
the memory, without increasing the period, the corresponding
codes will not exhibit a significant gain.

For the code C1, we were able to collect a sufficiently
large number of error patterns (more than 1000) causing
decoding failures, corresponding to codewords. 90% of these
error patterns are low-weight codewords of weight 24, i.e., the
largest free distance achievable by any TI-SC-LDPC code in
the considered ensemble. The remaining 10% are codewords
of weight larger than or equal to 44. On the other hand, there
are no codewords of C2 and C54 in the decoding error patterns,
which is a clear hint that their free distance is relatively large
(as discussed in the concluding paragraph of Section II) and
probably close to the upper bounds on the code free distance.
Despite the fact that other harmful objects, such as various
types of trapping sets, are often the main responsible ones
of decoding failures, especially in the error-floor region (i.e.,
for relatively large values of the signal-to-noise ratio Eb

N0
), it

was expected (and is evident also from Fig. 4) that such a
potential increase in the free distance of these codes would
play a critical role on their error rate performance.

VI. CONCLUSION

We have studied the free distance of PTV-SC-LDPC codes,
introducing some new bounds and showing that they can
theoretically achieve much better distance properties than

4As mentioned above, some codewords of the QC counterparts of C2 and
C6 were found by means of the tool [29], but their weight is larger than the
upper bound on the code free distance and, therefore, they do not help in the
estimation of the latter.

their time-invariant counterparts, even for very small periods.
Numerical results show that the increase in the free distance
is not only theoretical and has a dramatic impact on the error
rate performance of PTV-SC-LDPC codes, which turns out to
be significantly better than that of TI-SC-LDPC codes having
the same parameters, even for very small periods.

As a suggestion for future work, supported by the results
in Fig. 4, we foresee that the obtained upper bounds may be
used to design specific PTV-SC-LDPC codes with small period
having good free distance and error correction performance.
A similar approach was used to obtain good QC-LDPC block
codes in [30], [31], where the maximization of the upper bound
on the ensemble free distance is used as a design criterion.
Owing to the connection between QC-LDPC and SC-LDPC
codes, such a design method could be easily extended.
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