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Generalized Identifiability Bounds for Mixture
Models with Grouped Samples

Robert A. Vandermeulen and René Saitenmacher

Abstract—Recent work has shown that finite mixture models
with m components are identifiable, while making no assumptions
on the mixture components, so long as one has access to groups
of samples of size 2m − 1 which are known to come from the
same mixture component. In this work we generalize that result
and show that, if every subset of k mixture components of a
mixture model are linearly independent, then that mixture model
is identifiable with only (2m − 1)/(k − 1) samples per group.
We further show that this value cannot be improved. We prove
an analogous result for a stronger form of identifiability known
as “determinedness” along with a corresponding lower bound.
This independence assumption almost surely holds if mixture
components are chosen randomly from a k-dimensional space.
We describe some implications of our results for multinomial
mixture models and topic modeling.

Index Terms—Nonparametric statistics, identifiability, non-
parametric mixture models, tensor factorization, topic modeling,
multinomial mixture model.

I. INTRODUCTION

F INITE mixture models have seen extensive use in statis-
tics and machine learning. In a finite mixture model one

assumes that samples are drawn according to a two-step pro-
cess. First an unobserved mixture component, µ, is randomly
selected according to a probability measure over probability
measures P =

∑m
i=1 aiδµi

(δ is the Dirac measure). Next
an observed sample X is drawn from µ, X ∼ µ. A central
question in mixture modeling theory is that of identifiability
[60]: whether P is uniquely determined from the distribution
of X . From the law of total probability it follows that X is
distributed according to

∑m
i=1 aiµi. Excepting trivial cases,

a mixture model is not identifiable unless one makes addi-
tional assumptions about the mixture components. A standard
assumption is that the mixture components µ1, . . . , µm are
elements of some parametric class of densities. A common
choice for this class is the set of multivariate Gaussian
distributions, which yields the well-known and frequently-used
Gaussian mixture model. This model is indeed known to be
identifiable [4], [14], [69]. A natural question to ask is whether
it is possible for a mixture model to be identifiable without
such parametric assumptions.

Robert A. Vandermeulen acknowledges support by the German Federal
Ministry of Education and Research (BMBF) for the Berlin Institute for the
Foundations of Learning and Data (BIFOLD) (01IS18037A). René Saiten-
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In [65] the authors consider an alternative setting for mixture
modeling where no assumptions are made on the mixture
components µ1, . . . , µm and, instead of having access to a
collection of samples where each sample is drawn from an
unobserved mixture component µ ∼ P , one has access to
a collection of groups of n samples, where each group has
the form X = (X1, . . . , Xn) with each Xi known to be
independently sampled from µ, i.e. X1, . . . , Xn

iid∼ µ. In [65]
the authors develop several fundamental bounds relating the
identifiability of P to the number of samples per group n
and the number of mixture components m. These bounds
consider extremal cases where there are either no assumptions
on the mixture components or they are assumed to be linearly
independent. If the mixture components are assumed to lie in
a finite dimensional space, such as when the sample space
is finite (a multinomial mixture model), then it is reasonable
to assume that the collection of all mixture components is
linearly dependent, however sufficiently small subsets of the
mixture components are linearly independent.

In this paper we prove two fundamental bounds relating the
identifiability of P =

∑m
i=1 aiδµi to the number of mixture

components m, the number of samples per group n, and a
value k which describes the degree of linear independence of
the mixture components. We show that if every subset of k
measures in µ1, . . . , µm are linearly independent, then P is
the simplest mixture, in terms of the number of mixture com-
ponents, yielding the distribution on X if 2m− 1 ≤ (k− 1)n.
If n is even-valued and 2m−2 ≤ (k−1)(n−1) then P is the
only mixture, with any number of components, yielding the
distribution on X. We furthermore show that the first bound
is tight and that the second bound is nearly tight. Most of
the bounds in [65] are special cases of the bounds presented
in this paper. Our bounds also generalize a classical result
on the identifiability of mixture models where all mixture
components are linearly independent [69]. We also show that
this linear independence assumption occurs naturally, similarly
to results in [37], and describe some practical implications of
our results.

II. BACKGROUND

We introduce the mathematical setting used in the rest of
the paper before reviewing existing results.

A. Problem Setting

The setting described here is drawn from [65] and is highly
general, assuming no regularity conditions on the mixture
components. Let (Ω,F) be a measurable space, with F being
its σ-algebra, and let D be the space of probability measures
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on (Ω,F). Note that D is contained in the vector space of
finite signed measures on (Ω,F), a fact which we will use
often. For an element γ, let δγ denote the Dirac measure at γ.
We equip D with the power σ-algebra, as we will be interested
in measures of the form

∑m
i=1 aiδµi

with µi ∈ D. We call a
measure P on D a mixture of measures if it is a probability
measure on D of the form P =

∑m
i=1 aiδµi

with ai > 0,∑m
i=1 ai = 1, and m < ∞. We will always assume that the

representation of a mixture of measures has minimal m, i.e.
there are no repeated µi in the summands. For a full technical
treatment of the concept of minimal representation see [65].
We refer to the measures µ1, . . . , µm as mixture components.
We now introduce the model we wish to investigate in this
paper which is termed the grouped sample setting in [65].
If we let µ ∼ P and X1, . . . , Xn

iid∼ µ then the probability
distribution for X = (X1, . . . , Xn) is

∑m
i=1 aiµ

×n
i . With this

in mind we introduce the following operator1,

Vn (P) ≜
m∑
i=1

aiµ
×n
i . (1)

To give some concreteness to this setting it can be helpful to
consider the application of topic modeling with a finite number
of topics. Here µ1, . . . , µm are topics, which are simply
distributions over words. The measure P designates a topic
µi being chosen with probability ai. The group of samples
(X1, . . . , Xn) represent a document containing n words as a
bag of words. A collection of documents X1,X2, . . . are then
iid samples of Vn(P) where Xi = (Xi,1, . . . , Xi,n). In this
setting we are interested in the number of words necessary per
document to recover the true topic model P .

We will be investigating two forms of identifiability, n-
identifiability where P is the simplest mixture of measures,
in terms of the number of mixture components, yielding the
distribution on (X1, . . . , Xn), and n-determinedness where P
is the only mixture of measures yielding the distribution on
(X1, . . . , Xn). We finish this section with the following two
definitions which capture these two notions of identifiability.

Definition 2.1: A mixture of measures P =
∑m

i=1 aiδµi
is

n-identifiable if there exists no mixture of measures P ′ ̸= P
with m or fewer components such that Vn(P ′) = Vn(P).

Definition 2.2: A mixture of measures P is n-determined
if there exists no mixture of measures P ′ ̸= P such that
Vn (P ′) = Vn (P).

B. Previous Results

Here we recall several results from [65]. In that paper
the authors prove five bounds relating identifiability or de-
terminedness to the geometry of the mixture components, the
number of mixture components m, and the number of samples
per group n. For brevity we have summarized these bounds in
Table I. [65] showed that none of these bounds are improvable
by proving matching lower bounds. For clarity we include an
example of a precise statement of an entry in this table.

1All power operators utilize the standard product corresponding to the space
they operate in, such as the power measure or the power σ-algebra [34].

Theorem 2.1 (Table I Row Four or [65] Theorem 4.6): Let
P =

∑m
i=1 aiδµi be a mixture of measures where µ1, . . . , µm

are linearly independent. Then P is 4-determined.
The last row of Table I contains a property known as joint

irreducibility which was introduced in [11]. A collection of
probability measures µ1, . . . , µm is jointly irreducible when all
probability measures in the linear span of µ1, . . . , µm lie in the
convex hull of µ1, . . . , µm, i.e. span ({µ1, . . . , µm}) ∩D =
conv ({µ1, . . . , µm}). We do not use joint irreducibility any-
where else in this paper, however we note that it is a property
that is stronger than linear independence.

For completeness we also include the following lemmas
from [65] that demonstrate the unsurprising fact that k-
identifiability and k-determinedness are, in some sense, mono-
tonic. Each lemma encapsulates two statements, one concern-
ing identifiability and one concerning determinedness, which
we have combined for brevity.

Lemma 2.1: If a mixture of measures is n-identifiable (de-
termined) then it is q-identifiable (determined) for all q > n.

Lemma 2.2: If a mixture of measures is not n-identifiable
(determined) then it is not q-identifiable (determined) for any
q < n.
Finally [65] Lemma 7.1 showed that if the sample space
Ω is finite, the grouped sample setting is equivalent to a
multinomial mixture model where n is the number of trials
and µ1, . . . , µm are the categorical distributions for each
component. One may consider the grouped sample setting to
be a generalized version of multinomial mixture models.

III. RELATED WORK

The findings of this work reside at the convergence of
several distinct subjects. In this section, we explore relevant
studies and contributions from these intersecting fields. Further
discussion of related works in the field of discrete data
clustering is included in Section V.

A. Grouped Sample Setting

A significant amount of work regarding the grouped sample
setting has focused on the setting where Ω is finite, which
is equivalent to a multinomial mixture model. Some of the
earliest work on identifiability was done on binomial mixture
models with [60] demonstrating that binomial mixture models
are identifiable if the number of trials n and the number of
mixture components m satisfy n ≥ 2m − 1. These results
were extended to multinomial mixture models in [38] and
[23]. [50] and [65] introduced estimators for the multinomial

TABLE I
SUMMARY OF IDENTIFIABILITY RESULTS FROM [65]. m DESIGNATES THE

NUMBER OF MIXTURE COMPONENTS AND n THE NUMBER OF SAMPLES
PER GROUP.

Component assumption n bound n-ident./det.
none n ≥ 2m− 1 identifiable
none n ≥ 2m determined

linearly independent n ≥ 3 identifiable
linearly independent n ≥ 4 determined
jointly irreducible n ≥ 2 determined
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components when the n ≥ 2m − 1 bound is met. Turn-
ing to the continuous setting, the paper [53] introduces a
method for recovering mixture components in the grouped
sample setting when the components are densities on some
Euclidean space. That method is furthermore guaranteed to
asymptotically recover the components whenever the mixture
of measures is identifiable. In [68] the authors consider the
grouped sample setting where the mixture components come
from some parametric class of densities and provide results
for identifiability and rates of convergence.

The grouped sample setting can be considered as a special
case of a finite exchangeable sequence [35]. An (infinite)
sequence of random variables ξ1, ξ2, . . . is called exchangeable
if

(ξ1, . . . , ξm)
d
= (ξk1 , . . . , ξkm)

for every distinct subsequence ξk1
, . . . , ξkm

. For an infinite
sequence de Finetti’s Theorem tells us that (for Borel spaces)
one can always decompose the distribution of the sequence to
be independent, conditioned on some other random variable
in a way akin to (1), though this random variable is not
necessarily discrete as in (1) [34]. This theorem does not
extend to finite sequences, but there exist works investigating
the grouped sample setting for continuous mixtures. One such
work is [67], where the authors present rates for estimating a
continuous version of P in the context of binomial mixture
models.

B. Nonparametric Mixture Modeling

Other works have investigated nonparametric mixture mod-
els without assuming the grouped sample setting. Unlike the
grouped sample setting, these methods must make assumptions
on the mixture components to guarantee identifiability. One
approach to nonparametric mixture modeling is to assume a
clustering structure where mixture components are assumed to
correspond to modes or concentrated regions of the probability
density function (pdf) [5], [6], [18], [59], [66]. Some of
these methods have identifiability guarantees so long as the
true mixture components are sufficiently concentrated and
separated.

Unsurprisingly, there has been significant investigation into
mixture models using neural networks. The basic approach to
this assumes data is generated by sampling an unobserved
latent variable from a mixture model, Zi

iid∼
∑m

j=1 ajµj ,
and the observed data comes from passing the latent variable
through a neural network Xi = fθ(Zi). A common approach
to this uses a variational autoencoder with mixture priors [20],
[25], [30], [31], [61], usually a Gaussian mixture model. In
such a situation one is interested in estimating θ and the
mixture parameters of the latent distribution jointly. Clearly
there are some issues with identifiability when fitting fθ and
the mixture components jointly. For example, if fθ is linear
and Z is distributed according to a Gaussian mixture model,
then adjusting the mixture parameters to compensate for the
linear transform can effectively fit the data. This means that
one could simply fix any value of θ, knowing that the same
effect could be achieved by choosing corresponding mixture
parameters. Remarkably it has recently been shown that, if

fθ is a leaky ReLU network and the latent distribution is a
Gaussian mixture model, one has identifiability of the mixture
components up to a certain class of transformations [39].

Another approach to nonparametric mixture modeling,
which avoids the need for strong separation and concentra-
tion assumptions, factors a pdf into a density with rank-one
components [56]. This can be expressed as

p(x1, . . . , xd) =

m∑
i=1

d∏
j=1

wipi,j (xj) . (2)

This method has its origins in analyses of discrete distributions
[3], where it can be applied for clustering discrete data.

Notably, it has been observed that the structure in (2) can
be used to improve nonparametric density estimation [2],
[36], [56], [57], with [62]–[64] theoretically showing that
this assumption eliminates the nonparametric curse of dimen-
sionality. These methods are identifiable under specific linear
independence assumptions on the collection of component
marginal distributions pi,j . This guarantee of identifiability
follows from previous works concerning the uniqueness of
tensor factorizations [1], [40].

C. Tensor Factorization

Identifiability with linearly independent components given
n ≥ 3 was established in [1] by way of Kruskal’s (Factoriza-
tion) Theorem [40]. A spectral algorithm for the estimation of
models with linearly independent components can be found
in [3]. An adaptation of this algorithm can be used to recover
components like those in (2) [56].

A generalization of Kruskal’s Theorem for d-way arrays can
be found in [55], and it is related to some of the techniques we
use in the proof of Theorem 4.1. However, we never employ
the results from [55] in any of our proofs. Nonetheless, the
theorems we prove are a natural extension of [65] using the
independence setting considered in [55].

Nonnegative matrix/tensor factorization is a constrained
form of tensor factorization where one enforces positivity on
the components, ensuring that all elements in the factorized
matrices or tensors are nonnegative [7], [54]. This method
has been used for discrete mixed membership models. Iden-
tifiability is again an important consideration for nonnegative
matrix factorization. A well-known property that guarantees
identifiability for nonnegative matrix factorization is the “sep-
arability condition” [21], also referred to as the “anchor word”
assumption [8]. This condition is the discrete analogue of joint
irreducibility.

When the space Ω is finite, then Vn (P) can be represented
by a nonnegative symmetric tensor of the form

∑m
i=1 aip

⊗n
i ,

where pi are the probability vectors associated with µi. In this
context, finding the mixture components of P is equivalent to
finding a nonnegative symmetric factorization of Vn (P) [16].

IV. MAIN RESULTS

In this section we present the main results of this paper.
They are related to a property which we call k-independence.
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Definition 4.1: A sequence of vectors x1, . . . , xm is called
k-independent if every subsequence xi1 , . . . , xik containing k
vectors is linearly independent.
The concept of k-independence is simply a generalization of
Kruskal rank [40] to vector spaces. We define k-independence
using a sequence rather than a set of vectors so as to relate it
to a matrix rank, since a matrix can have repeated columns.
When x1, . . . , xm are distinct (as will be the case in our main
theorems) we can define k-independence simply using sets and
subsets. We now present the main results of this paper.

A. Identifiability and Determinedness Bounds

Below, we present two theorems that establish conditions for
the identifiability of a mixture of measures. These conditions
relate the k-independence of the mixture components, the
number of mixture components m, and the number of samples
per group n.

Theorem 4.1: Let m ≥ 2. If P =
∑m

i=1 aiδµi
is a mixture

of measures where µ1, . . . , µm are k-independent and it holds
that 2m− 1 ≤ (k − 1)n then P is n-identifiable.

Theorem 4.2: Let m ≥ 2 and n even-valued. If P =∑m
i=1 aiδµi

is a mixture of measures where µ1, . . . , µm are
k-independent and it holds that 2m− 2 ≤ (k− 1)(n− 1) then
P is n-determined.

In situations where the mixture components are not linearly
independent, the results here can guarantee identifiability and
determinedness for significantly lower values of n than were
demonstrated in [65]. The applications and implications of
these findings are discussed in Section V.

For Theorem 4.1 we must omit the case where m = 1
since this would imply that k = 1 which results in the
inequality “1 ≤ 0” in the theorem statement. Note that
any mixture containing only one component is trivially 1-
identifiable, which is accounted for by row one in Table I.

While Theorem 4.1 is very much in the same vein as the
factorization result in [55], and indeed one could apply that
result to recover a rough version of Theorem 4.1, proving a
precise version of this theorem necessitated developing some
novel tools. In particular, we needed to precisely characterize
how the tensor power affects the k-independence of a collec-
tion of vectors. This characterization is developed in Lemma
6.2. Going further, in Lemma 6.3 we also developed a tight
analysis of how k-independence structure changes when tensor
power is applied to a collection of vectors where some subsets
are k-independent and other subsets are k′-independent with
k ̸= k′.

The proof of Theorem 4.2 uses the aforementioned lemmas
as well as a new induction argument. Preserving determined-
ness through an induction argument presents a challenge, as
there is very little prior work on this property. We empha-
size once more that, unlike identifiability, the determinedness
property in this setting is quite new, and as such, there are
limited theoretical tools available for its analysis. It is worth
noting that the technique used for the base case of our proof
could be applied to any even value of n, with n = 2 being the
most obvious choice. From this starting point, one can use our
induction method for n+2. We remark that starting with any

base case other than n = 4 and then applying our induction
method results in a statement that is weaker than Theorem 4.2.

B. Lower Bounds

Here we present two theorems which characterize the
optimality of the previous theorems. Proving both of these
statements is a straightforward task, utilizing identifiability and
determinedness lower bounds, along with some other tools,
all of which are from [65]. For identifiability we have the
following theorem.

Theorem 4.3: For all m ≥ k ≥ 2 and n with
2m− 1 > (k − 1)n there exists a mixture of measures
P =

∑m
i=1 aiδµi

where µ1, . . . , µm are k-independent and
P is not n-identifiable.

From this we have that Theorem 4.1 cannot be improved
for any values of m,n, or k, not satisfying 2m−1 ≤ (k−1)n,
and is hence completely tight.

For determinedness we have a similar bound.
Theorem 4.4: For all m ≥ k ≥ 2 and n with 2m > (k−1)n

there exists a mixture of measures P =
∑m

i=1 aiδµi
where

µ1, . . . , µm are k-independent and P is not n-determined.
Unfortunately this bound does not match the result from

Theorem 4.2, with the simplest setting not fitting either deter-
minedness bound being m = 6, n = 4, k = 4. If n = 2 then
Theorem 4.2 only holds with m = 1. Interestingly the bounds
match for all valid settings, i.e. m ≥ k, when k = 3. We truly
have no insight into which bound is loose, and it’s entirely
plausible that both of them are, or that it may depend on the
specific values of the parameters m, n, and k. Its not possible
for 4.2 to hold for n = 3, due to the previous lower bound on
determinedness with linearly independent components, but it
is possible that it may hold for other odd-valued n.

C. Comparison to Previous Results

The results in Section IV are quite general and contain four
of the five bounds from [65] as special cases. Since any pair
of distinct probability measures are not collinear, it follows
that the components of any mixture of measures with at least
two mixture components are 2-independent. Setting k = 2 in
Theorems 4.1 and 4.2 gives us the first two bounds from Table
I (noting that n is always even for the determinedness result).

If a collection of m vectors are linearly independent we
have that they are m-independent. Setting k = m in Theorem
4.1 we have

2m− 1 ≤ (m− 1)n

⇐⇒ 2m− 1

m− 1
≤ n

⇐⇒ 2m− 2 + 1

m− 1
≤ n

⇐⇒ 2m− 2

m− 1
+

1

m− 1
≤ n,

with the minimal n satisfying this being 3 which yields row
3 in Table I. The analogous determinedness bound on row 4
can similarly be derived from Theorem 4.2,

2m− 2 ≤ (m− 1)(n− 1) ⇒ 2 ≤ n− 1 ⇐⇒ 3 ≤ n,
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and the smallest even-valued n satisfying this bound is 4. As
a final point we remark that, in contrast to previous results,
Theorems 4.1 and 4.2 imply that, when n = 3 or n = 4 re-
spectively, it is possible to have identifiability/determinedness
without linearly independent components; for example by
setting n = 4, k = 7, and m = 10 for the determinedness
case.

V. DISCUSSION

Before presenting our proofs we discuss some of the appli-
cations and implications of the main results.

A. Applications: Multinomial Mixture Modeling
The results here are perhaps most pertinent to the applica-

tion of multinomial mixture models [38], which are equivalent
to the grouped sample setting with mixture components on a
finite sample space, |Ω| = d < ∞ [65]. These models are
applicable to settings where one wants to cluster subjects and
has access to repeated categorical samples from each subject.
This can be considered as a type of discrete data clustering
problem [49]. There exist many real world applications where
this model is appropriate. Using the notation from Section
II-A we will describe some settings where this model has been
applied.

Multinomial mixture models have been used in business
analytics to cluster customer types where Xi are the purchases
of customer i with Xi,j representing one instance of customer
i purchasing a particular product [15]. In the cognitive sciences
one may be interested in finding clusters of behavior over a
collection of subjects. Here, Xi,j may represent a response to a
questionnaire, an experimental observation or a physiological
or psychological reading, with Xi denoting the collection
of repeated readings for subject i over a period of time. In
such scenarios, one might expect an underlying factor to be
revealed through repeated measurements rather than a one-
time observation. As an illustrative example, experiencing
anxiety from time to time is normal, but frequently reporting
anxiety might indicate an underlying condition. Similarly,
only repeatedly solving a certain task might be adequate to
reliably indicate a subject’s understanding or ability. In this
context, multinomial mixture models have been used to model
the response of children in an experiment to assess their
understanding of the physical world [9], [13], [24], [41]. Other
instances where multinomial mixture models are used to model
repeated tasks include reaction response tasks [17], [70] and
experiments that study the reliance of adults on potentially
misleading visual cues [28].

Elsewhere multinomial mixture modeling has been used to
cluster different types of internet traffic [32]. These methods
have also found use in topic modeling or text clustering [42],
[46], [52], however a great deal of topic modeling focuses on
mixed membership models such as Latent Dirichlet Allocation
[12] or a Dirichlet-multinomial model. Multinomial mixture
models are desirable when one’s focus is clustering.

Dirichlet-multinomial mixtures are an alternative to multi-
nomial mixture models that replaces the multinomial compo-
nents with Dirichlet-multinomial components. Like the multi-
nomial distribution, the Dirichlet-multinomial distribution is

a distribution defined on count data. For count data with d
outcomes and n trials, the Dirichlet-multinomial distribution
is parameterized by a positive vector α ∈ Rd and its pmf on
count data x ∈ Rd is defined as

DirMult(x;n, α) = Ep∼Dirichlet(α) [Mult(x;n, p)] , (3)

where Mult is the multinomial distribution. A multino-
mial mixture model could be employed instead of a
Dirichlet-multinomial mixture in applications where Dirichlet-
multinomial mixtures are used, such as short text clustering
[22], [43], [71] and clustering genetic/biological data [27],
[29], [47]. The two models each have their own advan-
tages and disadvantages. Specifically, a multinomial mix-
ture model is generally easier to estimate and interpret,
while the Dirichlet-multinomial mixture offers more flexibility.
Dirichlet-multinomial mixtures also lack the identifiability
guarantees that exist for multinomial mixture models, which
can help guide data collection and estimation. In the sequel we
describe how the identifiability and determiendness guarantees
presented in this work can aid in statistical analysis and data
collection.

B. Implications: Multinomial Mixture Modeling

In the aforementioned settings, with the samples Xi,j taking
one of d different values, it can be very natural to assume
that the mixture components are d-independent due to the
following proposition.

Proposition 5.1: Let Ψ be a measure which is absolutely
continuous to the uniform measure on the probability simplex
∆d−1 and let Γ1, . . . ,Γd

iid∼ Ψ. Then Γ1, . . . ,Γd are linearly
independent with probability one.

This fact is particularly relevant for topic modeling where
d, the number of words in a vocabulary, can be large and
estimation can be difficult. A straightforward way to fix this
is to assign words to d′ < d clusters, perhaps using a vector
word embedding [44], thereby coarsening the event space.
To recover m topics we should have d′ ≤ m and satisfy
2m − 1 ≤ (d′ − 1)n where n is the number of words per
document. To test whether a corpus could potentially contain
more topics than a proposed topic model with m topics, we
would need that 2m−2 ≤ (d′−1)(n−1). When d < m and the
components cannot be linearly independent, the results here
can guarantee identifiability with n being a d−1 factor smaller
than was shown in [65], thus requiring less data to be collected.
Alternatively the results presented here demonstrate how one
may increase d, perhaps by adjusting the data collection, so
that it is possible to recover the desired number of components.

Another consideration is the difficulty of estimating Vn (P).
For a given d and n, Vn (P) has the form of a symmetric
tensor in Rd×n

[65]. While symmetry aids in the estimation
of Vn (P), this space of symmetric tensors has a substantial
dimensionality of

(
n+d−1

d

)
[16]. Thus it is desirable to choose

n and d as small as possible while still meeting the needs for
the analysis at hand. To reduce d, for example, one may opt
to have a shorter questionnaire for psychometrics or to cluster
product types for customer information, e.g., treat “apples,”
“pears,” and “bananas” as “fruit.”
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Finally, the determinedness property can aid in answer-
ing the question “would we find more components if we
collect more samples, n, for each subject?” Suppose V̂ is
a highly accurate estimate of Vn (P), µ̂1, . . . , µ̂m is a col-
lection of probability measures, and â ∈ ∆m−1, such that
V̂ ≈

∑m
i=1 âiµ̂

×n
i . Theorem 4.2 gives us an indication that, if

m is sufficiently small with respect to k and n, then all the
components have been recovered. Naturally it is impossible to
know to a certainty that one has found all components due to
sampling error, but Theorem 4.2 can give some guidance as
to whether one should consider using a larger n.

C. Other Points

The intuition from Proposition 5.1 applies to any setting
where one assumes that there exists some linearly independent
collection of probability measures, ξ1, . . . , ξd, with each com-
ponent being mixture of these components, µi =

∑d
j=1 ci,jξj .

For example, one may assume that each component is mixture
of a fixed but unknown set of d multivariate Gaussian distribu-
tions, with each µi having a different mixture weighting of the
Gaussian components. Again, the advantage of our results over
previous ones is the ability to choose n more conservatively.

The grouped sample setting also occurs naturally in many
problem settings including group anomaly detection [45],
transfer learning [10], and distribution regression/classification
[48], [58]. In these settings one has access to groups of sam-
ples X1, . . . ,XN with Xi = (Xi,1, . . . , Xi,n). Mathematical
analysis of techniques in this setting typically assume n → ∞.
The study of such problems for fixed n is less explored and
the results here may help research into this setting.

VI. PROOFS

This section contains proofs of the results in Section IV
and supporting lemmas. Proofs omitted in this section can be
found in Appendix A. The symbol ⊗ represents the standard
tensor product on a Hilbert space and is also used in the
superscript to denote tensor powers. The

∏
symbol represents

tensor product when applied to elements of a Hilbert space2.
For a measure µ, µ×n denotes the power measure, as induced
by the standard product measure, and acts on the power σ-
algebra, as induced by the standard product σ-algebra [34].
For real-valued functions f and g, f × g represents the outer
product of the functions, i.e. (f × g)(a, b) = f(a)g(b); this
notation is also used in the superscript to denote a power of
this kind of product. For a natural number N , [N ] is defined to
be {1, 2, . . . , N}. To streamline the presentation of our main
theorems we first introduce the mathematical tools we will be
using.

The following lemma is not particularly novel, but we will
be using it quite extensively without reference so we include
a statement of it here.

Lemma 6.1: Let x1, . . . , xm nonzero be vectors in an inner
product space. Then x1, . . . , xm are linearly independent iff
there exist vectors z1, . . . , zm such that ⟨xi, zi⟩ ≠ 0 for all i
and ⟨xi, zj⟩ = 0 for all i ̸= j.

2Some works use ⊗n
i=1 instead of this notation.

The next lemma serves as something of a workhorse in our
proofs.

Lemma 6.2: Let x1, . . . , xm be vectors in a Hilbert space
which are k-independent with k ≥ 2. Then x⊗n

1 , . . . , x⊗n
m are

min (n (k − 1) + 1,m)-independent.
Proof: We will first consider the case where n(k−1)+1 =

m. We can relabel the vectors x1, . . . , xn(k−1)+1 as x and xi,j

where (i, j) ∈ [n]× [k−1]. By k-independence, for all i, there
exists a vector zi such that ⟨zi, x⟩ = 1 and ⟨zi, xi,j⟩ = 0 for
all j. From this we have that〈

x⊗n,

n∏
i=1

zi

〉
=

n∏
i=1

⟨x, zi⟩ = 1, and〈
x⊗n
i,j ,

n∏
l=1

zl

〉
=

n∏
l=1

⟨xi,j , zl⟩ = 0, for all i, j.

Because the relabeling is arbitrary it follows that for all i′ ∈
[n(k − 1) + 1] there exists zi′ such that

〈
x⊗n
i′ , zi′

〉
= 1 and

zi′ ⊥ x⊗n
j′ for all j′ ̸= i′. Thus we have that x⊗n

1 , . . . , x⊗n
m

are m-independent. We will now consider two other cases for
the value of m. For m < n(k − 1) + 1 we can show that
x⊗n
1 , . . . , x⊗n

m are linearly independent by the same argument.
If m > n(k − 1) + 1 then it follows from the m = n(k −
1) + 1 case that every subsequence of length n(k − 1) + 1 of
x⊗n
1 , . . . , x⊗n

m is independent, so it follows that x⊗n
1 , . . . , x⊗n

m

is (n(k − 1) + 1)-independent.
The following lemma’s proof is very similar to the proof of
Lemma 6.2, but we defer it to Appendix A due to its length.
Note that it recovers Lemma 6.2 by setting k′ = k.

Lemma 6.3: Let x1, . . . , xm be k-independent with k ≥ 2
and x such that x, x1, . . . , xm is k′-independent with k ≥ k′ >
1. Then x⊗n, x⊗n

1 , . . . , x⊗n
m is min(m+1, (n−1)(k−1)+k′)-

independent.
To prove Theorem 4.1 we will use the following slight
adaptation of Kruskal’s Theorem.

Theorem 6.1 (Hilbert space extension of [40]): Let
x1, . . . , xr, y1, . . . , yr, and z1, . . . , zr be elements of three
Hilbert spaces Hx,Hy,Hz such that x1, . . . , xr are rx-
independent with ry, rz defined similarly. Further suppose that
rx + ry + rz ≥ 2r + 2. If a1, . . . , al ∈ Hx, b1, . . . , bl ∈ Hy ,
and c1, . . . , cl ∈ Hz with r ≥ l such that

r∑
i=1

xi ⊗ yi ⊗ zi =

l∑
j=1

aj ⊗ bj ⊗ cj ,

then l = r and there exists a permutation σ : [r] → [r] and
Dx, Dy, Dz ∈ Rr such that aσ(i) = xiDx,i, bσ(i) = yiDy,i,
and cσ(i) = ziDz,i with Dx,iDy,iDz,i = 1 for all i.
The following three lemmas allow us to embed general mea-
sures in Hilbert spaces and will allow us to use tools from
Hilbert space theory [33].

Lemma 6.4 (Lemma 6.2 from [65]): Let γ1, . . . , γn be
finite measures on a measurable space (Ψ,G). There exists
a finite measure π and nonnegative functions f1, . . . , fn ∈
L1 (Ψ,G, π) ∩ L2 (Ψ,G, π) such that, for all i and all B ∈ G

γi(B) =

∫
B

fidπ.
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The last lemma will be used in particular to embed collections
of probability measures in a joint measure space as pdfs.

Lemma 6.5 (Lemma 6.3 from [65]): Let (Ψ,G) be a mea-
surable space, γ and π a pair of finite measures on that space,
and f a nonnegative function in L1 (Ψ,G, π) such that, for all
A ∈ G, γ (A) =

∫
A
fdπ. Then for all n, for all B ∈ G×n we

have

γ×n (B) =

∫
B

f×ndπ×n.

Lemma 6.6 (Lemma 5.2 from [65]): Let (Ψ,G, γ) be
a measure space. There exists a unitary transform U :
L2 (Ψ,G, γ)⊗n → L2 (Ψ×n,G×n, γ×n) such that, for all
f1, . . . , fn ∈ L2 (Ψ,G, γ),

U (f1 ⊗ · · · ⊗ fn) = f1(·) · · · fn(·).

Finally we remind the reader of the following standard result
from real analysis.

Lemma 6.7 (Proposition 2.23 from [26]): Let (Ψ,G, γ) be a
measure space and f, g ∈ L1 (Ψ,G, γ). Then f = g γ-almost
everywhere iff, for all A ∈ G,

∫
A
fdγ =

∫
A
gdγ.

For the rest of the paper we will leave the “almost everywhere”
qualifier implicit. We can now prove the main theorems in
Section IV.

Proof of Theorem 4.1: Let Q =
∑l

i=1 biδνi
be a mixture

of measures with l ≤ m, such that Vn(P) = Vn(Q). From this
we have that

m∑
i=1

aiµ
×n
i =

l∑
j=1

bjν
×n
j .

From Lemma 6.4 there exists a measure ξ and nonnegative
functions p1, . . . , pm, q1, . . . , ql ∈ L1(ξ) ∩ L2(ξ), such that,
for all measurable A and i, µi(A) =

∫
A
pidξ and νi(A) =∫

A
qidξ. From Lemmas 6.5 and 6.7 we have that

m∑
i=1

aip
×n
i =

l∑
j=1

bjq
×n
j ,

and from Lemma 6.6 we have

m∑
i=1

aip
⊗n
i =

l∑
j=1

bjq
⊗n
j . (4)

From the theorem hypothesis we know that m ≥ 2, and
trivially k ≤ m, so we have the following

2m− 1 ≤ (k − 1)n

⇒ 2m− 1 ≤ (m− 1)n

⇒ 2m− 1

m− 1
≤ n

⇒ 2 < n

⇒ 3 ≤ n.

Because n ≥ 3 it is always possible to decompose n = n1 +
n2 + n3 where ni are all positive integers.

We will now prove the following claim which we will
denote “†”: if the sequences p⊗ni

1 , . . . , p⊗ni
m (for all i ∈ [3])

are ki-independent respectively and k1 + k2 + k3 ≥ 2m + 2
then the theorem conclusion follows. From (4) we have that

m∑
i=1

aip
⊗n1
i ⊗ p⊗n2

i ⊗ p⊗n3
i =

l∑
j=1

bjq
⊗n1
j ⊗ q⊗n2

j ⊗ q⊗n3
j .

From Theorem 6.1 we have that l = m, there exists
D1, D2, D3 ∈ Rm, and a permutation σ : [m] → [m], such
that, for all i

bσ(i)q
⊗n1

σ(i) = aip
⊗n1
i D1,i

q⊗n2

σ(i) = p⊗n2
i D2,i (5)

q⊗n3

σ(i) = p⊗n3
i D3,i

where D1,iD2,iD3,i = 1 for all i. Applying Lemma 6.6 to (5)
we have that, for all i∫

q×n2

σ(i) dξ
×n2 =

∫
D2,ip

×n2
i dξ×n2 ⇒ 1 = D2,i.

So D2 is a vector of ones and so is D3 by the same argument.
We have that D1 is also a vector of ones since D1,iD2,iD3,i =
1 for all i. Thus we have that pi = qσ(i) for all i. Assuming
that σ is the identity mapping it follows that ai = bi and we
have shown †.

Now that † has been demonstrated, to finish the proof we
will show that we can decompose n = n1+n2+n3 such that
p⊗ni
1 , . . . , p⊗ni

m are ki-independent for each i with k1 + k2 +
k3 ≥ 2m+2 which will finish our proof. To continue we will
split into the cases where n mod 3 is 0, 1, or 2.
Case 0: We have that n = 3n′ for some positive integer n′

and we can let n1 = n2 = n3 = n′. Now we can reformulate
our Hilbert space embedding:

m∑
i=1

aip
⊗n
i =

m∑
i=1

aip
⊗n′

i ⊗ p⊗n′

i ⊗ p⊗n′

i .

From Lemma 6.2 we know that the tensors
p⊗n′

1 , . . . , p⊗n′

m are min ((k − 1)n′ + 1,m)-independent.
If min ((k − 1)n′ + 1,m) is m then it follows that
k1 + k2 + k3 = 3m ≥ 2m + 2 since m ≥ 2. If
min ((k − 1)n′ + 1,m) = (k − 1)n′ + 1 then we have
that k1 + k2 + k3 = 3(k− 1)n′ +3 = (k− 1)n+3 ≥ 2m+2
by the theorem hypothesis (k − 1)n ≥ 2m− 1.
Case 1: Here we have that n = 3n′ + 1 and we let
n1 = n2 = n′ and n3 = n′ + 1, so

m∑
i=1

aip
⊗n
i =

m∑
i=1

aip
⊗n′

i ⊗ p⊗n′

i ⊗ p⊗n′+1
i .

From Lemma 6.2 we have that k1 = k2 = min(m, (k−1)n′+
1) and k3 = min(m, (k − 1)(n′ + 1) + 1). If we have that
min(m, (k− 1)n′ +1) = m then it follows that min(m, (k−
1)(n′ + 1) + 1) = m and k1 + k2 + k3 = 3m ≥ 2m+ 2.

If we have that min(m, (k− 1)n′ +1) = (k− 1)n′ +1 and
min(m, (k − 1)(n′ + 1) + 1) = (k − 1)(n′ + 1) + 1 then we
have that

k1 + k2 + k3 = 2((k − 1)n′ + 1) + (k − 1)(n′ + 1) + 1

= (3n′ + 1)(k − 1) + 3

= n(k − 1) + 3

≥ 2m+ 2,
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by the theorem hypothesis.
Lastly, if we have that min(m, (k−1)n′+1) = (k−1)n′+1

and min(m, (k− 1)(n′+1)+1) = m with m < (k− 1)(n′+
1)+1 (for equality see the above min(m, (k−1)(n′+1)+1) =
(k − 1)(n′ + 1) + 1 case) then we have that

m < (k − 1)(n′ + 1) + 1

⇒ m < (k − 1)2n′ + 1

⇒ m ≤ (k − 1)2n′

⇒ 2m+ 2 ≤ 2((k − 1)n′ + 1) +m = k1 + k2 + k3,

where the second inequality follows because n′ ≥ 1 and the
third inequality follows because both sides of the inequality
are integers.
Case 2: We have that n = 3n′ + 2, so let n1 = n′ and
n2 = n3 = n′ + 1. Now we have that

m∑
i=1

aip
⊗n
i =

m∑
i=1

aip
⊗n′

i ⊗ p⊗n′+1
i ⊗ p⊗n′+1

i .

If min(m, (k− 1)n′+1) = min(m, (k− 1)(n′+1)+1) = m
and thus m = k1 = k2 = k3, we have that k1 + k2 + k3 ≥
2m + 2 as in the previous cases. If we have that k2 = k3 =
min(m, (k−1)(n′+1)+1) = (k−1)(n′+1)+1 then it also
follows that k1 = min(m, (k− 1)n′ +1) = (k− 1)n′ +1 and

k1+k2+k3 = (k−1)(3n′+2)+3 = n(k−1)+3 ≥ 2m+2.

Now if we have that k2 = k3 = m and k1 = (k − 1)n′ + 1
then k1 + k2 + k3 = 2m+ (k− 1)n′ +1 and since k ≥ 2 and
n′ ≥ 1 we have that k1 + k2 + k3 ≥ 2m+ 2 so we are done,
and with this final case have finished the proof.

Proof Sketch of Theorems 4.3 and 4.4: Theorem 4.2
in [65] states that, for all m ≥ 2, there exists a mixture of
measures P =

∑m
i=1 aiδµi

which is not 2m − 2-identifiable.
Therefore there exists a mixture of measures Q =

∑l
i=1 biδνi

with P ≠ Q, and l ≤ m such that
m∑
i=1

aiµ
×2m−2
i =

l∑
j=1

bjν
×2m−2
j .

Since (k−1)n ≤ 2m−2 we have that either (k−1)n = 2m−2
or, if (k− 1)n < 2m− 2 we can apply Lemma 2.2, giving us

m∑
i=1

aiµ
×(k−1)n
i =

l∑
j=1

bjν
×(k−1)n
j .

Since any pair of distinct probability measures are lin-
early independent, it follows that any collection of proba-
bility measures are 2-independent. Using this fact we can
can adapt Lemma 6.2 to show that µ×k−1

1 , . . . , µ×k−1
m are

k-independent. Letting P ′ =
∑m

i=1 aiδµ×k−1
i

and Q′ =∑l
i=1 biδν×k−1

i
, we have that Vn(P ′) = Vn(Q′) and we are

done. The proof of Theorem 4.4 is virtually identical and
follows from [65] Theorem 4.4.

Proof of Theorem 4.2: If n = 2 then

2m− 2 ≤ (k − 1) (n− 1)

⇒ 2m− 1 ≤ k ≤ m (noting k ≤ m)
⇒ m ≤ 1

⇒ m = 1.

Since the theorem hypothesis assumes m ≥ 2 we have that
the theorem is vacuously true for the n = 2 case3. To finish
the proof we will show that theorem holds for n = 4 and then
proceed by induction.
Base Step: Let n = 4. We will proceed by contradiction and
assume there exists k ≥ 2 and a collection of k-independent
probability measures µ1, . . . , µm such that there exists a
mixture of measures P =

∑m
i=1 aiδµi

and Q =
∑l

i=1 biδνi

a mixture of measures where P ̸= Q and V4(P) = V4(Q).
From the theorem hypothesis that m ≥ 2 it follows that k ≥ 2
and k−2 ≥ 0. Applying this bound to our theorem hypothesis
with n = 4 we have that

2m− 2 ≤ (k − 1)3

⇒ 2m− 1 ≤ 3k − 2

≤ 3k − 2 + (k − 2)

= 4k − 4

= (k − 1)4

= (k − 1)n.

Since we have that 2m−1 ≤ (k−1)n we can apply Theorem
4.1 and thus l > m. We will proceed analogously to the proof
of Theorem 4.1 and embed the measures in a Hilbert space as
before

m∑
i=1

aip
⊗4
i =

l∑
j=1

bjq
⊗4
j . (6)

Because l > m there exists i such that qi ̸= pj for all j. We
will assume without loss of generality that q1 satisfies this.
Let k′ be the largest value such that q1, p1, . . . , pm are k′-
independent. We will now show that that k′ < k. To see this
suppose that k′ ≥ k which would imply that q1, p1, . . . , pm
are k-independent. Observe that m > 2 (thus m ≥ 3, we use
this at (7)). Were this not the case then the components of
P , µ1 and µ2, would be linearly independent and P would
be 4-determined from Table I row 4, thereby violating the
contradiction hypothesis. With the base case n = 4 in our
theorem hypothesis, and the fact that k and m are positive
integers, we get

2m− 2 ≤ 3(k − 1) ⇒ 2m ≤ 3k − 1

⇒ 4

3
m ≤ 2k − 2

3

⇒ m ≤ 2k − 2

3
− 1

3
m

⇒ m ≤ 2k − 2

3
− 1 (m ≥ 3) (7)

⇒ m ≤ 2k − 2 (m is an integer)
⇒ m+ 1 ≤ 2(k − 1) + 1. (8)

From application of Lemma 6.2 it follows that
q⊗2
1 , p⊗2

1 , . . . , p⊗2
m are min(2(k − 1) + 1,m+ 1)-independent

and from (8) it follows that they are linearly independent.

3It’s worth noting that one does indeed have determinedness for n = 2 and
m = 1 from Table I row 2.
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Now we have that there exists z such that z ⊥ p⊗2
i for all i

but
〈
z, q⊗2

1

〉
= 1 and thus

0 =

〈
z⊗2,

m∑
i=1

aip
⊗4
i

〉

=

〈
z⊗2,

l∑
j=1

bjq
⊗4
j

〉
=

l∑
j=1

bj
〈
z, q⊗2

j

〉2
> 0, (9)

a contradiction. So k′ < k.

Because k′ < k there must exist a collection of k′ el-
ements of p1, . . . , pm, which we denote pi1 , . . . , pik′ , such
that q1, pi1 , . . . , pik′ are linearly dependent; for convenience
we will assume without loss of generality that these elements
are p1, . . . , pk′ . Because p1, . . . , pk′ are linearly independent
but q1, p1, . . . , pk′ are linearly dependent we have that q1 =∑k′

i=1 αipi for some α1, . . . , αk′ .

We will now show that k′ ≥ 2k−m+1. Suppose this were
not the case and k′ ≤ 2k−m or equivalently m ≤ 2k−k′. By
k-independence there exists a vector z such that ⟨z, pk′⟩ = 1
with z ⊥ p1, . . . , pk′−1, pk′+1, . . . , pk and another vector z′

such that ⟨z′, p1⟩ = 1 and z′ ⊥ p2, . . . , pk′ , pk+1, . . . , pm.
We know z′ exists since k′ ≤ 2k − m so the cardinality of
p2, . . . , pk′ , pk+1, . . . , pm satisfies the following

|{2, . . . , k′}|+ |{k + 1, . . . ,m}| = k′ − 1 +m− k

≤ 2k −m− 1 +m− k

= k − 1.

Now we have that

〈
z⊗2 ⊗ z′⊗2,

m∑
i=1

aip
⊗4
i

〉

=

m∑
i=1

ai ⟨z, pi⟩2 ⟨z′, pi⟩
2

=
∑

i∈{1,...,k′−1,k′+1,...,k}

ai ⟨z, pi⟩2 ⟨z′, pi⟩
2

+
∑

i∈{k′,k+1,...,m}

ai ⟨z, pi⟩2 ⟨z′, pi⟩
2

=
∑

i∈{1,...,k′−1,k′+1,...,k}

ai0 ⟨z′, pi⟩
2

+
∑

i∈{k′,k+1,...,m}

ai ⟨z, pi⟩2 0

= 0.

On the other hand we have that

〈
z⊗2 ⊗ z′⊗2,

l∑
i=1

biq
⊗4
i

〉

=

l∑
i=1

bi ⟨z, qi⟩2 ⟨z′, qi⟩
2

≥ b1 ⟨z, q1⟩2 ⟨z′, q1⟩
2

= b1

〈
z,

k′∑
i=1

αipi

〉2〈
z′,

k′∑
i=1

αipi

〉2

= b1

 k′∑
i=1

αi ⟨z, pi⟩

2 k′∑
i=1

αi ⟨z′, pi⟩

2

= b1α
2
k′α2

1 > 0

which contradicts (6). Thus we have that k′ ≥ 2k −m+ 1.

We are now going to show that q⊗2
1 , p⊗2

1 , . . . , p⊗2
m are

linearly independent via Lemma 6.3. To do this we will show
that (2− 1)(k− 1)+ k′ ≥ m+1. Using k′ ≥ 2k−m+1 we
have that

2m− 2 ≤ (4− 1)(k − 1) (base case hypothesis, n = 4)
⇒ 2m ≤ 3k − 1

⇒ m+ 1 ≤ 3k −m

⇒ m+ 1 ≤ (k − 1) + (2k −m+ 1)

⇒ m+ 1 ≤ (k − 1) + k′.

Since q⊗2
1 , p⊗2

1 , . . . , p⊗2
m are linearly independent we can finish

our contradiction using the same argument as in (9).
Induction Step: We will now proceed by induction along n
in an increment of 2 since the theorem statement holds for
even-valued n. For our inductive hypothesis assume that for
even valued n ≥ 4 and all k,m with 2m−2 ≤ (n−1)(k−1)
that any mixture of measures with m components which are
k-independent are n-determined. Consider some mixture of
measures P =

∑m′

i=1 aiδµi
with k-independent components

and 2m′ − 2 ≤ (k − 1)((n + 2) − 1). If k = m′ then we
have that the components are linearly independent so it is
(n+2)-determined by Lemma 2.1 and Table I row four. Now
suppose that m′ > k. Let Q be a mixture of measures with
l components such that Vn+2(P) = Vn+2(Q). Embedding
Vn+2 (P) and Vn+2 (Q) as before we have that

m′∑
i=1

aip
⊗n+2
i =

l∑
j=1

bjq
⊗n+2
j .

By k-independence there exists z such that ⟨z, p1⟩ ̸= 0 and
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z ⊥ pm′−(k−1)+1, . . . , pm′ . Now we have that

m′∑
i=1

aip
⊗n+2
i =

l∑
j=1

bjq
⊗n+2
j

⇒
m′∑
i=1

aip
⊗n
i

〈
p⊗2
i , ·

〉
=

l∑
j=1

bjq
⊗n
j

〈
q⊗2
j , ·

〉
(10)

⇒
m′∑
i=1

aip
⊗n
i

〈
p⊗2
i , z⊗2

〉
=

l∑
j=1

bjq
⊗n
j

〈
q⊗2
j , z⊗2

〉
⇒

m′−(k−1)∑
i=1

aip
⊗n
i ⟨pi, z⟩2 =

l∑
j=1

bjq
⊗n
j ⟨qj , z⟩2 .

The implication (10) follows from the equivalence between
tensor products and Hilbert-Schmidt operators (see [33]
Proposition 2.6.9). Let λ =

∑m′−(k−1)
i=1 ai ⟨pi, z⟩2, a′i =

ai ⟨pi, z⟩2 /λ, and b′i = bi ⟨qi, z⟩2 /λ. Without loss of general-
ity we will assume that ⟨qi, z⟩ ≠ 0 for i ∈ [l′] and ⟨qi, z⟩ = 0
for i > l′, with l′ potentially equaling l. Note that a′i ≥ 0 and∑m′−(k−1)

i=1 a′i = 1 and likewise for b′i, since the right hand
side of (11) is a convex combination of pdfs that itself must
be equal to a pdf. So now we have

m′−(k−1)∑
i=1

a′ip
⊗n
i =

l′∑
j=1

b′jq
⊗n
j . (11)

Note that

2m′ − 2 ≤ (k − 1)((n+ 2)− 1)

⇒ 2(m′ − 1) ≤ 2(k − 1) + (k − 1)(n− 1)

⇒ 2(m′ − (k − 1))− 2 ≤ (k − 1)(n− 1)

so by the induction hypothesis we have that the mixture of
measures

∑m′−(k−1)
i=1 a′iδµi

is n-determined4. It follows that∑m′−(k−1)
i=1 a′iδµi

=
∑l′

j=1 b
′
jδνj

. Without loss of generality
we will assume that µ1 = ν1 and a′1 = b′1. It follows that
p1 = q1 and thus a1 = b1. By the same argument it follows
that νi = µi and ai = bi for all i and, because

∑m′

i=1 bi = 1,
that m′ = l and thus P = Q and P is n+2-determined, which
finishes our proof.

VII. CONCLUSION

In this paper we have generalized previous bounds on
identifiability for nonparametric mixture models with grouped
samples. Per Proposition 5.1 these bounds likely better capture
the typical behavior of most grouped sample settings, espe-
cially when the sample space is finite. These bounds also
offer a useful guideline on how to reduce a sample space
while still preserving mixture components, for example in
topic modeling.

4There is a somewhat suble point here that two measures are equal if they
admit the same measure. So even though some components in the mixture of
measures

∑m′−(k−1)
i=1 a′iδµi may have a zero coefficient, it is still a mixture

of measures in the sense that was described in Section II-A, although it may
have fewer than m′ − (k − 1) mixture components.

APPENDIX
PROOFS

Proof of Lemma 6.1: For the forward direction, since
x1, . . . , xm are linearly independent we can find the associated
z1, . . . , zm from the Gram-Schmidt process. We prove the
other direction by contradiction: suppose x1, . . . , xm are not
linearly independent but there exist z1, . . . , zm satisfying the
property in the lemma statement. From this it follows (without
loss of generality) that x1 =

∑m
i=2 αixi. We also know that

there exists z1 such that ⟨x1, z1⟩ = 1 but ⟨xi, z1⟩ = 0 for all
i ≥ 2. Then we have that

1 = ⟨x1, z1⟩ =

〈
m∑
i=2

αixi, z1

〉
=

m∑
i=2

αi ⟨xi, z1⟩ = 0,

a contradiction.
Proof of Lemma 6.3: We first prove the case where m+

1 = (n−1)(k−1)+k′ or equivalently m = (n−1)(k−1)+
(k′ − 1). We will use Lemma 6.1 to demonstrate the linear
independence of x, x1, . . . , xm. First we will show that there
exists a tensor which is perpendicular to x⊗n and all but one of
the vectors in x⊗n

1 , . . . , x⊗n
m . To do this we relabel x1, . . . , xm

to xi,j for (i, j) ∈ [n−1]× [k−1] and x′
1, . . . , x

′
k′−1. From k-

independence we can find z1, . . . , zn−1 such that ⟨zi, xi,j⟩ = 0
for all i, j and ⟨zi, x′

1⟩ = 1. Likewise, from k′-independence
there exists z such that ⟨z, x′

1⟩ = 1, ⟨z, x′
i⟩ = 0 for all 2 ≤

i ≤ k′ − 1, and ⟨z, x⟩ = 0. Now we have that〈
x′⊗n

1 , z ⊗
n−1∏
i=1

zi

〉
= ⟨x′

1, z⟩
n−1∏
i=1

⟨x′
1, zi⟩ = 1〈

x′⊗n
i , z ⊗

n−1∏
j=1

zj

〉
= ⟨x′

i, z⟩
n−1∏
j=1

⟨x′
i, zj⟩ = 0 ∀i ≥ 2〈

x⊗n
i,j , z ⊗

n−1∏
l=1

zl

〉
= ⟨xi,j , z⟩

n−1∏
i=1

⟨xi,j , zl⟩ = 0 ∀(i, j)〈
x⊗n, z ⊗

n−1∏
i=1

zi

〉
= ⟨x, z⟩

n−1∏
i=1

⟨x, zi⟩ = 0.

Because x′
1 was arbitrary due to relabeling, there exist tensors

z1, . . . , zm such that
〈
x⊗n
i , zi

〉
= 1 for all i,

〈
x⊗n
j , zi

〉
= 0

for all j ̸= i, and ⟨x⊗n, zi⟩ = 0 for all i.
We will now find a tensor which is perpendicular to all

x⊗n
1 , . . . , x⊗n

m but is not perpendicular to x⊗n, which will
complete our proof of the m+ 1 = (n− 1)(k− 1) + k′ case.
If x⊗n−1 /∈ span

({
x⊗n−1
1 , . . . , x⊗n−1

(n−1)(k−1)+1

})
then there

exists a vector z such that
〈
x⊗n−1, z

〉
= 1 and

〈
x⊗n−1
i , z

〉
=

0 for all i ∈ [(n − 1)(k − 1) + 1]. By k′-independence there
exists a vector z such that ⟨x, z⟩ = 1 and ⟨xj , z⟩ = 0 for
all j ∈ {(n− 1)(k − 1) + 1, . . . , (n− 1)(k − 1) + k′ − 1}.
From this it follows that ⟨x⊗n, z⊗ z⟩ = 1 but

〈
x⊗n
i , z⊗ z

〉
=

0 for all i.
Now we will assume that x⊗n−1 is an element

of span
({

x⊗n−1
1 , . . . , x⊗n−1

(n−1)(k−1)+1

})
. Note that

x⊗n−1
1 , . . . , x⊗n−1

(n−1)(k−1)+1 are linearly independent by
Lemma 6.2. From this it follows that there exists exactly
one linear combination of x⊗n−1

1 , . . . , x⊗n−1
(n−1)(k−1)+1 which
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is equal to x⊗n−1. We assume without loss of generality
that x⊗n−1

(n−1)(k−1)+1 has a nonzero coefficient in that
solution. Now have that x⊗n−1, x⊗n−1

1 , . . . , x⊗n−1
(n−1)(k−1)

are linearly independent. From this there exists z such
that

〈
z, x⊗n−1

i

〉
= 0 for all i ∈ [(n − 1)(k − 1)] but〈

z, x⊗n−1
〉
= 1. By k′-independence there exists z such that

z ⊥ x(n−1)(k−1)+1, . . . , x(n−1)(k−1)+(k′−1) but ⟨z, x⟩ = 1.
We now have that z⊗z ⊥ x⊗n

i for all i and ⟨z ⊗ z, x⊗n⟩ = 1
which finishes the m+ 1 = (n− 1)(k − 1) + k′ case.

We will now take care of the other cases for the values of
m. If m + 1 < (n − 1)(k − 1) + k′ then x⊗n, x⊗n

1 , . . . , x⊗n
m

are linearly independent by the same argument made in the
m+ 1 = (n− 1)(k − 1) + k′ case so x⊗n, x⊗n

1 , . . . , x⊗n
m are

m+ 1-independent.
If m + 1 > (n − 1)(k − 1) + k′ we would like to

show that any subsequence of x⊗n, x⊗n
1 , . . . , x⊗n

m containing
(n−1)(k−1)+k′ vectors is linearly independent. We consider
two cases, where a subsequence contains x⊗n or it does
not. If it does then x⊗n, x⊗n

i1
, . . . , x⊗n

i(n−1)(k−1)+k′−1
is linearly

independent from the m + 1 = (n − 1)(k − 1) + k′ case
and replacing x⊗n with x⊗n

i(n−1)(k−1)+k′ leaves this sequence
linearly independent since k ≥ k′ so x⊗n, x⊗n

1 , . . . , x⊗n
m is

((n−1)(k−1)+k′)-independent, thus finishing the proof.
Proof of Theorem 6.1: Note that two Hilbert spaces

with the same finite dimension are isometric to one another.
Suppose that a1, . . . , al, b1, . . . , bl and c1, . . . , cl with m ≤ l
such that

r∑
i=1

xi ⊗ yi ⊗ zi =

l∑
j=1

aj ⊗ bj ⊗ cj .

Let Hx = span ({x1, . . . , xr, a1, . . . al}) with Hy and Hz

defined similarly. Because these spaces are finite dimensional
the theorem follows from direct application of Kruskal’s
Theorem, see the following.

Definition A.1: A matrix M has Kruskal rank k if every
collection of k columns of M are linearly independent.
The following theorem is a statement Kruskal’s Theorem [40]
adapted from [51].

Theorem A.1 (Kruskal’s Theorem): For a matrix M let
Mi be its ith column vector. Let A,B,C be matrices of
dimensions dA×r, dB×r, and dC×r respectively with Kruskal
rank kA, kB , kC respectively and let kA + kB + kC ≥ 2r+2.
Let F,G,H be matrices with dimensions dA×s, dB×s, dC×s
with s ≤ r and

r∑
i=1

Ai ⊗Bi ⊗ Ci =

s∑
j=1

Fj ⊗Gj ⊗Hj .

Then there exists a permutation matrix P and invertible
diagonal matrices DA, DB , DC such that DADBDC = Ir
such that

F = ADAP

G = BDBP

H = CDCP.

Proof of Proposition 5.1: Let Γ1, . . . ,Γd
iid∼ Ψ. We

will proceed by contradiction and assume that Γ1, . . . ,Γd are

linearly dependent with nonzero probability. It follows that
that Γ1 =

∑d
i=2 αiΓi for some α2, . . . , αd with nonzero

probability. Let 1d be the d-dimensional vector containing all
ones. Because Γ1, . . . ,Γd are all probability vectors it follows
that

1Td Γ1 = 1Td

d∑
i=2

αiΓi ⇒ 1 =

d∑
i=2

αi.

The probabilistic simplex lies in an affine subspace of dimen-
sion d−1 which we will call S. Because of this there exists an
affine operator f which is a bijection between S and a closed
subset of Rd−1 with f(x) = Mx + b for some matrix M
and vector b. Let Γ̃i = f(Γi). We have that Γ̃i ∼ Ψ

(
f−1(·)

)
is a measure on Rd−1 which is absolutely continuous wrt the
Lebesgue measure on Rd−1 and thus Γ̃1, . . . , Γ̃d lie in general
position with probability one (see [19] Section 4.5). Note that

Γ̃1 = MΓ1 + b = M

(
d∑

i=2

αiΓi

)
+

 d∑
j=2

αj

 b

=

d∑
i=2

αiMΓi + αib

=

d∑
i=2

αi (MΓi + b) =

d∑
i=2

αiΓ̃i.

Since Γ̃2, . . . , Γ̃d trivially lie in a (d− 2)-dimensional affine
subspace there exists a vector v ̸= 0d−1 and r such that
vT Γ̃i = r for i ≥ 2. Now we have that

vT
d∑

i=2

αiΓ̃i =

d∑
j=1

αir ⇒ vT Γ̃1 = r

and thus, with nonzero probability, Γ̃1, . . . , Γ̃d do not lie in
general position, a contradiction.

Proof of Theorem 4.3: From [65] Theorem 4.2, for all
m ≥ 2 there exists a mixture of measures P =

∑m
i=1 aiδµi

which is not 2m − 2-identifiable, thus there exists a mixture
of measures Q =

∑m′

i=1 biδνi
̸= P with m′ ≤ m and

m∑
i=1

aiµ
×2m−2
i =

m′∑
j=1

bjν
×2m−2
j .

Since (k−1)n ≤ 2m−2 we have that either (k−1)n = 2m−2
and it directly follows that

m∑
i=1

aiµ
×(k−1)n
i =

m′∑
j=1

bjν
×(k−1)n
j
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or that (k − 1)n < 2m− 2 and we have

m∑
i=1

aiµ
×2m−2
i =

m′∑
j=1

bjν
×2m−2
j

⇒
m∑
i=1

aiµ
×(k−1)n
i × µ

×2m−2−(k−1)n
i

=

m′∑
j=1

bjν
×(k−1)n
j × ν

×2m−2−(k−1)n
j

⇒
m∑
i=1

aiµ
×(k−1)n
i × µ

×2m−2−(k−1)n
i (Ω×2m−2−(k−1)n)

=

m′∑
j=1

bjν
×(k−1)n
j × ν

×2m−2−(k−1)n
j

(
Ω×2m−2−(k−1)n

)

⇒
m∑
i=1

aiµ
×(k−1)n
i =

m′∑
j=1

bjν
×(k−1)n
j .

If we let P ′ =
∑m

i=1 aiδµ×k−1
i

and Q′ =
∑m′

i=1 biδν×k−1
i

then
we have that Vn(P ′) = Vn(Q′). To finish the proof we will
show that µ×k−1

1 , . . . , µ×k−1
m are k-independent and we are

done. To do this we will proceed by contradiction, suppose
that they are not k-independent and there exists a nontrivial
linear combination of k elements in µ1, . . . , µm which is equal
to zero. We will assume µ1, . . . , µk without loss of generality
satisfy this, so

k∑
i=1

αiµ
×k−1
i = 0

and there exists i such that αi ̸= 0. Embedding these measures
as was done in the proof of Theorem 4.1 we have that

k∑
i=1

αip
⊗k−1
i = 0

but since any pair of distinct pi, pj are 2-independent, apply-
ing Lemma 6.2 gives us that p⊗k−1

1 , . . . , p⊗k−1
k are linearly

independent, a contradiction.
Proof of Theorem 4.4: From [65] Theorem 4.4, for all

m ≥ 1 there exists a mixture of measures P =
∑m

i=1 aiδµi

which is not 2m−1-determined. From here this proof proceeds
exactly as the proof of Theorem 4.3.
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[13] Stéphane Bonhomme, Koen Jochmans, and Jean-Marc Robin. Non-
parametric estimation of finite mixtures from repeated measurements.
Journal of the Royal Statistical Society Series B: Statistical Methodol-
ogy, 78(1):211–229, 2016.

[14] C. Bruni and G. Koch. Identifiability of continuous mixtures of unknown
Gaussian distributions. Ann. Probab., 13(4):1341–1357, 11 1985.

[15] Igor V Cadez, Padhraic Smyth, Edward Ip, and Heikki Mannila. Predic-
tive profiles for transaction data using finite mixture models. Technical
Report 01–67, Information and Computer Science Department, Univer-
sity of California, Irvine, Irvine, CA, 2001.

[16] Pierre Comon, Gene Golub, Lek-Heng Lim, and Bernard Mourrain.
Symmetric tensors and symmetric tensor rank. SIAM Journal on Matrix
Analysis and Applications, 30(3):1254–1279, 2008.

[17] I. R. Cruz-Medina, T. P. Hettmansperger, and H. Thomas. Semipara-
metric Mixture Models and Repeated Measures: The Multinomial Cut
Point Model. Journal of the Royal Statistical Society Series C: Applied
Statistics, 53(3):463–474, 06 2004.

[18] Chen Dan, Liu Leqi, Bryon Aragam, Pradeep K Ravikumar, and
Eric P Xing. The sample complexity of semi-supervised learning with
nonparametric mixture models. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.
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[48] Barnabás Póczos, Aarti Singh, Alessandro Rinaldo, and Larry A.
Wasserman. Distribution-free distribution regression. In AISTATS,
volume 31 of JMLR Proceedings, pages 507–515. JMLR.org, 2013.

[49] J. Portela. Clustering discrete data through the multinomial mix-
ture model. Communications in Statistics - Theory and Methods,
37(20):3250–3263, 2008.

[50] Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. Learning
mixtures of arbitrary distributions over large discrete domains. In Pro-
ceedings of the 5th Conference on Innovations in Theoretical Computer
Science, ITCS ’14, pages 207–224, New York, NY, USA, 2014. ACM.

[51] John A. Rhodes. A concise proof of kruskal’s theorem on tensor
decomposition. Linear Algebra and its Applications, 432:1818–1824,
2009.
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