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Multi-Access Distributed Computing

Federico Brunero and Petros Elia

Abstract

Coded distributed computing (CDC) is a new technique proposed with the purpose of decreasing

the intense data exchange required for parallelizing distributed computing systems. Under the famous

MapReduce paradigm, this coded approach has been shown to decrease this communication overhead by a

factor that is linearly proportional to the overall computation load during the mapping phase. Nevertheless,

it is widely accepted that this overhead remains a main bottleneck in distributed computing. To address this,

we take a new approach and we explore a new system model which, for the same aforementioned overall

computation load of the mapping phase, manages to provide astounding reductions of the communication

overhead and, perhaps counterintuitively, a substantial increase of the computational parallelization. In

particular, we propose multi-access distributed computing (MADC) as a novel generalization of the

original CDC model, where now mappers (nodes in charge of the map functions) and reducers (nodes in

charge of the reduce functions) are distinct computing nodes that are connected through a multi-access

network topology. Focusing on the MADC setting with combinatorial topology, which implies Λ mappers

and K reducers such that there is a unique reducer connected to any α mappers, we propose a novel

coded scheme and a novel information-theoretic converse, which jointly identify the optimal inter-reducer

communication load, as a function of the computation load, to within a constant gap of 1.5. Additionally,

a modified coded scheme and converse identify the optimal max-link communication load across all

existing links to within a gap of 4. The unparalleled coding gains reported here should not be simply

credited to having access to more mapped data, but rather to the powerful role of topology in effectively

aligning mapping outputs. This realization raises the open question of which multi-access network

topology guarantees the best possible performance in distributed computing.

Index Terms
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I. INTRODUCTION

With the development of large-scale machine learning algorithms and applications relying

heavily on large volumes of data, we are now experiencing an ever-growing need to distribute

large computations across multiple computing nodes. Different computing frameworks, such

as MapReduce [1] and Spark [2], have been proposed to address these needs, based on the

aforementioned simple yet powerful concept of distributing large-scale algorithms — to be

executed over a set of input data files — across multiple computing machines. Under the well-

known MapReduce framework, the overall process is typically split in three distinct phases,

starting with the map phase, the shuffle phase and then the reduce phase. During the map phase,

each computing node is assigned a subset of the input data files, and proceeds to apply to

each locally available file certain designated map functions. The outputs of such map functions,

referred to as intermediate values (IVs), are then exchanged among the computing nodes during

the shuffle phase, so that each computing node can retrieve any missing, required IVs it did not

compute locally. Finally, during the reduce phase, each computing node computes one (or more)

output functions depending on its assigned reduce functions, each of which takes as input the

IVs computed for each input file.

A. Coded Distributed Computing

Several studies have shown that the aforementioned distributed map-shuffle-reduce approach

comes with bottlenecks that may severely hinder the parallelization of computationally-intensive

operations. While some works [3], [4] focused on the impact of straggler nodes, other works

have pointed out that the total execution time of a distributed computing application is often

dominated by the shuffling process. For instance, the work in [5], having explored the behavior

of several algorithms on the Amazon EC2 cluster, revealed that the communication load in the

shuffle phase was in fact the dominant bottleneck in computing the above tasks in a distributed

manner. Similarly, the authors in [6] observed that, for the execution of a conventional TeraSort

application, more than 95 % of the overall execution time was spent for inter-node communication.

Motivated by this communication bottleneck in the shuffle phase, the authors in [6] introduced

coded distributed computing (CDC) as a novel framework that can yield lower communication

loads during data shuffling. This gain could be attributed to a careful and joint design of

the map and the shuffle phases. Approaching the distributed computing problem from an

information-theoretic perspective, the authors brought to light the interesting relationship between
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the computation load during the mapping phase, and the communication load of the shuffling

step. In particular, the work in [6] revealed that if the computation load of the mapping phase is

carefully increased by a factor r — which means that each input file is mapped on average by r

carefully chosen computing nodes — then the communication load can be reduced by the same

factor r by employing coding techniques during the shuffle phase1. Building on the coding-based

results in cache networks [7], [8], the work in [6] characterized the exact information-theoretic

tradeoff between this computation and communication loads under any map-shuffle-reduce scheme

with uniform mapping capabilities and uniform assignment of reduce functions.

Since its original information-theoretic inception in [6], coded distributed computing has

been explored with several variations. Such variations include heterogeneity aspects where, for

example, each computing node may be assigned different numbers of files to be mapped and

functions to be reduced. For such settings, novel schemes, based on hypercube and hypercuboid

geometric structures, were developed in [9], [10], which managed not only to compensate for the

heterogeneous nature of the considered scenarios, but to also exploit these asymmetries in order

to require a smaller number of input files2, compared to the initial scheme in [6]. Regarding this

problem of requiring a large number of input files, it is worth also mentioning the work in [11],

where the authors proposed a system model for distributed computing, where the required number

of input files was lowered dramatically under an assumption of a multi-rank wireless network.

Some additional works explored the scenario where the computing servers communicate with

each other through switch networks [12] or in the presence of a randomized connectivity [13],

whereas some other works further investigated distributed computing over wireless channels [14],

as well as explored the interesting scenario where each computing node might have limited

storage and computational resources [15], [16]. A comprehensive survey on CDC is nicely

presented in [17].

1This speedup factor r is often referred to as the coding gain, and it reflects the number of computing servers that simultaneously

benefit from a single transmission.
2It is worth noting here the importance of designing schemes that can work with a smaller number of input files. The coded

scheme in [6], albeit achieving the information-theoretic optimal, requires a number of input files that increases exponentially

with the number of computing nodes. This may entail some limitations when finite-sized data sets are considered. Finding

schemes with good performance and low file-number requirements is a research direction of significant importance.



4

12 13 14 23 24 34Reducers

Broadcast Channel

1 2 3 4Mappers

Fig. 1. Multi-access distributed computing problem with Λ = 4 mappers and K = 6 reducers, where each reducer is connected

exactly and uniquely to a subset of α = 2 map nodes.

B. Contributions

In this work, we propose the new multi-access distributed computing (MADC) model, which

can be considered as an extension of the original setting introduced in [6], and which entails

mappers (map nodes) being connected to various reducers (reduce nodes), and where these

mappers and reducers are now distinct entities3. As is common, mappers are in charge of mapping

subsets of the input files, whereas the reducers are in charge of collecting the IVs in order to

compute the reduce functions. We will here focus on the so-called combinatorial topology which

will define how the mappers are connected to the reducers. This is a widely studied topology

in other settings outside of distributed computing [20]–[22], and it will — as we will discover

later on — allow for stunning gains. Under such combinatorial topology, we consider Λ map

nodes and K ≥ Λ reduce nodes, where each map node maps a subset of the input files, where

each reduce node is connected to α map nodes, and where there is exactly one reducer for each

subset of α map nodes. Each reducer can retrieve intermediate values only from the mappers it is

connected to, whereas these same reducers can exchange via an error-free shared-link broadcast

channel the remaining required intermediate values. A simple schematic of the model is shown

in Fig. 1 for the case Λ = 4, α = 2 and K = 6.

As discussed before, the communication load in the shuffle phase can represent a significant

bottleneck of distributed computing. As a consequence, our objective is to minimize the volume

of data exchanged by the reducers over the common-bus link during the shuffle phase, as well as

3This choice is reasonable if we think of mappers as computing nodes that are specialized in evaluating the map functions,

and of reducers as computing nodes that are specialized in evaluating the reduce functions [18], [19].
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the communication load between the mappers and the reducers. We start our analysis by first

neglecting the communication cost between mappers and reducers, and we propose — for the

aforementioned MADC model with combinatorial topology — a novel coded scheme that allows

for efficient communication over the broadcast communication channel. For such setting, we also

provide an information-theoretic lower bound on the communication load, and we show this to be

within a constant multiplicative gap of 1.5 from the achievable communication load guaranteed

by the proposed coded scheme. We then proceed to also account for the download cost from

mappers to reducers. For such setting, our goal is to minimize the maximal (normalized) number

of bits across all links in the system. To this purpose, we introduce an additional mappers-to-

reducers communication scheme and a novel converse bound which, together with the previous

inter-reducer scheme, allow us to characterize the optimal max-link communication load within

a constant multiplicative gap of 4.

As suggested above, the newly derived fundamental limits suggest outstanding performance.

While for any given computation load r the original setting in [6] accepts a maximal coding

gain of r, we here show that the new MADC model with combinatorial topology allows for a

coding gain equal to
((
r+α
r

)
− 1
)
, again for the same mapping cost r. This we believe is the

first time that topology is shown to have such powerful impact in the setting of coded distributed

computing.

C. Paper Outline

The rest of the paper is organized as follows. First, the system model is presented in Section II.

Next, Section III provides the main contributions of the paper. An illustrative example of the

novel coded scheme for multi-access distributed computing is then described in Section IV. After

that, the general proofs of the achievable schemes and the converse bounds are presented from

Section V to Section VIII. Finally, Section IX concludes the paper. Some additional proofs are

provided in the appendices.

D. Notation

We denote by N the set of non-negative integers and by N+ the set of positive integers.

For n ∈ N+, we define [n] := {1, 2, . . . , n}. If a, b ∈ N+ such that a < b, then [a : b] :=

{a, a+ 1, . . . , b− 1, b}. For sets we use calligraphic symbols, whereas for vectors we use bold

symbols. Given a finite set A, we denote by |A| its cardinality. For n,m ∈ N+, we define
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[n]m := {A : A ⊆ [n], |A| = m}. We denote by
(
n
k

)
the binomial coefficient and we let

(
n
k

)
= 0

whenever n < 0, k < 0 or n < k. For n,m ∈ N+, we denote by Fn2m the n-dimensional vector

space over the finite field with cardinality 2m. For n ∈ N+, we denote by Sn the group of all

permutations of [n].

II. SYSTEM MODEL

The general distributed computing problem [6] consists of computing Q output functions from

N input files with Q,N ∈ N+. Each file wn ∈ F2F with n ∈ [N ] consists of F bits for some

F ∈ N+, and the q-th function is defined as

φq : FN2F → F2B (1)

for each q ∈ [Q], i.e., each function maps all the N input files into a stream uq = φq(w1, . . . , wN) ∈

F2B of B bits. The main assumption is that each function φq is decomposable and so can be

written as

φq(w1, . . . , wN) = hq(gq,1(w1), . . . , gq,N(wN)), ∀q ∈ [Q] (2)

where there is a map function gq,n : F2F → F2T for each n ∈ [N ], which maps the input file wn into

an intermediate value (IV) vq,n = gq,n(wn) ∈ F2T of T bits, and a reduce function hq : FN2T → F2B ,

which maps all the IVs (one per input file) into the output value uq = hq(vq,1, . . . , vq,N) ∈ F2B

of B bits.

In this paper, we assume to have machines that are devoted to computing map functions, and

machines that are devoted to computing reduce functions. Thus, a node assigned map functions

is not assigned reduce functions, and vice versa. In our setting, we consider Λ mappers and

K =
(

Λ
α

)
reducers, where — in accordance with the combinatorial topology of choice — there

is a unique reducer connected to each subset of α mappers. Denoting by U ∈ [Λ]α the reducer

connected to the α mappers in the set U , before the computation begins, each reducer U ∈ [Λ]α

is assigned a subset WU ⊆ [Q] of the output functions, where here WU contains the indices

of the functions assigned to reducer U . For simplicity, we assume in our setting a symmetric

and uniform task assignment, which implies |WU | = Q/K = η2 for some η2 ∈ N+ and for

each U ∈ [Λ]α, and WU1 ∩ WU2 = ∅ for all U1,U2 ∈ [Λ]α such that U1 6= U2. Afterwards,

the computation is performed across the set of mappers and reducers in a distributed manner

following the map-shuffle-reduce paradigm.
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TABLE I

IMPORTANT PARAMETERS FOR THE MADC SYSTEM WITH COMBINATORIAL TOPOLOGY

Number of Mappers Λ Number of Input Files N

Multi-Access Degree α Communication Load L

Number of Reducers K =
(

Λ
α

)
Download Cost J

Computation Load r Max-Link Load Lmax-link = max(L, J)

During the map phase, a set of filesMλ ⊆ {w1, . . . , wN} is assigned to the mapper λ for each

λ ∈ [Λ]. Each mapper λ ∈ [Λ] computes the intermediate values Vλ = {vq,n : q ∈ [Q], wn ∈Mλ}

for all the Q reduce functions using the files in Mλ which it has been assigned. Since reducer

U ∈ [Λ]α is connected to the mappers in U , it can access the intermediate values in the set

VU = {vq,n : q ∈ [Q], wn ∈ MU}, where MU =
⋃
λ∈UMλ is simply the union set of files

assigned to and mapped by the map nodes in U . When the communication cost between mappers

and reducers is not neglected, we can define the download cost as follows.

Definition 1 (Download Cost). The download cost, denoted by J , is defined as the maximal

normalized number of bits transmitted across the links from the mappers to the reducers, and is

given by

J := max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RUλ
QNT

(3)

where RUλ denotes the number of bits that are transmitted by mapper λ ∈ [Λ] to reducer U ∈ [Λ]α

where λ ∈ U .

Assuming that each mapper computes all possible IVs from locally available files4, we define

the computation load as follows.

Definition 2 (Computation Load). The computation load, denoted by r, is defined as the total

number of files mapped across the Λ map nodes and normalized by the total number of files N ,

and it takes the form

r :=

∑
λ∈[Λ] |Mλ|
N

. (4)

4This means that each mapper λ ∈ [Λ] computes the intermediate value vq,n for each q ∈ [Q] and for each wn ∈Mλ.
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Remark 1. We wish to point out that the definition of computation load above reflects the overall

mapping cost across the Λ map nodes. As it will become clear later, our novel system model

will allow for a massive computational amelioration (in the reduce phase) — with a bounded

communication overhead — at the cost of a modest mapping cost across the Λ mappers.

During the shuffle phase, each reducer U ∈ [Λ]α retrieves the IVs from the mappers in U and

creates a signal XU ∈ F2`U for some `U ∈ N+ and for some encoding function ψU : FQ|MU |
2T

→ F2`U ,

where XU takes the form

XU = ψU(VU). (5)

Then, the signal XU is multicasted to all other reducers via the broadcast link which connects

the reducers. Since such link is assumed to be error-free, each reducer receives all the multicast

transmissions without errors. The amount of information exchanged during this phase is referred

to as the communication load, which is formally defined in the following.

Definition 3 (Communication Load). The communication load, denoted by L, is defined as the

total number of bits transmitted by the K reducers over the broadcast channel during the shuffle

phase, and — after normalization by the number of bits of all intermediate values — this load is

given by

L :=

∑
U∈[Λ]α

`U

QNT
. (6)

Recalling that reducer U ∈ [Λ]α is assigned a subset of output functions whose indices are

in WU , each reducer U ∈ [Λ]α wishes to recover the IVs {vq,n : q ∈ WU , n ∈ [N ]} to correctly

compute uq for each q ∈ WU . Thus, during the reduce phase, each reducer U ∈ [Λ]α reconstructs

all the needed intermediate values for each q ∈ WU using the messages communicated in the

shuffle phase and the intermediate values VU retrieved from the mappers in U , i.e., each reducer

U ∈ [Λ]α computes

(vq,1, . . . , vq,N) = χqU(XS : S ∈ [Λ]α,VU) (7)

for each q ∈ WU and for some decoding function χqU :
∏
S∈[Λ]α

F2`S ×FQ|MU |
2T

→ FN2T . In the end,

each reducer U ∈ [Λ]α computes the output function uq = hq(vq,1, . . . , vq,N) for each assigned

q ∈ WU .

When the download cost is neglected, our goal is to characterize the optimal tradeoff between

computation and communication L?(r). This optimal tradeoff is simply defined as

L?(r) := inf{L : (r, L) is achievable} (8)
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where the tuple (r, L) is said to be achievable if there exists a map-shuffle-reduce procedure

such that a communication load L can be guaranteed for a given computation load r. On the

other hand, when we indeed jointly consider both the inter-reducer communication cost and the

mapper-to-reducer download cost, then our aim will be to characterize the optimal max-link

communication load L?max-link(r), which is defined as

L?max-link(r) := inf{Lmax-link : (r, Lmax-link) is achievable} (9)

where Lmax-link := max(L, J) represents the maximum between the communication load and the

download cost for a given computation load r. In simple words, Lmax-link represents the maximal

normalized number of bits flowing across any link in the considered system model. Notice that

we will assume, throughout the paper, uniform computational capabilities across the mappers

and uniform assignment of reduce functions across the reducers, as is commonly assumed (see

for example the original work in [6]).

Remark 2. When α = 1, there are K = Λ mapper-reducer pairs. If we consider each pair to be a

single computing server (which can automatically imply a zero download cost), the proposed

system model trivially coincides with the original setting in [6]. Hence, since the results in this

paper will hold for any α ∈ [Λ], the proposed model can in fact be considered as a proper

extension of the original coded distributed computing model.

III. MAIN RESULTS

In this section we will provide our main contributions. As we have already mentioned, we

will first consider a setting where the download cost is neglected. Subsequently, we will provide

some additional results for the more realistic scenario where the cost of delivering data from the

mappers to the reducers is non-zero.

A. Characterizing the Communication Load

The first result that we provide is the achievable computation-communication tradeoff provided

by the novel coded scheme that will be presented in its general form in Section V. The result is

formally stated in the following theorem.

Theorem 1 (Achievable Bound). Consider the MADC setting with combinatorial topology, where

there are Λ mappers and K =
(

Λ
α

)
reducers for a fixed value of α ∈ [Λ]. Then, the optimal
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communication load L?(r) is upper bounded by LUB(r) which is a piecewise linear curve with

corner points

(r, LUB(r)) =

(
r,

(
Λ−α
r

)(
Λ
r

) ((
r+α
r

)
− 1
)) , ∀r ∈ [Λ− α + 1]. (10)

Proof. The detailed proof of the scheme is reported in Section V, whereas an illustrative example

is instead described in Section IV.

As we already mentioned in Remark 2, if we set α = 1 and we consider each mapper-reducer

pair as a unique computing machine, we obtain the same system model in [6]. Interestingly, we

can see that, if we specialize the result in Theorem 1 to the case α = 1, we obtain the same

computation-communication tradeoff as in [6, Theorem 1].

Another noteworthy aspect is the following. If we fix the number of mappers Λ and the

computation load r, then adding more reducers by increasing5 the multi-access degree α will in

fact entail a smaller communication load. This (perhaps surprising) outcome is most certainly

not the result of each reducer requiring fewer intermediate values during the shuffle phase.

Such decrease could not have compensated for the increasing K. Instead, this decrease in the

communication load stems from the nature of the combinatorial topology, which allows each

reducer to more efficiently use its side information to cancel interference in an accelerated manner.

This is achieved because these reducers are connected to the mappers in a manner that effectively

aligns the interference patterns. As one can imagine, if we increase the number of reducers and

we properly connect each of them to multiple mappers, the achievable scheme in Theorem 1

outperforms the coded scheme in [6]. This is formally stated in the following corollary.

Corollary 1.1. For fixed computation load r, the achievable communication load in Theorem 1

decreases for increasing α, even though K — and so the corresponding speedup factor in

computing reduce functions — increases substantially.

Proof. The proof is described in Appendix A.

We proceed to construct an information-theoretic converse on the communication load of the

MADC setting. As it will be pointed out in the general proof in Section VI, the construction of

the converse takes inspiration from [10, Lemma 2] as well as from ideas in [21]. Essentially, the

5Notice that the number K =
(

Λ
α

)
of reducers is actually increased as far as α ≤ Λ/2. The scenario where α > Λ/2 is

unrealistic and is not considered here.
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bound here manages to merge the approach in [10, Lemma 2], where a converse bound is built

using key properties of the entropy function, with the index coding techniques in [21], where

the nodes of a side information graph are iteratively selected in a proper way to systematically

identify large acyclic subgraphs that are used to develop a tight converse. The result is formally

stated in the following.

Theorem 2 (Converse Bound). Consider the MADC setting with combinatorial topology, where

there are Λ mappers and K =
(

Λ
α

)
reducers for a fixed value of α ∈ [Λ]. Then, the optimal

communication load L?(r) is lower bounded by LLB(r) which is a piecewise linear curve with

corner points

(r, LLB(r)) =

(
r,

(
Λ
r+α

)(
Λ
α

)(
Λ
r

)) , ∀r ∈ [Λ− α + 1]. (11)

Proof. The proof is described in Section VI.

Finally, from the results in Theorem 1 and Theorem 2, we can provide an order optimality

guarantee for the MADC model. Indeed, comparing the achievable performance and the converse

bound, we conclude that the two are within a constant multiplicative gap. We see this in the

following theorem6.

Theorem 3 (Order Optimality). For the MADC system with combinatorial topology, Λ mappers

and K =
(

Λ
α

)
reducers for a fixed value of α ∈ [2 : Λ], the achievable performance in Theorem 1

is within a factor of at most 1.5 from the optimal.

Proof. The proof is described in Appendix B.

In Fig. 2 we can see a comparison between the original CDC framework and the proposed

MADC model. More specifically, for the first setting we consider Λ = 10 pairs of mappers

and reducers, where each pair λ ∈ [10] can be considered as a unique computing server having

its own subset Mλ of assigned files. For the second setting we consider Λ = 10 mappers and

K =
(

10
2

)
= 45 reducers, where there is a reducer connected to any α = 2 mappers. According to

Corollary 1.1, the achievable load in Theorem 1 decreases for increasing α and fixed computation

6Notice that the order optimality result in Theorem 3 excludes the value α = 1. Indeed, it can be verified that for such case the

achievable performance in Theorem 1 and the converse in Theorem 2 are within a factor of at most 2. However, we already know

that the coded scheme in [6] is exactly optimal when α = 1. Hence, such value is neglected when comparing the aforementioned

results.
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Fig. 2. Comparison between original CDC, where there are Λ = 10 pairs of mappers and reducers, and MADC with combinatorial

topology, Λ = 10 mappers and K = 45 reducers, where each of them is uniquely associated to α = 2 mappers.

load, as indicated by the diamond blue curve in Fig. 2 which is well below the dot black

counterpart corresponding to the original achievable scheme of coded distributed computing.

Notice that the comparison in Fig. 2 between the CDC setting with α = 1 and the MADC setting

with α > 1 is fair for what concerns the computation-communication tradeoff: indeed, not only

the computation load r remains the same as far as the number of mappers Λ stays the same, but

also the number of reducers that need to communicate with each other is much larger than Λ

when α > 1.

Remark 3. We point out that comparing a setting where α = 1 with a setting where α > 1 offers

noteworthy insights. Indeed, even though one could expect the communication load to be reduced

when α > 1 — as in such case each reducer accesses more than one mapper and consequently

misses less intermediate values — it is also true that the number of reducers itself increases

as α increases. Consequently, there is an undeniable tension between the higher multi-access

degree α > 1 for each reducer, which implies less data needed by each reducer, but also implies

a larger number of reducers in the system. For these reasons, it is interesting to notice how the

network topology plays a fundamental role in resolving such tension by appropriately shaping

the interference patterns. As a consequence, the communication load ultimately decreases as
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the number of reducers K =
(

Λ
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)
increases as far as each of them is properly connected to α

mappers.
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Fig. 3. Comparison between the coding gain for different values of α as a function of the computation load r. We recall that

α = 1 corresponds to the original CDC framework.

A further comparison is provided in Fig. 3 which focuses on the coding gains. As we can see,

the gains brought about by the multi-access setting are impressive even when the computation

load is small, which is the regime of interest in practical settings.

B. Characterizing the Max-Link Load

We now consider a distributed computing scenario where the download cost is not negligible. The

following describes the achievable max-link communication load that captures both communication

and download costs.

Theorem 4 (Achievable Bound). Consider the MADC setting with combinatorial topology, where

there are Λ mappers and K =
(

Λ
α

)
reducers for a fixed value of α ∈ [Λ]. Then, the optimal

max-link communication load L?max-link(r) is upper bounded by Lmax-link,UB(r) which is given by

Lmax-link,UB(r) = max

∑
j∈[Λ]

(
Λ−α
j

)
(

Λ
j

) ((
j+α
j

)
− 1
) ãj?
N
,
∑
j∈[Λ]

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) ãj?
N

 (12)
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where the vector ã? = (ã1
?, . . . , ã

Λ
? ) is the optimal solution to the linear program

min
ãM

1

2

∑
j∈[Λ]

( (
Λ
α+j

)(
Λ
α

)(
Λ
j

) +

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) )
ãjM
N

(13a)

subject to ãjM ≥ 0, ∀j ∈ [Λ] (13b)∑
j∈[Λ]

ãjM
N

= 1 (13c)

∑
j∈[Λ]

j
ãjM
N
≤ r (13d)

and where ãM = (ã1
M, . . . , ã

Λ
M) is the control variable.

Proof. The detailed proof of the scheme is reported in Section VII.

We proceed by proposing an information-theoretic converse on the max-link communication

load. The result is presented in the following theorem.

Theorem 5 (Converse Bound). Consider the MADC setting with combinatorial topology, where

there are Λ mappers and K =
(

Λ
α

)
reducers for a fixed value of α ∈ [Λ]. Then, the optimal

max-link communication load L?max-link(r) is lower bounded by Lmax-link,LB(r) which is given by

Lmax-link,LB(r) =
1

2

∑
j∈[Λ]

( (
Λ
α+j

)(
Λ
α

)(
Λ
j

) +

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) )
ãj?
N

(14)

where the vector ã? = (ã1
?, . . . , ã

Λ
? ) is the optimal solution to the linear program in (13).

Proof. The proof is described in Section VIII.

Finally, we can compare the results in Theorem 4 and Theorem 5 to establish the gap to

optimality of the achievable performance in Theorem 4. Notice that now we do not exclude the

value α = 1 for such comparison, since for such case there is no previously known optimality

result to the best of our knowledge.

Theorem 6 (Order Optimality). For the MADC system with combinatorial topology, Λ mappers

and K =
(

Λ
α

)
reducers for a fixed value of α ∈ [Λ], the achievable performance in Theorem 4 is

within a factor of at most 4 from the optimal.

Proof. The proof is described in Appendix C.
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Remark 4. Interestingly, the results in this section can also be derived — while keeping the

same constant factor of at most 4 from the optimal — for a weighted max-link load defined

as Lmax-link,β := max(L, βJ) for some β ≥ 0. Notice that such metric is of particular interest

whenever we want to account for a weighted download cost βJ , in which case the cost of

communicating data from mappers to reducers is proportional to the maximal number of

normalized bits flowing from any one mapper to any one reducer. The extreme case β = 0

corresponds to the communication load Lmax-link,0 = L characterized in Section III-A, whereas

the case β = 1 implies the max-link load Lmax-link,1 = Lmax-link investigated in the current section.

IV. ILLUSTRATIVE EXAMPLE OF THE CODED SCHEME

In this section, we propose an illustrative example of the coded scheme which will be later

presented in its general form in Section V. The example refers to the schematic in Fig. 1. Notice

that this section aims to provide an example for the achievable scheme in Theorem 1, consequently

the download cost will be neglected.

We consider Λ = 4 mappers and K =
(

Λ
α

)
= 6 reducers where α = 2. We assume to have

Q = 12 output functions to be computed across the ensemble of mappers and reducers, N = 8

input files {wn : n ∈ [8]} and computation load r = 1. Recalling that the computation load is

defined as the normalized number of files which are mapped across the Λ map nodes, having

computation load equal to r = 1 implies that the number of files mapped across all mappers is equal

to the size of the input data set, i.e., N files. Under the uniform function assignment assumption,

we assign Q/K = 2 output functions to each reducer7 U ∈ [4]2 = {12, 13, 14, 23, 24, 34}. Thus,

recalling that WU represents the indices of the reduce functions assigned to reducer U ∈ [4]2, we

arbitrarily let

W12 = {1, 2} (15)

W13 = {3, 4} (16)

W14 = {5, 6} (17)

W23 = {7, 8} (18)

W24 = {9, 10} (19)

7For the sake of simplicity, we will often omit braces and commas when indicating sets, e.g., the reducer {1, 2}, which is

connected to mappers 1 and 2, can be simply denoted as 12.
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W34 = {11, 12}. (20)

A. Map Phase

This phase requires the input files to be split among mappers and so we proceed by grouping

the N = 8 files into 4 batches Bλ for each λ ∈ [4] as

B1 = {w1, w2} (21)

B2 = {w3, w4} (22)

B3 = {w5, w6} (23)

B4 = {w7, w8}. (24)

Then, recalling that Mλ represents the set of files mapped by the mapper λ ∈ [Λ], we set here

Mλ = {BT1 : T1 ⊆ [4], |T1| = 1, λ ∈ T1} = {Bλ}.

Since each mapper is assigned 2 input files, we have that |Mλ| = |Bλ| = 2 for each λ ∈ [4].

Hence, we can check that such file assignment satisfies the computation load constraint r = 1,

as indeed we have ∑
λ∈[4] |Mλ|
N

=
|M1|+ |M2|+ |M3|+ |M4|

8
= 1. (25)

Each mapper computes Q = 12 intermediate values for each assigned input file. In particular,

recalling that Vλ is the set of IVs computed by the mapper λ ∈ [4], we have

V1 = {vq,n : q ∈ [12], wn ∈M1} (26)

V2 = {vq,n : q ∈ [12], wn ∈M2} (27)

V3 = {vq,n : q ∈ [12], wn ∈M3} (28)

V4 = {vq,n : q ∈ [12], wn ∈M4}. (29)

For example, since mapper 1 is assigned the files in M1 = {w1, w2}, it will compute the

intermediate values vq,1 and vq,2 for all q ∈ [12]. Then, mapper 2 will compute the intermediate

values vq,3 and vq,4 for all q ∈ [12] since M2 = {w3, w4}. Similarly, mapper 3 and mapper 4

will compute the intermediate values vq,5 and vq,6, and vq,7 and vq,8, respectively, for all q ∈ [12]

since M3 = {w5, w6} and M4 = {w7, w8}.
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Now, considering that there is a reducer connected to any α = 2 mappers, we know that each

reducer U ∈ [4]2 can retrieve the IVs computed by the 2 mappers in U . Recalling that VU denotes

the union set of IVs computed by the mappers in U , we have

V12 = {vq,n : q ∈ [12], wn ∈M12} (30)

V13 = {vq,n : q ∈ [12], wn ∈M13} (31)

V14 = {vq,n : q ∈ [12], wn ∈M14} (32)

V23 = {vq,n : q ∈ [12], wn ∈M23} (33)

V24 = {vq,n : q ∈ [12], wn ∈M24} (34)

V34 = {vq,n : q ∈ [12], wn ∈M34}. (35)

B. Shuffle Phase

We describe now how each reducer U ∈ [4]2 constructs its multicast message XU . Since the

procedure is the same for each reducer, we continue our example by focusing for simplicity on

reducer {1, 2} only.

First of all, we let S ⊆ ([4] \ {1, 2}) with |S| = 1. Then, for each R ⊆ (S ∪ {1, 2}) such that

|R| = 2 andR 6= {1, 2}, and for T1 = (S∪{1, 2})\R, reducer {1, 2} concatenates the intermediate

values {vq,n : q ∈ WR, wn ∈ BT1} into the symbol UWR,T1 = (vq,n : q ∈ WR, wn ∈ BT1). Notice

that having R 6= {1, 2} implies that T1 ∩ {1, 2} 6= ∅, so reducer {1, 2} can retrieve BT1 from the

mappers it is connected to and can construct the symbol UWR,T1 . Subsequently, such symbol is

evenly split as

UWR,T1 = (UWR,T1,T2 : T2 ⊆ (R∪ T1), |T2| = 2, T2 6= R) . (36)

This means that when, say, S = {3}, reducer {1, 2} creates the symbols

UW13,2 = (vq,n : q ∈ W13, wn ∈ B2) (37)

UW23,1 = (vq,n : q ∈ W23, wn ∈ B1) (38)

and when S = {4}, the same reducer {1, 2} creates the symbols

UW14,2 = (vq,n : q ∈ W14, wn ∈ B2) (39)

UW24,1 = (vq,n : q ∈ W24, wn ∈ B1). (40)
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Each of the symbols above is then evenly split in two segments as

UW13,2 = (UW13,2,12, UW13,2,23) (41)

UW23,1 = (UW23,1,12, UW23,1,13) (42)

UW14,2 = (UW14,2,12, UW14,2,24) (43)

UW24,1 = (UW24,1,12, UW24,1,14). (44)

Next, reducer {1, 2} constructs the coded message⊕
R⊆(S∪{1,2}):|R|=2,R6={1,2}

UWR,(S∪{1,2})\R,12 (45)

for each S ⊆ ([4] \ {1, 2}) with |S| = 1, and concatenates all of them to form X12, which is

given by

X12 =

 ⊕
R⊆(S∪{1,2}):|R|=2,R6={1,2}

UWR,(S∪{1,2})\R,12 : S ⊆ ([Λ] \ {1, 2}), |S| = 1

 (46)

= (UW13,2,12 ⊕ UW23,1,12, UW24,1,12 ⊕ UW14,2,12). (47)

Similarly, each other reducer prepares and multicasts its message following the procedure

described above. In the end, the following messages

X12 = (UW13,2,12 ⊕ UW23,1,12, UW24,1,12 ⊕ UW14,2,12) (48)

X13 = (UW12,3,13 ⊕ UW23,1,13, UW14,3,13 ⊕ UW34,1,13) (49)

X14 = (UW12,4,14 ⊕ UW24,1,14, UW13,4,14 ⊕ UW34,1,14) (50)

X23 = (UW12,3,23 ⊕ UW13,2,23, UW24,3,23 ⊕ UW34,2,23) (51)

X24 = (UW12,4,24 ⊕ UW14,2,24, UW23,4,24 ⊕ UW34,2,24) (52)

X34 = (UW13,4,34 ⊕ UW14,3,34, UW23,4,34 ⊕ UW24,3,34) (53)

are exchanged among the reducers on the common-bus link during the shuffle phase.

C. Reduce Phase

As when describing the shuffle phase, we can again focus on reducer {1, 2} and observe

how it correctly computes the reduce functions in W12 by using the set of multicast messages

{XU : U ∈ [4]2} and the set V12 of IVs which the reducer {1, 2} can access. Indeed, a similar

procedure can be shown for all other reducers.



19

First of all, reducer {1, 2} needs the IVs {vq,n : q ∈ W12, n ∈ [8]} to compute the reduce

functions inW12. Since such reducer has already access to the IVs in V12, it can obtain the symbols

UW12,1 and UW12,2. However, it misses the intermediate values {vq,n : q ∈ W12, wn /∈ M12}

or, similarly, it misses the symbols UW12,3 = (vq,n : q ∈ W12, wn ∈ B3) and UW12,4 = (vq,n :

q ∈ W12, wn ∈ B4). We see now how these symbols can be obtained from the set of multicast

messages.

During the shuffle procedure, each symbol is split in two even segments, so, consequently,

symbols UW12,3 and UW12,4 are split as

UW12,3 = (UW12,3,13, UW12,3,23) (54)

UW12,4 = (UW12,4,14, UW12,4,24). (55)

Now, reducer {1, 2} can decode UW12,3,13 from the message X13. Indeed, the term UW12,3,13 ⊕

UW23,1,13 appears in X13 and reducer {1, 2} can use the IVs in V12 to cancel the interference term

UW23,1,13. Similarly, the term UW12,3,23 ⊕ UW13,2,23 appears in X23, where again the interference

UW13,2,23 can be canceled by means of the IVs retrieved by the mappers 1 and 2. Hence, reducer

{1, 2} successfully decodes UW12,3,13 and UW12,3,23 from the multicasted messages X13 and X23,

reconstructing then the symbol UW12,3 = (UW12,3,13, UW12,3,23). A similar procedure holds for

reducer {1, 2} to successfully reconstruct the symbol UW12,4, whose two segments are decoded

from messages X14 and X24. Further, a similar procedure holds for any other reducer. Thus, we

can conclude that every reducer is able to compute the assigned reduce functions after recovering

the missing intermediate values from the messages multicasted by all reducers during the shuffle

phase.

D. Communication Load

Recalling that the communication load is defined as the total number of bits transmitted by

the K reducers during the shuffle phase (normalized by the number of bits of all intermediate

values), we wish to compute for this example this load, which takes the form

LUB(r = 1) =

∑
U∈[Λ]α

|XU |
QNT

=

∑
U∈[4]2

|XU |
96T

. (56)

Since |XU | is the same for each U ∈ [4]2, we focus again on reducer {1, 2} and its multicast

transmission X12 = (UW13,2,12 ⊕ UW23,1,12, UW24,1,12 ⊕ UW14,2,12), which contains two XOR

messages. Focusing on the first message UW13,2,12 ⊕ UW23,1,12, we can see that it is a XOR
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composed of two segments, i.e., one segment for the symbol UW13,2 and one segment for the

symbol UW23,1. Since the size of each symbol is 4T bits, the resulting XOR message has size

2T bits. Hence, given that X12 contains two XOR messages, we can conclude that |X12| = 4T

bits. Consequently, the resulting achievable communication load is given by

LUB(r = 1) =

∑
U∈[4]2

|XU |
96T

=
24T

96T
=

1

4
. (57)

Using the converse in Theorem 2, we can see that the achievable performance above is within a

factor 1.5 from the optimal.

V. PROOF OF ACHIEVABLE BOUND IN THEOREM 1

We assume that there are Λ mappers and K =
(

Λ
α

)
reducers, and we assume the aforementioned

combinatorial topology where each reducer is exactly and uniquely connected to α mappers. We

then consider some arbitrary computation load r ∈ [Λ−α+ 1] and we consider Q = η2K output

functions with η2 ∈ N+, allowing us to separate the Q functions into K disjoint groups WU for

each U ∈ [Λ]α, so that each reducer is assigned η2 functions, corresponding to |WU | = η2 for

each U ∈ [Λ]α.

A. Map Phase

First, the input database is split in
(

Λ
r

)
disjoint batches, each containing η1 = N/

(
Λ
r

)
files,

where we assume that N is large enough such that η1 ∈ N+. Consequently, we have a batch of

files for each T1 ⊆ [Λ] such that |T1| = r, which implies

{w1, . . . , wN} =
⋃

T1⊆[Λ]:|T1|=r

BT1 (58)

where we denote by BT1 the batch of η1 files associated with the label T1. Then, mapper λ ∈ [Λ]

is assigned all batches BT1 having λ ∈ T1, which means that

Mλ = {BT1 : T1 ⊆ [Λ], |T1| = r, λ ∈ T1}. (59)

We can see that the computation load constraint is satisfied, since we have∑
λ∈[Λ] |Mλ|
N

=
Λη1

(
Λ−1
r−1

)
η1

(
Λ
r

) = r (60)

Then, each mapper computes Q intermediate values for each assigned input file, so for each λ ∈

[Λ] we have Vλ = {vq,n : q ∈ [Q], wn ∈Mλ}. Since then each reducer has access to α mappers,
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reducer U ∈ [Λ]α can retrieve8 the intermediate values in VU = {vq,n : q ∈ [Q], wn ∈ MU}

recalling that MU = ∪λ∈UMλ. Since |VU | = Qη1

((
Λ
r

)
−
(

Λ−α
r

))
for each U ∈ [Λ]α, we can

conclude that each computing node has access to all the intermediate values when r ≥ Λ−α+ 1.

Hence, we focus on the non-trivial regime r ∈ [Λ− α + 1] for any given Λ and α.

B. Shuffle Phase

Consider reducer U ∈ [Λ]α. Let S ⊆ ([Λ]\U) with |S| = r. First, for eachR ⊆ (S∪U) such that

|R| = α and R 6= U , and for T1 = (S ∪ U) \ R, reducer U concatenates the intermediate values

{vq,n : q ∈ WR, wn ∈ BT1} into the symbol UWR,T1 = (vq,n : q ∈ WR, wn ∈ BT1) ∈ F2η2η1T .

Subsequently, such symbol is evenly split in
((
r+α
r

)
− 1
)

segments as

UWR,T1 = (UWR,T1,T2 : T2 ⊆ (R∪ T1), |T2| = α, T2 6= R) . (61)

Then, reducer U constructs the coded message⊕
R⊆(S∪U):|R|=α,R6=U

UWR,(S∪U)\R,U (62)

for each S ⊆ ([Λ] \ U) with |S| = r, and finally concatenates all of them into the following

message

XU =

 ⊕
R⊆(S∪U):|R|=α,R6=U

UWR,(S∪U)\R,U : S ⊆ ([Λ] \ U), |S| = r

 (63)

which is multicasted to all other reducers via the error-free broadcast channel.

C. Reduce Phase

Consider reducer U ∈ [Λ]α. Since such reducer is connected to α mappers, it misses a total

of η2η1

(
Λ−α
r

)
intermediate values, i.e, it misses η2 intermediate values for each of the η1 files

in each batch that is not assigned to the mappers in U . More precisely, reducer U misses the

symbol UWU ,T1 for each T1 ⊆ ([Λ] \ U) with |T1| = r. We know that during the shuffle phase

such symbol is evenly split in
((
r+α
r

)
− 1
)

segments as

UWU ,T1 = (UWU ,T1,T2 : T2 ⊆ (U ∪ T1), |T2| = α, T2 6= U) . (64)

8Since we are presenting here the proof of the achievable bound in Theorem 1, we will neglect the download cost, assuming

consequently that each reducer can access the IVs without any additional communication cost.
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For each T2 ⊆ (U ∪ T1) with |T2| = α and T2 6= U , we can verify that reducer U can decode

UWU ,T1,T2 from XT2 . Indeed, there exists an S ⊆ ([Λ]\T2) with |S| = r such that S = (U∪T1)\T2.

For such S, the corresponding coded message in XT2 is⊕
R⊆(S∪T2):|R|=α,R6=T2

UWR,(S∪T2)\R,T2 =
⊕

R⊆(U∪T1):|R|=α,R6=T2

UWR,(U∪T1)\R,T2 (65)

= UWU ,T1,T2 ⊕
⊕

R⊆(U∪T1):|R|=α,R6=T2,R6=U

UWR,(U∪T1)\R,T2︸ ︷︷ ︸
interference

.

(66)

Notice that reducer U can cancel the interference term by using the intermediate values retrieved

from mappers in U , so it can correctly decode UWU ,T1,T2 . By following the same rationale for

each T2 ⊆ (U ∪ T1) with |T2| = α and T2 6= U , we can conclude that reducer U can correctly

recover UWU ,T1 and can do so for each T1 ⊆ ([Λ] \ U), completely recovering all the η2η1

(
Λ−α
r

)
missing intermediate values. The same holds for any other U ∈ [Λ]α, and so we can conclude

that each reducer is able to recover from the multicast messages of other reducers all the missing

intermediate values.

D. Communication Load

The communication load guaranteed by the coded scheme described above is given by

LUB(r) =

∑
U∈[Λ]α

|XU |
QNT

(67)

=

(
Λ
α

)
η2η1

(
Λ−α
r

)
T/
((
r+α
r

)
− 1
)

Qη1

(
Λ
r

)
T

(68)

=

(
Λ−α
r

)(
Λ
r

) ((
r+α
r

)
− 1
) (69)

for each r ∈ [Λ − α + 1]. Notice that the lower convex envelope of the achievable points

{(r, LLB(r)) : r ∈ [Λ− α+ 1]} is achievable by adopting the memory-sharing strategy presented

in [6]. The proof is concluded.

VI. PROOF OF CONVERSE BOUND IN THEOREM 2

We begin the proof by introducing some useful notation. For q ∈ [Q] and n ∈ [N ], we let Vq,n

be an i.i.d. random variable and we let vq,n be the realization of Vq,n. Then, we define

DU := {Vq,n : q ∈ WU , n ∈ [N ]} (70)
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CU := {Vq,n : q ∈ [Q], wn ∈MU} (71)

YU := (DU , CU). (72)

Recalling that we denote by XU the multicast message transmitted by reducer U ∈ [Λ]α, the

equation

H(XU | CU) = 0 (73)

holds, since XU is a function of the intermediate values retrieved by reducer U . Moreover, for

any map-shuffle-reduce scheme, each reducer U ∈ [Λ]α has to be able to correctly recover all

the intermediate values DU given the transmissions of all reducers X[Λ]α := (XU : U ∈ [Λ]α) and

given the IVs CU computed by the mappers in U . Thus, the equation

H(DU | X[Λ]α , CU) = 0 (74)

holds for each U ∈ [Λ]α.

A. Lower Bound for a Given File Assignment

For a given file assignment denoted byM := (M1, . . . ,MΛ), we let LM be the corresponding

communication load under this assignment M. Then, we provide a lower bound on LM for any

given file assignment in the following lemma.

Lemma 1. Consider a specific file assignment M = (M1, . . . ,MΛ). Let c = (c1, . . . , cΛ) be a

permutation of the set [Λ] and define

Di := (DUi : U i ⊆ {c1, . . . , ci}, |U i| = α, ci ∈ U i) (75)

Ci := (CUi : U i ⊆ {c1, . . . , ci}, |U i| = α, ci ∈ U i) (76)

Yi−1 := (YUj : j ∈ [α : i− 1],U j ⊆ {c1, . . . , cj}, |U j| = α, cj ∈ U j) (77)

for each i ∈ [α : Λ]. Then, the communication load is lower bounded by

LM ≥
1

QNT

∑
i∈[α:Λ]

H(Di | Ci,Yi−1). (78)

Proof. The proof is described in Appendix D.

It is perhaps interesting to highlight that the lemma above manages to combine relatively

divergent ideas from [10, Lemma 2] and [21, Lemma 2]. On one hand, the proof of Lemma 1

is based on the iterative argument from the proof of [10, Lemma 2], where the authors built
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a sequence of entropy-based bounds by iteratively picking computing nodes without ordering

them according to some specific permutations. On the other hand, since in our case we wish

to keep into account the multi-access nature of our MADC system, the proof of Lemma 1

adapts the entropy-based approach from [10] by iteratively selecting the reducers according to

some properly chosen permutations. The purpose of selecting reducers according to some proper

permutations is that of constructing a tighter sequence of entropy-based bounds. The properly

chosen permutations are inspired by [21, Lemma 2], which was used to successfully develop a

tight converse bound for the multi-access coded caching problem with combinatorial topology.

Now, we proceed with the proof. Denote by ãT the number of files which are mapped

exclusively by the mappers in T for some T ⊆ [Λ]. As each reducer U ∈ [Λ]α does not have

access to the intermediate values of all those files that are not mapped by the mappers in U , the

term ãT represents the number of files whose intermediate values are required by each reducer

U ∈ [Λ]α that does not have access to the mappers in T , i.e., each reducer U ∈ [Λ]α such that

U ∩ T = 0 or, equivalently, each reducer U ⊆ ([Λ] \ T ) such that |U| = α. Taking advantage of

the independence of the intermediate values and recalling that each reducer computes η2 disjoint

output functions, from Lemma 1 and for a given permutation c = (c1, . . . , cΛ) of the set [Λ], we

can further write

LM ≥
1

QNT

∑
i∈[α:Λ]

H(Di | Ci,Yi−1) (79)

=
1

QNT

∑
i∈[α:Λ]

∑
Ui⊆{c1,...,ci}:|U i|=α,ci∈U i

H(DUi | Ci,Yi−1) (80)

=
1

QNT

∑
i∈[α:Λ]

∑
Ui⊆{c1,...,ci}:|U i|=α,ci∈U i

∑
T ⊆[Λ]\{c1,...,ci}

ãT η2T (81)

=
1

KN

∑
i∈[α:Λ]

∑
Ui⊆{c1,...,ci}:|Ui|=α,ci∈Ui

∑
T ⊆[Λ]\{c1,...,ci}

ãT . (82)

If we build a bound as the one in Lemma 1 for each permutation of the set [Λ] and we sum up

all these bounds together, we obtain the expression

LM ≥
1

KNΛ!

∑
c∈SΛ

∑
i∈[α:Λ]

∑
Ui⊆{c1,...,ci}:|Ui|=α,ci∈U i

∑
T ⊆[Λ]\{c1,...,ci}

ãT (83)

where we recall that SΛ represents the group of all permutations of [Λ]. Our goal now is to

simplify this expression and we start doing so by counting how many times each term ãT appears

in the RHS of (83) for any fixed T ⊆ [Λ] with |T | = j and j ∈ [Λ].
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First, we focus on some reducer U ⊆ ([Λ] \ T ) with |U| = α. We can see that ãT appears

in the RHS of (83) for all those permutations in SΛ for which U = U i for some i ∈ [α : Λ]

such that U i ⊆ {c1, . . . , ci} with |U i| = α and ci ∈ U i, and such that T ⊆ ([Λ] \ {c1, . . . , ci}).

Denoting by PU ,T the set of such permutations, we can see that

|PU ,T | = α!j!(Λ− α− j)!
(

Λ

α + j

)
. (84)

The same reasoning applies to any reducer U ∈ [Λ]α for which U ∩ T = ∅. As a consequence,

the term ãT appears in the RHS of (83) a total of∑
U∈[Λ]α:U∩T =∅

|PU ,T | =
(

Λ− j
α

)
α!j!(Λ− α− j)!

(
Λ

α + j

)
(85)

times. The same rationale holds for any ãT where T ⊆ [Λ] and |T | = j with j ∈ [Λ]. Consequently,

we can rewrite the expression in (83) as

LM ≥
1

KNΛ!

∑
c∈SΛ

∑
i∈[α:Λ]

∑
Ui⊆{c1,...,ci}:|Ui|=α,ci∈Ui

∑
T ⊆[Λ]\{c1,...,ci}

ãT (86)

=
1

KNΛ!

∑
j∈[Λ]

∑
T ⊆[Λ]:|T |=j

(
Λ− j
α

)
α!j!(Λ− α− j)!

(
Λ

α + j

)
ãT (87)

=
1

KN

∑
j∈[Λ]

(
Λ
α+j

)(
Λ
j

) ∑
T ⊆[Λ]:|T |=j

ãT (88)

=
1

K

∑
j∈[Λ]

(
Λ
α+j

)(
Λ
j

) ãjM
N

(89)

where ãjM :=
∑
T ⊆[Λ]:|T |=j ã

T is defined as the total number of files which are mapped by exactly

j map nodes under this particular file assignment M.

For any given file assignment M and for any given computation load r ∈ [K], the fact that

|M1| + · · · + |MΛ| ≤ rN also implies that ãjM ≥ 0 for each j ∈ [Λ], as well as implies that∑
j∈[Λ] ã

j
M = N and that

∑
j∈[Λ] jã

j
M ≤ rN . Thus, we can further lower bound the above using

Jensen’s inequality and the fact that
(

Λ
α+j

)
/
(

Λ
j

)
is convex and decreasing9 in j. Hence, we can

write

LM ≥
1

K

∑
j∈[Λ]

(
Λ
α+j

)(
Λ
j

) ãjM
N

(90)

9This was already proved in the proof of [21, Lemma 3] by writing down each combinatorial coefficient in
(

Λ
α+j

)
/
(

Λ
j

)
as a

finite product and using then the general Leibniz rule to show that its second derivative is non-negative.
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≥ 1

K

(
Λ
α+r

)(
Λ
r

) (91)

=

(
Λ
α+r

)(
Λ
α

)(
Λ
r

) (92)

where (91) holds due to the storage constraint
∑

j∈[Λ] jã
j
M ≤ rN .

B. Lower Bound Over All Possible File Assignments

To obtain the bound in Theorem 2, we are looking for the smallest LM across all file

assignments M such that |M1|+ · · ·+ |MΛ| ≤ rN , that is we are looking for

L?(r) ≥ inf
M:|M1|+···+|MΛ|≤rN

LM. (93)

Given that (92) is independent of the file assignment M and lower bounds LM for any M such

that |M1|+ · · ·+ |MΛ| ≤ rN , we can further write

L?(r) ≥ inf
M:|M1|+···+|MΛ|≤rN

LM (94)

≥ inf
M:|M1|+···+|MΛ|≤rN

(
Λ
α+r

)(
Λ
α

)(
Λ
r

) (95)

=

(
Λ
α+r

)(
Λ
α

)(
Λ
r

) (96)

= LLB(r). (97)

Notice that the bound LLB(r) can be extended to include also the non-integer values of r as

described in [6]. This concludes the proof.

VII. PROOF OF ACHIEVABLE BOUND IN THEOREM 4

As we mentioned in the statement of Theorem 4, the coded scheme depends on the solution of the

linear program in (13). Hence, the first step is to evaluate the optimal solution10 ã? = (ã1
?, . . . , ã

Λ
? ).

Next, we partition the input database in Λ parts, where we denote by Lj the j-th part, which

contains |Lj| = ãj? files for each j ∈ [Λ]. Then, each part j ∈ [Λ] of the database is split in
(

Λ
j

)
batches containing ηj files each for some ηj ∈ N, so that ãj? = ηj

(
Λ
j

)
for each j ∈ [Λ]. This

implies

{w1, . . . , wN} =
⋃
j∈[Λ]

Lj (98)

10The linear program in (13) is not infeasible nor unbounded. Hence, it admits an optimal solution.
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=
⋃
j∈[Λ]

⋃
T1⊆[Λ]:|T1|=j

Bj,T1 (99)

where we denote by Bj,T1 the batch containing ηj files associated with the label T1. Then, mapper

λ ∈ [Λ] is assigned all batches Bj,T1 having λ ∈ T1 for each j ∈ [Λ], which implies

Mλ = {Bj,T1 : j ∈ [Λ], T1 ⊆ [Λ], |T1| = j, λ ∈ T1}. (100)

The computation load constraint is satisfied, since we have∑
λ∈[Λ] |Mλ|
N

=
Λ
∑

j∈[Λ] ηj
(

Λ−1
j−1

)
N

(101)

=

∑
j∈[Λ] jηj

(
Λ
j

)
N

(102)

=

∑
j∈[Λ] jã

j
?

N
≤ r (103)

where the last inequality holds under the constraint in (13d).

Our goal is to provide an achievable scheme for the max-link communication load. Recalling

that we denote by L and J the communication load and the download cost, respectively, we will

have

L?max-link(r) ≤ Lmax-link,UB(r) = max (L,D) . (104)

A. Communication Load

For what concerns the communication load, we can take advantage of the achievable scheme

described in Section V. Simply, the scheme in Section V is applied Λ times, one time per partition

Lj which is considered as an independent input database. If we denote by Lj the communication

load when we focus on the part Lj , we have that Lj is given by

Lj =

(
Λ−α
j

)
(

Λ
j

) ((
j+α
j

)
− 1
) ãj?
N

(105)

for each j ∈ [Λ]. Hence, the overall communication load L is given by

L =
∑
j∈[Λ]

Lj =
∑
j∈[Λ]

(
Λ−α
j

)
(

Λ
j

) ((
j+α
j

)
− 1
) ãj?
N
. (106)
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B. Download Cost

We remind that the download cost is defined as

J = max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RUλ
QNT

(107)

where RUλ represents the number of bits which are sent from mapper λ to reducer U . This quantity

is minimized if the number of bits transmitted over each link connecting a mapper to a reducer

is the same. This can be accomplished as follows.

Consider a reducer U ∈ [Λ]α and a mapper λ ∈ U . According to the file assignment above,

mapper λ computes the IVs in the set Vλ = {vq,n : q ∈ [Q], wn ∈ Mλ}. The set Vλ can

equivalently be written as follows

Vλ = {Vλ,S : i ∈ [α],S ⊆ (U \ {λ}), |S| = i− 1} (108)

where Vλ,S is defined as

Vλ,S :=
{
vq,n : q ∈ [Q], wn ∈Mλ∪S} (109)

and where Mλ∪S :=
⋂
s∈(λ∪S)Ms. This simply says that the set Vλ,S contains the IVs which are

mapped by mapper λ and the (i− 1) mappers in S . Hence, if we evenly split Vλ,S in i segments

as follows

Vλ,S = (Vλ,S,s : s ∈ (λ ∪ S)) (110)

we simply let mapper λ send Vλ,S,λ. This implies

RUλ =
∑
i∈[α]

∑
S⊆(U\{λ}):|S|=i−1

|Vλ,S,λ| (111)

=
∑
i∈[α]

∑
S⊆(U\{λ}):|S|=i−1

|Vλ,S |
i

(112)

=
∑
i∈[α]

∑
S⊆(U\{λ}):|S|=i−1

∑
j∈[Λ]

ηj
(

Λ−α
j−i

)
QT

i
(113)

=
∑
j∈[Λ]

∑
i∈[α]

ηj
(

Λ−α
j−i

)
QT

i

(
α− 1

i− 1

)
(114)

for each λ ∈ [Λ] and U ∈ [Λ]α with λ ∈ U . Hence, we can further write

J = max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RUλ
QNT

(115)
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=
1

QNT

∑
j∈[Λ]

∑
i∈[α]

ηj
(

Λ−α
j−i

)
QT

i

(
α− 1

i− 1

)
(116)

=
∑
j∈[Λ]

∑
i∈[α]

(
Λ−α
j−i

)(
α−1
i−1

)
i
(

Λ
j

) ãj?
N

(117)

recalling that ãj? = ηj
(

Λ
j

)
for each j ∈ [Λ]. Further, the following lemma holds.

Lemma 2. For any non-negative integers Λ, α and j, we have∑
i∈[α]

(
Λ−α
j−i

)(
α−1
i−1

)
i
(

Λ
j

) =

(
Λ
j

)
−
(

Λ−α
j

)
α
(

Λ
j

) . (118)

Proof. The proof is described in Appendix E.

As a consequence, the download cost J is equivalently given by

J =
∑
j∈[Λ]

(
Λ
j

)
−
(

Λ−α
j

)
α
(

Λ
j

) ãj?
N

(119)

=
∑
j∈[Λ]

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) ãj?
N
. (120)

C. Max-Link Communication Load

Since we have now the expressions for both L and J , we can write explicitly the achievable

max-link communication load as follows

Lmax-link,UB(r) = max (L,D) (121)

= max

∑
j∈[Λ]

(
Λ−α
j

)
(

Λ
j

) ((
j+α
j

)
− 1
) ãj?
N
,
∑
j∈[Λ]

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) ãj?
N

 . (122)

The expression above coincides with the achievable expression in Theorem 4. The proof is

concluded.

VIII. PROOF OF CONVERSE BOUND IN THEOREM 5

We quickly recall that LM denotes the communication load under the file assignment M =

(M1, . . . ,MΛ). Then, we denote by JM and by Lmax-link,M(r) = max{LM, JM} the download

cost and the max-link communication load, respectively, under file assignment M.
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A. Lower Bound for a Given File Assignment

From Section VI we know that the inequality

LM ≥
∑
j∈[Λ]

(
Λ
α+j

)(
Λ
α

)(
Λ
j

) ãjM
N

(123)

holds. Thus, we can write

Lmax-link,M(r) = max{LM, JM} (124)

≥ max

∑
j∈[Λ]

(
Λ
α+j

)(
Λ
α

)(
Λ
j

) ãjM
N
, JM

 . (125)

In the following, we wish to develop a lower bound on JM. Starting from the definition of the

download cost, we have

JM = max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RUλ
QNT

(126a)

≥ max
λ∈[Λ]

1(
Λ−1
α−1

)
QNT

∑
U∈[Λ]α:λ∈U

RUλ (126b)

≥ 1

Λ
(

Λ−1
α−1

)
QNT

∑
λ∈[Λ]

∑
U∈[Λ]α:λ∈U

RUλ (126c)

=
1

α
(

Λ
α

)
QNT

∑
U∈[Λ]α

∑
λ∈U

RUλ (126d)

=
1

α
(

Λ
α

)
QNT

∑
U∈[Λ]α

RU (126e)

where RU is defined as

RU :=
∑
λ∈U

RUλ (127)

to represent the overall number of bits received by reducer U ∈ [Λ]α. Now, since each reducer U

is expected to receive all the IVs mapped by the mappers in U , we have

RU ≥ H(CU) (128)

where we recall that CU = {Vq,n : q ∈ [Q], wn ∈MU} from Section VI. This means that we can

further write

JM ≥
1

α
(

Λ
α

)
QNT

∑
U∈[Λ]α

RU (129a)

≥ 1

α
(

Λ
α

)
QNT

∑
U∈[Λ]α

H(CU) (129b)



31

=
1

α
(

Λ
α

)
QNT

∑
U∈[Λ]α

∑
T ⊆[Λ]:T ∩U 6=∅

ãTQT (129c)

=
1

α
(

Λ
α

)
N

∑
j∈[Λ]

∑
T ⊆[Λ]:|T |=j

((
Λ

α

)
−
(

Λ− j
α

))
ãT (129d)

=
∑
j∈[Λ]

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) ãjM
N

(129e)

recalling that ãjM =
∑
T ⊆[Λ]:|T |=j ã

T . To conclude, for a given file assignment M, the max-link

communication load is lower bounded as

Lmax-link,M(r) ≥ max

∑
j∈[Λ]

(
Λ
α+j

)(
Λ
α

)(
Λ
j

) ãjM
N
, JM

 (130)

≥ max

∑
j∈[Λ]

(
Λ
α+j

)(
Λ
α

)(
Λ
j

) ãjM
N
,
∑
j∈[Λ]

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) ãjM
N

 (131)

≥ 1

2

∑
j∈[Λ]

( (
Λ
α+j

)(
Λ
α

)(
Λ
j

) +

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) )
ãjM
N
. (132)

B. Lower Bound Over All Possible File Assignments

Our aim is to develop a bound on the max-link communication load under any possible file

assignment, namely, we are looking for the smallest Lmax-link,M(r) across all file assignments

M such that |M1|+ · · ·+ |MΛ| ≤ rN for a given computation load r ∈ [K]. Since each file

assignment M such that |M1|+ · · ·+ |MΛ| ≤ rN also implies that ãjM ≥ 0 for each j ∈ [Λ], as

well as implies that
∑

j∈[Λ] ã
j
M = N and that

∑
j∈[Λ] jã

j
M ≤ rN , the max-link load L?max-link(r)

is lower bounded by the solution to the following linear program

min
ãM

1

2

∑
j∈[Λ]

( (
Λ
α+j

)(
Λ
α

)(
Λ
j

) +

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) )
ãjM
N

(133a)

subject to ãjM ≥ 0, ∀j ∈ [Λ] (133b)∑
j∈[Λ]

ãjM
N

= 1 (133c)

∑
j∈[Λ]

j
ãjM
N
≤ r (133d)

where ãM = (ã1
M, . . . , ã

Λ
M) is the control variable. The proof is concluded.
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IX. CONCLUSIONS

In this work, we introduced multi-access distributed computing, a novel system model that

generalizes the original CDC setting by considering mappers and reducers as distinct entities, and

by considering each reducer to be connected to multiple mappers through a network topology.

We focused on the MADC model with combinatorial topology, which implies Λ mappers

and K =
(

Λ
α

)
reducers, so that there is a reducer for any set of α mappers. Neglecting at

first the download cost from mappers to reducers and so focusing only on the inter-reducer

communication load, we proposed a novel coded scheme which, together with an information-

theoretic converse, characterizes the optimal communication load within a constant multiplicative

gap of 1.5. Subsequently, we jointly considered the setting which keeps into account the download

cost and for such scenario we characterized the optimal max-link communication load within a

multiplicative factor of 4. We point out that the here introduced achievable shuffling scheme —

which generalizes the original coded scheme in [6] (corresponding to the case α = 1) — offers

also unparalleled coding gains. As an outcome of this gain, we have the interesting occurrence

that our scheme guarantees a smaller communication load when α > 1, capitalizing on the

multi-access nature of the MADC model, even though the number of reducers is increased.

Interesting future directions could include the study of the here proposed MADC setting when

mappers and reducers have heterogeneous computational resources. A careful study of other

multi-access network topologies is also another challenging research direction. Reflecting a design

freedom, the search for the best possible topology, for a given computation load, remains a very

pertinent open problem in distributed computing.

APPENDIX A

PROOF OF COROLLARY 1.1

We wish to prove that, for fixed computation load r, the achievable performance in Theorem 1

decreases for increasing α. To do so, it is enough to prove that

sα > sα+1 (134)

where sα is defined as

sα :=

(
Λ−α
r

)(
Λ
r

) ((
r+α
r

)
− 1
) . (135)

Toward this, we can see that

sα+1 =

(
Λ−α−1

r

)(
Λ
r

) ((
r+α+1

r

)
− 1
) (136)
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=
Λ−α−r

Λ−α

(
Λ−α
r

)(
Λ
r

) (
r+α+1
α+1

(
r+α
r

)
− 1
) (137)

=

(
1− r

Λ−α

) (
Λ−α
r

)(
Λ
r

) ((
1 + r

α+1

) (
r+α
r

)
− 1
) . (138)

Since r/(Λ−α) > 0 and r/(α+ 1) > 0, it holds that 1− r/(Λ−α) < 1 and 1 + r/(α+ 1) > 1.

Consequently, we can write

sα+1 =

(
1− r

Λ−α

) (
Λ−α
r

)(
Λ
r

) ((
1 + r

α+1

) (
r+α
r

)
− 1
) (139)

<

(
Λ−α
r

)(
Λ
r

) ((
r+α
r

)
− 1
) (140)

= sα (141)

showing in this way that sα+1 < sα. This concludes the proof.

APPENDIX B

PROOF OF ORDER OPTIMALITY IN THEOREM 3

To prove the order optimality result in Theorem 3, we need to upper bound the ratio

LUB(r)/L?(r) for each r ∈ [Λ− α + 1]. We start by noting that the following

LUB(r)

L?(r)
≤ LUB(r)

LLB(r)
(142)

=

(
Λ−α
r

)
�
�
(

Λ
r

) ((
r+α
r

)
− 1
)��
(

Λ
r

)(
Λ
α

)(
Λ
r+α

) (143)

=

(
Λ−α
r

)((
r+α
r

)
− 1
) (Λ

α

)(
Λ
r+α

) (144)

=

(
r+α
r

)(
r+α
r

)
− 1

=: br (145)

holds. Further, we notice that br is decreasing in r, since

br+1 =

(
r+1+α
r+1

)(
r+1+α
r+1

)
− 1

(146)

=
1

1− 1

(r+1+α
r+1 )

(147)

=
1

1− r+1
r+1+α

1

(r+αr )

(148)
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<
1

1− 1

(r+αr )

(149)

= br (150)

for each r ∈ N+. Thus, considering that r ∈ [Λ− α + 1], we can further write

LUB(r)

L?(r)
≤

(
r+α
r

)(
r+α
r

)
− 1

(151)

≤ α + 1

α
(152)

where the last term is upper bounded when α is set to its minimum value. Now, after neglecting

the value α = 1 — in which case the corresponding achievable performance in Theorem 1 was

already proved to be exactly optimal in [6] — we focus on the case where α ∈ [2 : Λ], which

implies that

LUB(r)

L?(r)
≤ α + 1

α
(153)

≤ 3

2
. (154)

The proof is concluded.

APPENDIX C

PROOF OF ORDER OPTIMALITY IN THEOREM 6

From Theorem 4 we know that L?max-link(r) is upper bounded as

L?max-link(r) ≤ Lmax-link,UB(r) (155)

= max

∑
j∈[Λ]

(
Λ−α
j

)
(

Λ
j

) ((
j+α
j

)
− 1
) ãj?
N
,
∑
j∈[Λ]

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) ãj?
N

 (156)

≤
∑
j∈[Λ]

 (
Λ−α
j

)
(

Λ
j

) ((
j+α
j

)
− 1
) +

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

)
 ãj?
N

(157)

=
∑
j∈[Λ]

cj
ãj?
N

(158)

where the coefficient cj is defined as

cj :=

(
Λ−α
j

)
(

Λ
j

) ((
j+α
j

)
− 1
) +

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) . (159)
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At the same time, we know from Theorem 5 that L?max-link(r) is lower bounded as

L?max-link(r) ≥ Lmax-link,LB(r) (160)

=
1

2

∑
j∈[Λ]

( (
Λ
α+j

)(
Λ
α

)(
Λ
j

) +

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) )
ãj?
N

(161)

=
1

2

∑
j∈[Λ]

dj
ãj?
N

(162)

where the coefficient dj is defined as

dj :=

(
Λ
α+j

)(
Λ
α

)(
Λ
j

) +

(
Λ
α

)
−
(

Λ−j
α

)
α
(

Λ
α

) . (163)

Hence, we can evaluate the gap to optimality from the ratio Lmax-link,UB(r)/Lmax-link,LB(r). In

particular, we have

Lmax-link,UB(r)

Lmax-link,LB(r)
≤ 2

∑
j∈[Λ] cj ã

j
?/N∑

j∈[Λ] dj ã
j
?/N

(164)

= 2

∑
j∈[Λ]:ãj?>0 cj ã

j
?/N∑

j∈[Λ]:ãj?>0 dj ã
j
?/N

(165)

≤ 2 max
j∈[Λ]:ãj?>0

cj ã
j
?/N

dj ã
j
?/N

(166)

= 2 max
j∈[Λ]:ãj?>0

cj
dj

(167)

≤ 2 max
j∈[Λ]

cj
dj

(168)

= 2 max

(
max
j∈[Λ−α]

cj
dj
, max
j∈[Λ−α+1:Λ]

cj
dj

)
. (169)

Now, we can see that cj = dj when j > Λ− α. Else, when j ∈ [Λ− α], we have

cj
dj

=

(Λ−α
j )

(Λ
j)((

j+α
j )−1)

+
(Λ
α)−(Λ−j

α )
α(Λ

α)

( Λ
α+j)

(Λ
α)(

Λ
j)

+
(Λ
α)−(Λ−j

α )
α(Λ

α)

(170)

≤ max


(Λ−α

j )
(Λ
j)((

j+α
j )−1)

( Λ
α+j)

(Λ
α)(

Λ
j)

,

(Λ
α)−(Λ−j

α )
α(Λ

α)

(Λ
α)−(Λ−j

α )
α(Λ

α)

 (171)

= max

 (
Λ−α
j

)((
j+α
j

)
− 1
) (

Λ
α

)(
Λ
α+j

) , 1
 . (172)
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Since we know from Appendix B that(
Λ−α
j

)((
j+α
j

)
− 1
) (

Λ
α

)(
Λ
α+j

) ≤ α + 1

α
(173)

we can further write

max
j∈[Λ−α]

cj
dj
≤ max

j∈[Λ−α]
max

 (
Λ−α
j

)((
j+α
j

)
− 1
) (

Λ
α

)(
Λ
α+j

) , 1
 (174)

≤ max

(
α + 1

α
, 1

)
. (175)

Hence, we can conclude that
Lmax-link,UB(r)

Lmax-link,LB(r)
≤ 2 max

(
max
j∈[Λ−α]

cj
dj
, max
j∈[Λ−α+1:Λ]

cj
dj

)
(176)

≤ 2 max

(
max

(
α + 1

α
, 1

)
, 1

)
(177)

≤ 2 max (max (2, 1) , 1) (178)

= 4. (179)

The proof is concluded.

APPENDIX D

PROOF OF LEMMA 1

Consider a permutation c = (c1, . . . , cΛ) of the set [Λ]. We know that H(DU | X[Λ]α , CU) = 0

holds for any valid shuffle scheme and for each U ∈ [Λ]α. Given this, for Uα = {c1, . . . , cα} we

can write

H(X[Λ]α) ≥ H(X[Λ]α | CUα) (180)

= H(X[Λ]α , DUα | CUα)−H(DUα | X[Λ]α , CUα) (181)

= H(X[Λ]α , DUα | CUα) (182)

= H(DUα | CUα) +H(X[Λ]α | CUα , DUα) (183)

= H(DUα | CUα) +H(X[Λ]α | Yα) (184)

where (180) follows from the fact that conditioning does not increase entropy, and where (182)

holds because of the decodability condition H(DU | X[Λ]α , CU) = 0 for each U ∈ [Λ]α. Similarly,

for each i ∈ [α + 1 : Λ] we can write

H(X[Λ]α | Yi−1) ≥ H(X[Λ]α | Ci,Yi−1) (185)
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= H(X[Λ]α ,Di | Ci,Yi−1)−H(Di | X[Λ]α , Ci,Yi−1) (186)

= H(X[Λ]α ,Di | Ci,Yi−1) (187)

= H(Di | Ci,Yi−1) +H(X[Λ]α | Di, Ci,Yi−1) (188)

= H(Di | Ci,Yi−1) +H(X[Λ]α | Yi) (189)

where again (185) is true as conditioning does not increase entropy, and where (187) follows

because

H(Di | X[Λ]α , Ci,Yi−1) ≤ H(Di | X[Λ]α , Ci) (190)

≤
∑

Ui⊆{c1,...,ci}:|Ui|=α,ci∈Ui
H(DUi | X[Λ]α , CUi) (191)

= 0 (192)

due to the independence of intermediate values and the decodability condition. Considering that

H(X[Λ]α | YΛ) = 0, we can use iteratively the above to obtain

H(X[Λ]α) ≥
∑
i∈[α:Λ]

H(Di | Ci,Yi−1). (193)

Further, we notice that LM ≥ H(X[Λ]α)/QNT . This concludes the proof.

APPENDIX E

PROOF OF LEMMA 2

First, we rewrite the equality in Lemma 2 as∑
i∈[α]

(
Λ−α
j−i

)(
α−1
i−1

)
i
(

Λ
j

) =

(
Λ
j

)
−
(

Λ−α
j

)
α
(

Λ
j

) (194)

∑
i∈[α]

(
Λ− α
j − i

)(
α

i

)
=

(
Λ

j

)
−
(

Λ− α
j

)
(195)

∑
i∈[0:α]

(
Λ− α
j − i

)(
α

i

)
=

(
Λ

j

)
. (196)

Thus, proving the equality in Lemma 2 is equivalent to showing that the following equality∑
i∈[0:α]

(
Λ− α
j − i

)(
α

i

)
=

(
Λ

j

)
(197)

holds. From Vandermonde’s identity, we know that∑
i∈[0:j]

(
Λ− α
j − i

)(
α

i

)
=

(
Λ

j

)
(198)
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and so it suffices to show that∑
i∈[0:α]

(
Λ− α
j − i

)(
α

i

)
=
∑
i∈[0:j]

(
Λ− α
j − i

)(
α

i

)
. (199)

Consider first the case j ≤ α. This means that we can write∑
i∈[0:α]

(
Λ− α
j − i

)(
α

i

)
=
∑
i∈[0:j]

(
Λ− α
j − i

)(
α

i

)
+

∑
i∈[j+1:α]

(
Λ− α
j − i

)(
α

i

)
︸ ︷︷ ︸

=0

(200)

=
∑
i∈[0:j]

(
Λ− α
j − i

)(
α

i

)
(201)

where
∑

i∈[j+1:α]

(
Λ−α
j−i

)(
α
i

)
= 0 since we have

(
Λ−α
j−i

)
= 0 for i ∈ [j + 1 : α]. Similarly, if we

consider j ≥ α, we have∑
i∈[0:j]

(
Λ− α
j − i

)(
α

i

)
=
∑
i∈[0:α]

(
Λ− α
j − i

)(
α

i

)
+

∑
i∈[α+1:j]

(
Λ− α
j − i

)(
α

i

)
︸ ︷︷ ︸

=0

(202)

=
∑
i∈[0:α]

(
Λ− α
j − i

)(
α

i

)
(203)

where
∑

i∈[α+1:j]

(
Λ−α
j−i

)(
α
i

)
= 0 since we have

(
α
i

)
= 0 for i ∈ [α + 1 : j]. Hence, for any value

of j ∈ [0 : Λ], we can conclude that∑
i∈[0:α]

(
Λ− α
j − i

)(
α

i

)
=
∑
i∈[0:j]

(
Λ− α
j − i

)(
α

i

)
=

(
Λ

j

)
. (204)

The proof is concluded.
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