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A Model-Based Approach to the Analysis
of Patterns of Length of Stay in Institutional

Long-Term Care
Haifeng Xie, Thierry J. Chaussalet, and Peter H. Millard

Abstract—Understanding the pattern of length of stay in insti-
tutional long-term care has important practical implications in
the management of long-term care. Furthermore, residents’ at-
tributes are believed to have significant effects on these patterns.
In this paper, we present a model-based approach to extract, from
a routinely gathered administrative social care dataset, high-level
length-of-stay patterns of residents in long-term care. This ap-
proach extends previous work by the authors to incorporate res-
idents’ features. Two applications using data provided by a local
authority in England are presented to demonstrate the potential
use of this approach.

Index Terms—Covariate, length-of-stay analysis, long-term
care, Markov model, survival analysis.

I. INTRODUCTION

E LDERLY people often experience a decline in physical
and mental health, and activities of daily living; for ex-

ample, feeding, toileting, and self care can become difficult. In
cases when they can no longer be cared for at home, assistance
is required from agencies providing long-term care (LTC). In
England, LTC consists mostly of social service programs run
by local authorities, and residential care (RC) and nursing care
(NC) provided in institutional care homes. In general, RC con-
sists of board and personal care for those who are frail but still
able to manage their activities of daily living, while NC is for
elderly people who are medically stable but have a greater de-
gree of physical and mental disability and require input from a
NHS (National Health Service) registered nurse.

Local authorities in England play an important role in the
delivery of LTC. Under the NHS and Community Care Act
1990 [1] and the Care Standard Act 2000 [2], local authorities
are responsible for the placement and finance of adults in pub-
licly funded RC and NC that conforms to national standards.
Furthermore, the government considers that the ability to dis-
charge elderly patients to institutional LTC (ILTC) is essential
to the planning and running of acute hospital care. The intro-
duction of the Community Care (Delayed Discharges, etc.) Act
2003 in January 2004 means local authorities are facing finan-
cial penalties for failing to provide vacancies in institutional care
homes for hospital discharges [3]. Therefore, local authorities
have a keen interest in gaining a better understanding of the

Manuscript received August 11, 2005; revised November 30, 2005.
The authors are with the Health and Social Care Modeling Group

(HSCMG), Department of Information Systems, Cavendish School of Com-
puter Science, University of Westminster, London W1W 6UW, U.K. (e-mail:
xieh@wmin.ac.uk; chausst@wmin.ac.uk; phmillard@tiscali.co.uk).

Digital Object Identifier 10.1109/TITB.2005.863820

behavior of the LTC system, and of issues relating to the pattern
of residents’ length of stay (LOS) in LTC in particular.

To address the concerns of local authorities, we focus on
publicly funded residents in ILTC since they constitute a large
proportion of admissions to LTC in England [4], and hence rep-
resent a major consumption of a local authority’s LTC resources.
National longitudinal surveys in England have shown that most
of the publicly funded residents who are admitted to ILTC are
there on a permanent basis [4], [5]. For these residents, discharge
from ILTC is predominantly by death; very rarely residents are
discharged to the community (i.e., well enough to be maintained
in their own homes); and discharge to a hospital usually means
terminal care [5]. The surveys also found that about 20% of the
residents admitted to RC would be transferred to NC sometime
during their stay in ILTC; however, movements from NC to RC
rarely occur. Furthermore, due to their obligations to use public
funds for the purchase of RC and NC, most local authorities
have organized means of determining suitable care placements
for these residents. Therefore, these admissions usually reflect
the physical conditions and needs of the residents.

For administrative purposes, local authorities routinely col-
lect data about residents under their care such as date of admis-
sion, place of admission, date and place of transfer, and date
of discharge if applicable. Simple analysis of these data, such
as calculating the average LOS in care, are often performed in
attempt to extract useful information to aid planning. However,
due to the high degree of skewness that is common in this type of
LOS data, the use of average LOS, a single number, to describe
the overall LOS pattern gives incomplete and often misleading
information [6]. Hence, in order to discover and understand the
pattern of LOS for publicly funded residents in ILTC, a more
sophisticated approach to the analysis of this type of adminis-
trative data is required.

Traditionally, the analysis of LOS data belongs to a branch of
statistics called Survival Analysis [7], which typically uses LOS
data as a vehicle to study the effect of different patient features
on survival time. Whereas data mining approaches to the anal-
ysis of survival data; such as those based on decision-rules [8]
and artificial neural networks [9], are usually concerned with
predicting categorical survival outcomes for a given set of pa-
tient features (e.g., dead or alive at three years after treatment).
For these methods, the underlying random process that gener-
ates the observed LOS data is usually modeled implicitly. Other
methods, such as those based on flow modeling [6] and stochas-
tic processes [10], [11], concentrate on modeling the underlying
process explicitly and aim to capture high level patterns of LOS.
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In this paper, we extend a modeling approach previously
reported in [11] to study the pattern of LOS for publicly funded
residents in ILTC, and to take into account different types of
observation (e.g., censored and truncated) and the attributes
of individual residents (e.g., age and gender). We present the
findings of applying this modeling approach to data provided
by an English local authority, and their practical implications
are discussed.

II. DATA

The Housing and Social Service Department of the London
Borough of Merton (U.K.), like many local authorities in
England, has been working hard toward the better management
and delivery of their LTC system. For financial reporting
purposes, Merton has electronic spreadsheet files containing
records of annual payments made for publicly funded place-
ments in RC and NC. Information such as a resident’s unique
identification number, gender, age at admission, the name
of the care home and the corresponding starting date and, if
appropriate, the ending date and the reason for discharge (e.g.,
by death, or transfer to another home with the same type of
care or different type of care) are recorded.

For the purpose of this study, a cohort dataset containing
information for publicly funded residents who were present
in ILTC between 1 April 1997 and 1 April 2001 was created
from an anonymized dataset provided by Merton. This dataset
captured the type of care and the corresponding duration of the
care that was received for each resident through their stay in the
ILTC system. For example, a typical observation could be that a
resident was admitted to RC, where he/she stayed for a couple
of years before being transferred to NC, where he/she stayed for
another year before being discharged by death.

The dataset contains 1244 records for 1071 publicly funded
residents. On 1 April 1997, there were 282 residents (138 in RC
and 144 in NC) in ILTC. During the four-year period, there were
889 new admissions (438 to RC and 451 to NC), and 73 RC
residents were transferred to NC. On 1 April 2001, there were
436 residents in care (250 in RC and 186 in NC).

There are three different types of observation in the dataset.
Residents present in the system on 1 April 1997 have left-
truncated observations; i.e., we have no information on those
who joined the system with them at the same time but discharged
before the starting date of the dataset. Residents present on 1
April 2001, the ending date of the dataset, as well as those
who are “lost” during observation (for example, move to an-
other local authority) have right-censored observations; i.e., we
only know that they have been in the system for a period of
time but do not know when they will be discharged in the fu-
ture. We have complete observations for those residents who
joined and were discharged during the period. These different
types of observation are illustrated in Fig. 1, in which case 1
is a complete observation; cases 2 and 3 are right-censored
observations; case 4 is left-truncated; and cases 5 and 6 are
both left-truncated and right-censored observations. These ob-
servations should be treated appropriately when analyzing the
data [12]. This is especially true for left-truncated observations
since the longest observation we have will only be as long as

Fig. 1. Different types of observation in dataset. “×” represents discharge, and
“|” represents observation is “lost”.

the data observation window, which will lead to underestimat-
ing the survival time of those who stay a very long time in the
system.

III. METHOD

A. Modeling the Movement of Elderly People in ILTC

Research in the U.K. has shown that the mortality rate for
publicly funded residents in NC is particularly high in the first
few months, and then gradually levels out [5], [13]. This ob-
servation supports the notion of different phases in the stay of
residents in care homes. In a previous study [11], we presented a
continuous-time Markov model for the flow of elderly residents
within and between RC and NC. The model, shown in Fig. 2,
uses a combination of states (e.g., a short-stay state and a long-
stay state) to capture the flow of residents through each type
of care. For instance, a person admitted to RC might stay for a
short period of time, then is either discharged (predominantly by
death) or transferred to NC; or settle down and become a long-
stay resident in RC. Eventually the person is either discharged or
transferred to NC for further stay. The rare movements such as
discharge home and transfer from NC to RC are not considered
in this model. The structure of the model is relatively simple
and conceptually intuitive to many practitioners working in the
LTC system.

In this model, the actual state spaces (S1, S2, etc.) of the
Markov model are aggregated to form super-states called classes
[14]. There are three classes in this model, namely RC, NC, and
Discharge; and we observe these classes instead of the actual
states. For example, we observe that a person is in RC, but do
not know whether the person is in the short-stay state (S1) or in
the long-stay state (S2).

Given the structure of the Markov model, the generator matrix
Q is written as

Q =




q11 q12
... q13 0 ... q15

0 q22
... q23 0 ... q25

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 ... q33 q34

... q35

0 0 ... 0 q44
... q45

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 ... 0 0 ... 0


 (1)

where qij is the instantaneous transition rate between state i and
state j(i �= j), and the diagonal elements qii = −

∑
j �=i qij are

defined so that row sums are zero. This matrix is partitioned
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Fig. 2. Markov model for the movement of publicly funded residents in ILTC.

according to the class structure of the model as

Q =


QRR QRN QRD

0 QN N QN D

0 0 0


 (2)

where the submatrices correspond to the block matrices de-
limited by dotted lines in (1), and the subscripts R,N , and D
represent the classes RC, NC, and Discharge, respectively.

Given the structure of the states within a class, the LOS in both
RC and NC follow Coxian distributions [15] with probability
density function of the form, say, for class A [16],

fA (t) = −φT
A exp(QAAt)QAA1 (3)

where φA is a column vector of the probabilities of entering
class A via each of its member states. For instance, for the
model depicted in Fig. 2, φR = (1, 0)T for RC. Throughout,
we use MT to denote the transpose, and M−1 the inverse of a
matrix M .

The dataset provided by Merton captures, for each resident,
their pathway and corresponding duration in each class visited.
Formally, let the random variables C represent the sequence
of classes a resident visited, and T the corresponding duration
in each of the classes in C. In this case, the domain of the
elements in C is the set {R,N,D}. Therefore, an observation
for a resident who was admitted to RC, where he stayed for a
time t1 before transferring to NC where he has been staying for
t2 so far, would be represented as c = (R,N) and t = (t1, t2).
However, if that resident died after spending t2 in NC, the
observation would be represented as c = (R,N,D) and t =
(t1, t2, 0). Throughout this paper, we use the convention that
the duration in Discharge is zero, or in other words, a process
stops upon reaching the absorbing state.

In general, the likelihood of observing c and t given the
Markov model is

l(θ|c, t) =
φT

c1
exp(Qc1c1t1)Qc1c2

φT
c 1

exp(Qc 1c 1
t∗1)Q

−1
c 1c 1

Qc 1c 2

φT
c 1

Q−1
c 1c 1

Qc 1c 2

×




r−1∏
j=2

exp(Qcj cj
tj )Qcj cj +1




× exp(Qcr cr
tr )1 (4)

where θ denotes the set of parameters, here the transition rates
qij , of the Markov model; r is the number of classes in c; and t∗1
denotes the time spent in class c1 (the first element of c) prior
to 1 April 1997, the starting date of the dataset. Thus t∗1 = 0 if
a resident were admitted after 1 April 1997. Here, the division
of vectors is defined element-wise [17]. The first term in (4)
handles the left-truncated part (t∗1 > 0) of an observation, and
is the probability density of staying in class c1 for t1 and jumping
to c2, conditional on the probability that the resident has been
in c1 for t∗1 already, and will eventually jump to c2. The product
term in the second line of (4) calculates the density of visiting
all intermediate classes of an observation. The final term in
(4) handles the right-censored part (tr > 0) of an observation.
One special case is that a resident remains in the same type of
care throughout the data availability period. In this case, the
likelihood of such an observation is

l(θ|c, t) =
φT

c1
exp(Qc1c1

t1)

φT
c1

exp(Qc1c1
t∗1)

1. (5)

Therefore, for a dataset containing observations of n resi-
dents, the log-likelihood of observing these n pairs of c and t
given the Markov model is

L(θ) = log

{
n∏

i=1

l(θ|ci , ti)

}
=

n∑
i=1

log{l(θ|ci , ti)}. (6)

We fit the Markov model to observed data by choosing a set of
values for θ which maximize the log-likelihood function (6).

We follow the two stage procedure for fitting the Markov
model to observational data, which was developed in [11].
Briefly, the first stage determines the structure of the model (the
number of states in each class) by fitting Coxian distributions
with increasing number of phases (or states) to observed LOS
data in each class separately. The number of states is chosen
based on the Bayesian information criterion (BIC) [18], which
is a measure representing a compromise between model com-
plexity and goodness-of-fit. Once the structure of the Markov
model is specified, we proceed to fit the Markov model to the
overall LOS data. All model fitting is conducted by maximizing
the log-likelihood function using general purpose optimizers
such as those available from MATLAB [19].
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B. Incorporating Residents’ Features

The Markov model described in the previous section assumes
that all transition rates are constant for all residents. This can
be restrictive, considering the vast diversity that exists among
residents. Therefore, it is desirable to extend the model to take
into account residents’ features.

We assume there exist measurements on p features (also called
attributes or covariates) X1, . . . , Xp for each resident upon ad-
mission to each type of care. Then for the kth resident, with
observation xk = (1, xk1, xk2, . . . , xkp), the transition rate be-
tween states i and j(i �= j), where transition from i to j is
possible, can be written as

qij,k = exp
(
βT

ijxk

)
(7)

where βij is a vector of coefficients. The exponential function
ensures the constraint that all transition rates are positive. A
feature that has significant effect on a transition rate (hence
on LOS) will have its corresponding coefficient significantly
different from zero. Under this formulation, the coefficients βij

become the model parameters and are estimated by numerically
maximizing the log-likelihood function (6).

This approach, which consists of incorporating residents’ fea-
tures into the Markov model via a log-linear function (7), is rela-
tively straightforward, and is similar to that taken by [10]. How-
ever, the number of parameters to be estimated grows rapidly as
the number of features increases.

IV. RESULTS

In this section, we apply the modeling approach outlined in
Section III to the dataset described in Section II to discover
trends and differences in patterns of LOS for publicly funded
residents in ILTC in Merton. We first apply the methodology
to study the main pattern of LOS. Then, we demonstrate, with
two examples, that the incorporation of residents’ features can
reveal further insights into LOS patterns.

A. LOS Pattern for Publicly Funded Residents in ILTC

The Markov model was fitted to the Merton dataset using
the two stage model fitting procedure described previously. As
found in [11], the first stage fitting suggested one state in RC
and two states in NC, which means q12 = q23 = q25 = 0 in
Fig. 2. The second stage fitting converged quickly and suc-
cessfully. The estimated parameters are summarized in Table I.
Comparing these results with those in [11], where left-truncated
observations were not taken into account, the estimated values
change only slightly; as expected, the incorporation of left-
truncated observation decreases the estimated mortality rates
q15 in RC and q35 and q45 in NC.

The results reveal some interesting findings on patterns of
LOS for publicly funded residents in ILTC in Merton. A single
state in RC indicates that residents depart from RC in a homoge-
neous fashion; i.e., there is a constant rate of departure from RC.
The average LOS in RC is estimated to be 1/(q13 + q15) = 973
days (about 2.7 years). Upon leaving RC, about 78% (estimated
by q15/(q13 + q15)) of the residents will be discharged (perma-

TABLE I
ESTIMATED PARAMETERS FOR THE MARKOV MODEL WITH LEFT-TRUNCATED

OBSERVATIONS. THE NUMBERS IN PARENTHESES ARE THE CORRESPONDING

ESTIMATES WITHOUT CONSIDERING LEFT-TRUNCATED OBSERVATIONS

REPORTED IN [11]

nently) and 22% will be transferred to NC. Two distinct states
are suggested in NC: a short-stay state with an average LOS
of 63 days and a long-stay state with an average LOS of 842
days (about 2.3 years). The rate of discharge from the short-
stay state is about five times that from the long-stay state. This
finding agrees with empirical observations that initial mortal-
ity is higher for the first few months following admission to
NC [5], [13]. About 62% (estimated by q34/(q34 + q35)) of the
publicly funded residents entering NC will become long-stay
residents. Furthermore, the average LOS in the long-stay state
in NC is found to be similar to that of RC. This suggests that once
NC residents pass through the short-stay state, their LOS pattern
is similar to those in RC. Hence, the short-stay state may repre-
sent some sort of “settle-in” period for residents admitted to NC.

We can graphically examine the pattern of LOS by plotting the
survivor curve. In this case, a survivor curve shows the probabil-
ity that a resident will remain in care after a period of time. Fig. 3
shows the survivor curves for LOS in RC and NC estimated by
a Kaplan–Meier-type estimator [20] (jagged lines) with 95%
confidence intervals (dotted lines), and those estimated by the
fitted Markov model (smooth lines). The Kaplan–Meier estima-
tor is a nonparametric maximum likelihood estimator of survivor
probability [7]. Therefore, without making any parametric as-
sumption about the underlying distribution of LOS and in the
presence of censored data, the Kaplan–Meier estimated survivor
curve (the jagged lines) can be regarded as representing the ob-
served data. The close agreement between these survivor curves
suggests that the fitted model captures the overall behavior of
the LOS pattern. The initial sharp drop of the survivor curve
for NC residents is captured by the use of a short-stay state in
addition to a long-stay state in NC in the Markov model. This
corresponds to the empirical observation that mortality is higher
in the few months following admission to NC. It is also evident
from the plots that after the initial drop, the survivor curves in
RC and NC are almost parallel, suggesting that the LOS pattern
for long-stay residents in NC is similar to those in RC.

B. Difference in LOS Pattern Among Residents in NC

The Markov property implies that the LOS pattern for resi-
dents admitted to NC directly is the same as for those transferred
from RC. However, there might be reasons to believe that a per-
son who spent a long time in RC might also stay for a long
time in NC. In other words, there might be strong correlation
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Fig. 3. Kaplan–Meier type estimated (jagged line) with 95% confidence interval (dotted lines), and Markov model fitted (smooth line) survivor curves of LOS,
for (a) RC, and (b) NC for the Merton dataset.

Fig. 4. Scatter plot of LOS in RC and NC among NC residents who were
transferred from RC in the Merton dataset. Grouping is based on whether a res-
ident was alive (right-censored observation) or had been discharged (complete
observation) on 1 April 2001. The dotted lines correspond to the locally fitted
smoothing curves.

between LOS in RC and the subsequent LOS in NC. To test
this hypothesis, we use our model to investigate the possible
differences in LOS pattern among NC residents in the Merton
dataset; that is between those admitted to NC directly and those
transferred from RC.

We treated LOS in RC (being zero for those who were admit-
ted to NC directly) as a resident’s feature. Two different ways
of incorporating this feature into the model were considered,
namely, Model 1: LOS in RC as a continuous variable, and
Model 2: previous presence in RC as a binary variable, where
“1” represents having stayed in RC prior to admission to NC.
Therefore, including the base model (Model 0) that does not
take into account previous LOS in RC, there are three models
under consideration.

Comparisons between these (nested) models, based on the
likelihood ratio test statistics, show that the incorporation
of the feature provided no significant improvement over the

TABLE II
ESTIMATED PARAMETERS OF THE MODEL TO STUDY THE EFFECT

OF GENDER ON PATTERN OF LOS IN ILTC

base model, judging at 5% significance level (Model 0 ver-
sus Model 1: X2 = 5.36, p = 0.1473; Model 0 versus Model
2: X2 = 4.60, p = 0.2035). Therefore, the fitted result did not
suggest a significant difference in LOS pattern between NC resi-
dents transferred from RC and those admitted directly. A scatter
plot of the LOS data for NC residents who were transferred (see
Fig. 4) shows no clear relationship between LOS in RC and sub-
sequent LOS in NC. This finding is consistent with the result of a
formal hypothesis test commonly used in the analysis of survival
data; see, e.g., [7], (log-rank test, WL = 1.875, p = 0.1709).

C. Gender Difference in LOS Pattern

A recent national survey in care homes in England showed
that the survival prospect was particularly poor for publicly
funded male residents admitted to NC, especially in the first
few months following admission [5]. We use our model to study
whether there is a significant difference in LOS pattern between
male and female residents in ILTC, and to quantify this differ-
ence if it exists.

We parameterized the model to incorporate gender as a fea-
ture. More specifically, the transition rate between state i and
state j (where transition from state i to state j is possible) for
the kth person is written as qij,k = exp(aij + bij xk ), where
xk = 1 if the person is male and xk = 0 otherwise.

The model was fitted to the Merton dataset with the feature
(gender) entering each transition rate in a sequential manner.
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Fig. 5. Kaplan-Meier estimated (jagged line) and Markov model fitted (smooth line) survivor curves of LOS for female (black color) and male (grey color)
residents in (a) RC and (b) NC.

The competing models were tested by the likelihood ratio test
statistic. The final model showed that gender had a significant
influence on transition rates q13 and q34 (see Table II).

A significant b13 suggests that there is significant difference
in LOS pattern between male and female RC residents. The av-
erage LOS for male residents in RC is estimated to be 819 days
or 2.2 years (estimated by 1/(ea13+b13 + ea15)), which is al-
most 20% shorter than that of female residents (1011 days or
2.8 years). Upon leaving RC, 18% of female residents and 34%
of male residents will be transferred to NC. In other words, on
average, male residents have a shorter stay in RC, and are 16%
more likely to make the transition from RC to NC than female
residents.

The fitted result also suggests significant difference (due to
a significant b34) in short-stay patterns between genders in NC.
On average, male residents stay almost twice as long as female
residents in the short-stay state (98 days for male, and 51 days for
female). Having a longer average “settle-in” period means male
NC residents do not transit into the long-stay state as quickly as
female residents, which leaves them exposed for a longer period
of time to 22% higher risk of discharge. In other words, male NC
residents are more likely to be discharged earlier than female
residents. These findings quantify the empirical observations
that male residents admitted to NC take more time to settle
down [5] and have poorer short-term survival prospects than
female residents [21].

Fig. 5 shows the survivor curves estimated by the Kaplan–
Meier type estimator and those by the Markov model for both
genders in RC and NC. The difference in LOS pattern between
male and female residents following admission is apparent in
both plots. In particular, the sharper drop in survivor curve for
male NC residents is reflected by the significant parameter b34.
Furthermore, this difference diminishes as time passes, which
suggests that the LOS pattern in NC tends to be similar for both
genders once residents settle in their new care environment.

Standard statistical tests detected significant difference (judg-
ing at 5% significant level) in LOS due to gender (log-rank test,
for RC: WL = 4.431, p = 0.0353; for NC: WL = 5.846, p =

0.0156). However, these tests typically provide a global mea-
sure of whether significant differences exist, but not on where
these differences occur. Therefore, by incorporating gender into
the Markov model, our model complements standard techniques
and provides additional insights into the LOS pattern for pub-
licly funded residents in ILTC.

V. CONCLUSION

In this paper, we have developed a modeling approach to an-
alyze trends and differences in LOS patterns of publicly funded
residents in ILTC using routinely collected administrative data.
The flow of publicly funded residents within and between RC
and NC, as well as discharge from RC and NC, is modeled
using a continuous-time Markov model in which a resident’s
stay in both RC and NC is modeled as consisting of a short-stay
and a long-stay phase. Due to the nature of the data available
for this study, appropriate processing of different types of ob-
servations are needed when analyzing the data. In particular,
we have extended the model presented in [11] to take into ac-
count left-truncated observations as well as right-censored ones.
In addition, the model has been extended to incorporate resi-
dents’ features, and is able to provide additional insights into
the behavior of the flow of residents in ILTC system.

The approach presented in this paper can be regarded as
a model-based approach to the mining of an administrative
social-care dataset. The structure of the model was inspired
by domain knowledge of the system. Application of the ap-
proach to a dataset provided by the London Borough of Mer-
ton showed that such a conceptually simple model can capture
high-level behavior of a complex ILTC system, and provide
useful information for the planning and management of the
system.
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