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Abstract
Glaucoma is the second leading cause of blindness worldwide. Often the optic nerve head (ONH)
glaucomatous damage and ONH changes occur prior to visual field loss and are observable in vivo.
Thus, digital image analysis is a promising choice for detecting the onset and/or progression of
glaucoma. In this work, we present a new framework for detecting glaucomatous changes in the ONH
of an eye using the method of proper orthogonal decomposition (POD). A baseline topograph
subspace was constructed for each eye to describe the structure of the ONH of the eye at a reference/
baseline condition using POD. Any glaucomatous changes in the ONH of the eye present during a
follow-up exam were estimated by comparing the follow-up ONH topography with its baseline
topograph subspace representation. Image correspondence measures of L1 and L2 norms, correlation,
and image Euclidean distance (IMED) were used to quantify the ONH changes. An ONH topographic
library built from the Louisiana State University Experimental Glaucoma study was used to evaluate
the performance of the proposed method. The area under the receiver operating characteristic curves
(AUC) were used to compare the diagnostic performance of the POD induced parameters with the
parameters of Topographic Change Analysis (TCA) method. The IMED and L2 norm parameters in
the POD framework provided the highest AUC of 0.94 at 10° field of imaging and 0.91 at 15° field
of imaging compared to the TCA parameters with an AUC of 0.86 and 0.88 respectively. The
proposed POD framework captures the instrument measurement variability and inherent structure
variability and shows promise for improving our ability to detect glaucomatous change over time in
glaucoma management.
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I. Introduction
Glaucoma is a progressive optic neuropathy that, when left untreated, may result in progressive
vision impairment and eventual blindness [1]. It is the second leading cause of blindness in the
world next only to cataract [2]. Current estimates based on population based surveys predict
that there will be 60 million people worldwide affected by glaucoma in 2010, increasing to 80
million by 2020 [3]. Retrospective estimates of glaucoma related expenses such as
ophthalmologist visits, glaucoma related surgical procedures, medications, and other indirect
costs and services indicate an annual cost of about $1.2 billion to $2.5 billion in the US [4]–
[6].

The retina is a photoreceptive layer that is composed, in part, of about one million optic nerve
fibers originating from the neuron cell bodies within the ganglion nerve fiber layer. The nerve
fibers group together and form the nerve fiber bundle or optic nerves. These optic nerve fibers
run parallel to the retinal surface and exit the eye at the optic disk (blind spot) located in the
posterior end of the eye and carry visual electrical impulses to the visual cortex of the brain
for image formation. The optic disk region is usually referred to as the optic nerve head (ONH)
and exhibits a natural cup shape due to the arrangement of the optic nerves leaving the eye.
The natural arrangement of the optic nerves as they exit the eye results in a sloping region
called the neuroretinal rim and a deeper region called as an optic cup. Fig. 1 shows the ONH
topography of a primate subject from the Louisiana State University Experimental Glaucoma
study.

A detailed background on the pathophysiology of glaucoma is described elsewhere [7].
Because glaucoma is a chronic disease, it typically results in a gradual loss of nerve fibers
associated with retinal ganglion cells. The loss of nerve fibers causes characteristic changes in
the appearance of the retinal nerve fiber layer and eventual changes in the configuration of the
optic disk. Therefore, digital image analysis of the optic disk region is a rapid and promising
approach for detecting glaucomatous changes in the ONH region of an eye. Confocal Scanning
Laser Ophthalmoscope (CSLO), a class of confocal microscope that utilizes a rotating mirror
arrangement to scan an imaging area at various z-axis depths using laser light beams, can be
used to capture the 3-D architecture of the ONH region. The Heidelberg Retina Tomograph
(HRT; Heidelberg Engineering, GmbH, Heildelberg, Germany) and Topographic Scanning
System (TopSS; formerly of Laser Diagnostic Technologies, San Diego, CA) are two of the
CSLO instruments used for imaging the ONH region.

In the early stages of glaucoma, the characteristic changes associated with structural
glaucomatous damages may not be drastic and therefore, may not be obvious. Because
glaucoma is characterized as a progressive optic neuropathy, the diagnostic accuracy can be
improved by detecting changes in the ONH structure of an eye from a reference or baseline
condition. For detecting progressive glaucomatous changes, the ONH topographies
constructed from the follow-up CSLO exams are compared with the baseline topographies of
the eye. Two methods currently available for detecting topographic pixel-level glaucomatous
changes are: 1) a nonparametric permutation test based method known as the Statistic Image
Mapping (SIM) of the retina [8], and 2) an ANOVA model based change detection method
[9] available in the HRT software as Topographic Change Analysis (TCA).

In this work, we present a novel computational framework for detecting glaucomatous changes
in the ONH region of an eye at the original topographic resolution. The method was inspired
from the theory of proper orthogonal decomposition (POD) and its application in the analysis
of dynamics of turbulence in fluid mechanics [10]. POD is theoretically similar to Karhunen-
Loève expansion, Hotélling transform, and principal component analysis (PCA). Previous
related use of these techniques include facial recognition application [11]–[13], video scene

Balasubramanian et al. Page 2

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



change detection [14], estimating brain volume changes in patients with probable Alzheimer’s
disease [15], restoration of white-light confocal microscope optical section images [16] and
for detecting changes in the satellite images [17].

A brief background of the SIM and TCA methods is presented in Section II. The proposed
POD framework was tested using a library of ONH topographies of 12 primates built from the
Louisiana State University Experimental Glaucoma (LEG) study [18]. A brief description of
the ONH topographic library from the LEG study is presented in Section III. In Section IV,
we describe a semi-automatic optic disk rotational alignment algorithm using an FFT based
template matching algorithm that we used to correct for any rotational alignment errors in the
ONH topographies. Details of the POD glaucomatous change detection framework are
presented in Sections V and VI. The performance of the POD framework is compared with the
TCA and the results are presented in Section VIII. For demonstration, we use the ONH
topographies of subject 1D from the LEG study in all the figures (except Fig. 3).

II. Background
A. Statistic Imaging Mapping (SIM) of the Retina

The SIM of the retina method is based on suprathreshold cluster tests [19] wherein the locations
with statistically significant changes are chosen using a primary threshold (for example, the
locations with p < 0.05). Because glaucomatous structural changes affect a contiguous region
in the ONH, the locations with significant changes are further grouped into clusters and the
significance of the topograph-level progression are defined based on the significance of the
size of the largest cluster of significantly changed locations using a non-parametric permutation
test. The SIM of the retina method utilizes a slope-based test-statistic to estimate the primary
pixel-level changes in the topographic height measurements using a baseline and several
follow-up visits. Significance of the pixel-level test-statistics and the significance of the largest
cluster of significantly changed locations are estimated using nonparametric permutation tests.
The current SIM of the retina method requires a minimum of 7 follow-up exams to build a
reliable permutation distribution for the slope test-statistic and for the cluster-size significance
test.

B. Topographic Change Analysis (TCA)
The HRT TCA method utilizes a mixed-effect three-way ANOVA model to detect
superpixel level changes in the ONH topographies from a baseline exam to a follow-up exam.
A superpixel is a group of topographic height measurements from a neighborhood of 4 ×4
individual pixels pooled in the ANOVA model for a specific detection of localized changes.
The ANOVA model for detecting superpixel changes, with each superpixel containing 16
topographic height measurements from locations l = 1, 2, …, 16, from a baseline (at time t =
1) to a follow-up visit (at time t = 2) using a set of N topographies each acquired at the baseline
and follow-up visits, is given by

(1)

where, htli is the retinal height at location l (within a superpixel) in topography i acquired at
time t; μ… is the mean retinal height in a superpixel location (computed using topographic
height measurements from all valid t, l, and i indices in a superpixel); T is the main effect of
the time factor T; L is the main effect of the location factor L; I(T) is the main effect of the

random image factor I with independent ; TL is the two-way interaction effect
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between the time factor T and the location factor L; and εtli is the model error with independent
.

The significance of the mean retinal height change at each superpixel location is estimated
using Satterthwaite’s approximate F-test. For each follow-up exam, a change significance map
is constructed by identifying the superpixel locations with significant decrease in retinal height
from the baseline exam (i.e., locations with negative height change in the mean difference
topography and with change probability p < 0.05). Fig. 2 demonstrates the application of the
TCA using the TopSS topographies of a primate eye with experimentally induced glaucoma
from the LEG study.

For a specific detection of glaucomatous changes in a follow-up exam, superpixel locations
with significant decrease in retinal height repeatable in 2- or 3-successive follow-up exams are
grouped into clusters [20]. In TCA, commonly used summary parameters estimated based on
changes repeatable in 2- or 3-successive follow-up exams are: 1) size of the largest cluster of
superpixels with significant height decrease within the optic disk margin (CSIZE), 2)
proportion of the CSIZE measure to the optic disk size (CSIZE%), and 3) total number of
superpixels with significant height decrease within the optic disk margin [20]–[22].

III. ONH Topographic Library from the LSU Experimental Glaucoma Study
Glaucomatous changes in the ONH region, that may result in changes in the optic disk
configuration and/or in the nerve fiber layer, originate either directly from the defects in the
underlying neuronal cell layers or indirectly influence the function of the neural cell layers and
cause eventual changes in the visual function of the eye. However, the order of the temporal
sequence of observing the ONH structural changes and the visual function defects in an eye
vary [23]. Although the visual function defects are associated with structural defects such as
dysfunction and death of retinal ganglion cells and loss of optic nerve fibers, the associated
structural defects may not always be visible in the retinal surface at the same time; i.e. the
topographic ONH surface changes are not temporally correlated with the visual function
changes. For example, when the initial damages occur in the deeper underlying layers of the
retina, changes in the visual function of the eye may be observed earlier than the appearance
of the structural changes in the ONH topographies. Due to this difficulty, currently, there is no
single gold standard available to define a glaucomatous progression in an eye. Current studies
utilize an operator evaluation of optic disk photographs and/or changes in the visual function
to define glaucomatous progression in an eye. Therefore, to evaluate a new glaucomatous
progression algorithm, it is an ideal choice to experimentally induce glaucoma in an eye,
wherein the state of an ONH is experimentally controlled during each follow-up exam. In
experimental glaucoma, the IOP of an eye is elevated above the normal level to induce optic
nerve damages.

In this study, we utilize a library of ONH topographies of 12 primates (24 eyes), built from the
LEG study [18], to evaluate the performance of the POD framework. Details of all aspects of
the LEG study have been described previously [18]. In brief, one eye of each primate was
treated with laser to induce glaucoma (glaucoma induced study eye) and the other eye is
untreated (contralateral normal eye). The ONH of both the glaucoma induced study eye and
the contralateral normal eyes of all the primates were imaged every two weeks. During each
imaging sessions, 6 ONH topographies of each eye were obtained to characterize the
topographic measurement variability of an eye within each imaging session. The IOP in the
glaucoma induced study eye of each of the 12 primates were elevated by treating the trabecular
meshwork with argon laser. Prior to inducing IOP elevation in the glaucoma induced study
eyes, the ONH of both the eyes were imaged during three separate baseline imaging sessions
(N1, N2, N3) spaced at least two weeks apart. After elevating the IOP level in the glaucoma

Balasubramanian et al. Page 4

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



induced study eyes, both the glaucoma induced study eyes and contralateral normal eyes were
imaged every two weeks as mentioned earlier. A summary of the pre- and post-laser imaging
sessions of all the primates at 10° and 15° field of imaging is presented in Table I. Out of the
6 topographic scans acquired during each imaging session, a minimum of 4 topographies were
required to be of good quality and the poor quality scans were discarded. Imaging sessions
with less than 4 good quality scans were repeated. A total of 2,098 good quality ONH
topographies at 10° field of imaging and 2,107 good quality ONH topographies at 15° field of
imaging are available in the LEG study library.

TopSS—a confocal scanning laser ophthalmoscope (CSLO), was used to image the ONH of
the primates. Principle of a CSLO and the details of TopSS have been described previously
[18]. In brief, TopSS has a lateral digital resolution ranging from 11μm at 10° field of imaging
to 35μm at 30° field of imaging and an axial resolution of ~300μm (full width at half maximum).
Reproducibility of topographic measurements are 20μm laterally and better than 30μm axially.
TopSS constructs a topography that represents the surface of the ONH from a set of 32 optical
serial section images of the ONH region. The optical section images, each of size 256 ×256
pixels, correspond to the ONH structure at various depths and collectively represent the 3D
structure of the ONH. A least squares fit algorithm is used to register the optical section images
of a scan using one of the optical sections from the scan as a reference [18]. An ONH topography
is constructed by identifying the maximal reflectance value at each pixel position among all
of the 32 registered optical section images (see Fig. 3 for an example of constructing a ONH
topography from optical section images). Thus, a topographic surface is expected to represent
the vitreo-retinal interface in an eye. Topographies acquired during follow-up imaging sessions
are registered to one of the baseline topographies using a least squares fit algorithm [18]. The
imaging angle of the instrument can be set to acquire images at either 10 ° or a 15 ° field of
imaging while maintaining the same digital imaging area of 256 ×256 pixels. ONH
topographies at 10 ° field of imaging are at a higher resolution compared to the topographies
at 15 ° field of imaging and therefore, incorporate more ONH details as shown in Fig. 1.

The TopSS software allows studying changes in the optic disk configuration by manually
drawing an ellipse on the outer margin of the neuroretinal rim or the inner margin of the scleral
ring in the baseline exam of an eye. In the LEG study, a TopSS operator manually chose one
of the ONH topographies from the baseline imaging session of an eye as a reference and
selected ellipse parameters a and b and coordinates (x0, y0) appropriate for the ONH being
imaged to manually mark the optic disk margin. Because the shape of an optic disk is vertically
oval [7], TopSS aligns the major axis of the ellipse along the y-axis (i.e. at an orientation angle
of 90°). The ellipse parameters were automatically transferred to each of the follow-up ONH
topographies upon registration and is useful in determining the glaucomatous changes over
time in the neuroretinal rim and optic cup. Further, the operator selected a set of new ellipse
parameters and coordinates when there was a significant change in the shape of the optic disk
during a follow-up or when the ellipse transferred to a follow-up topography by the TopSS
software did not adequately fit the optic disk margin. Ellipse parameters from the most recent
imaging session of an eye, approved by the TopSS operator, were applied to the subsequent
follow-up exams of the eye.

Our evaluation of the time series of TopSS ONH topographies from the LEG study library
revealed rotational misalignment errors as large as ~18° among baseline and follow-up
topographies of an eye; for example see Figs. 4a, 4c and 4f for the topographies of subject 1D
from imaging sessions N1, N2 and 06 respectively. The operator evaluation of the ellipses
transferred to the follow-up topographies guaranteed a more accurate ellipse fit for the optic
disk and more importantly allowed to correct any translational errors (i.e. vertical and
horizontal shifts) among ONH topographies after automated alignment of topographies using
the TopSS software. However, the topographies from the library revealed that, this procedure
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did not adequately account for any rotational errors not corrected by the TopSS registration
algorithm. Because both the POD framework and the TCA method detect localized pixel-level
changes, their detection accuracies are dependent on the alignment of the baseline and follow-
up ONH topographies of an eye. Therefore, we corrected any rotational misalignment among
the ONH topographies using an FFT based template matching algorithm and the details are
presented in the next section.

IV. Rotational Alignment of TopSS Topographies
Rotational misalignment between a baseline and a follow-up topography with a common
center, can be estimated as a translation along the θ-axis in the polar coordinates [24].
Topographies, in the cartesian coordinate system, can be transformed to polar coordinates by
interpolating radial pixel intensities along the r-axis at various angles θ from the topographic
height matrix. For example, pixel intensity at a radius r and an angle θ can be determined by
interpolating the pixel intensity at (x = r cos θ, y = r sin θ) from the topography. We used
bilinear interpolation for transforming ONH topographies to polar coordinates. Fig. 4a shows
an ONH topography of subject 1D from baseline session N1 (in cartesian coordinate) and Fig.
4b shows its corresponding polar coordinate representation for a circular region shown in Fig.
4a. Manual evaluation of the ellipse fit for the optic disk margin by a trained TopSS operator,
as mentioned in section III, corrects for any horizontal and vertical shifts of the optic disk
region in the follow-up imaging sessions with reference to a baseline topography.

The optic disk region (ODR) enclosing the profiles of peripapillary arteries and veins in ONH
topographies were used to estimate the rotational misalignment errors. The rotational
misalignment angle in a follow-up ODR can be determined using a template matching
algorithm [25]. Let Ibl and If up represent the baseline and follow-up ODRs, respectively, in
the cartesian coordinates. Let Îbl and Îf up are their respective transformations to polar
coordinates. The template matching algorithm uses a gray scale region of size Q ×R from Îbl
at location (ir − t, iθ − t) as a template It. The template It from the baseline topography Îbl is
matched against various gray scale regions in the follow-up topography Îf up, each gray scale
region of size Q×R with origin (ir, iθ), to determine the region in Îf up that results in a best match
with the template It. A similarity or dissimilarity measure is commonly used in the template
matching algorithm to identify the degree of match or mismatch between various gray scale
regions in Îf up and the template It. The similarity/dissimilarity measure chosen for template
matching should account for any changes in the lighting conditions and gray scale intensity
variations in If up. A normalized correlation measure adapts to the characteristics of the pixel
intensity variations and changes in the lighting condition between imaging sessions. Thus, it
results in a maximum correlation value at the location of best match [25]. Normalized
correlation, C(ir, iθ)(It, Îf up), between the template It and a gray scale region from Îf up at (ir,
iθ) can be computed as,

(2)

where, ir and iθ represent the indices along the r-axis and θ-axis respectively. The location
(ir − best, iθ − best) in Îf up that gives the highest correlation value in (2) represents the origin of
a gray scale region in Îf up that matches best with the template It. Given a resolution of Δθ°
along the θ-axis, an estimate of the rotational misalignment between the baseline topography
Ibl and the follow-up topography If up is given as (iθ − t − iθ − best) * Δθ°. Now the ODR If up
can be rotated by (−(iθ − t − iθ − best) * Δθ)° to align with the baseline ODR Ibl. In all primates,
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misalignment along r-axis (i.e. ir − t − ir − best) was minimal and therefore, we retained the
respective ellipse center coordinates (x0, y0) of each follow-up exam.

A faster, yet, a reliable template matching method using a normalized correlation measure as
in (2) can be implemented using FFT [25], [26]. With ℱ representing the Fourier transform,
the numerator of (2) can be efficiently implemented as a convolution of Îf up with It in the

frequency domain as ℱ−1(ℱ (It) ℱ (Îf up)*). The first normalizing factor in (2)
due to the template is constant irrespective of the moving window location (ir, iθ). The second

normalizing factor varies with the moving window location (ir, iθ). It can

be implemented as a convolution of with a kernel {MaskQ×R: Mask(i, j) = 1, ∀i, j} used for
selecting various regions in Îf up. FFT based normalized correlation measure invariant to gray
scale intensity and lighting changes, C(It, Îf up), can be computed as

(3)

Our implementation of the FFT based normalized template matching algorithm in MATLAB
ver. 7.6 provided a significant improvement in computational speed compared to the direct
normalized correlation based template matching technique. For e.g., searching a template of
size 50×50 pixels in an image of size 256×256 pixels took 0.056 seconds using the FFT based
method compared to 4.8 seconds using the direct method.

For estimating true translations along the θ-axis (i.e. rotational error), the template chosen for
matching should enclose spatial relationships between features that are unique and stable
during follow-up imaging sessions. The spatial arrangement of arteries and veins branching
out from the optic disk region is relatively stable during the disease process and therefore, can
be utilized to identify rotational misalignment errors. In contrast, due to glaucomatous
progressive changes during follow-ups, the shape of the optic disk may change significantly
from a baseline condition. Therefore, to improve the rotational error estimates, we excluded
the optic disk region and utilized arteries and veins in the peripapillary retina while choosing
a template It from Îbl. Fig. 4b shows a template of radius ~20 pixels that touches the outer
border of the optic disk. As the ellipse fits the optic disk margin, the inner radius of the template
can be chosen to be slightly greater than the major axis parameter b of the ellipse. We used
templates of width ~20 pixels along the r-axis from the inner radius (see Fig. 4). ONH
topographies of subject 1D at imaging sessions N2 and 06 are shown in Figs. 4c and 4f
respectively. Figs. 4d and 4g show their corresponding polar coordinate transformations along
with the gray scale regions that provided the best match with the template It chosen from Îbl
shown in Fig. 4b. The ONH topographies from sessions N2 and 06 after rotational corrections
are shown in Figs. 4e and 4h respectively.

V. Building an Optimal Baseline-subspace of the ONH of an Eye Using POD
A proper orthogonal decomposition of an ensemble of vectors provides an optimal set of
orthogonal basis vectors that span the entire ensemble space [27] and guarantees the best k-
term orthogonal expansion, in a mean squared error sense, among all the orthogonal transforms
[28]. POD decorrelates a given ensemble of signal by discovering an orthogonal basis set that
is specific and optimal for the signal under consideration as opposed to analyzing the signal
using an off-the-shelf wavelet basis or Fourier transform.
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Let, be a set of expectation-centered grayscale ODRs from the ONH topographies
acquired at a baseline or reference condition of an eye Es of a given subject s. The ensemble
of baseline ODRs is expected to characterize the topographic measurement variability
introduced by the imaging instrument and more importantly characterize the ONH structure
of the eye Es at a baseline condition. Let, S ×T be the size of each of the ODRs in the ensemble,
where S, T ≤ 256 (because TopSS topographies were of size 256×256 pixels). The ODR
dimension S×T depends on the size of the optic disk and our choice was guided by the ellipse
parameters a and b that mark the optic disk margin. The details of our ODR selection are
presented in section VI. An ODR ensemble matrix XST×N is constructed using the column-
formatted ODRs from the ensemble , where N is the ensemble size. For example,
an ODR Ibl(i)S×T will be reformatted as Ibl(i)ST×1 and will form the ith column of the ensemble
matrix XST×N.

Using POD, each of the ODRs Ibl(m) in the ensemble can be expanded as

(4)

Here, E is the expectation, {λi} are the eigenvalues and {φi} are the eigenvectors of the
covariance matrix R ∈ ℝST×ST computed as R = XXT. In the discrete case,

(5)

Thus, the eigenvectors Φ computed using the covariance R of the ensemble matrix X form an
optimal orthogonal basis for the baseline ODR ensemble. The existence of Λ = {λi} and Φ =
{φi} in (5) is guaranteed by the Mercer’s theorem [29] analogous to the spectral decomposition
of symmetric matrices [30]. The eigenvectors and eigenvalues of R can be computed using a
direct computation or using a reduced computation technique called the method of snapshots
[10], [27].

The eigenvectors Φ = {φi} in (5) that form the orthogonal basis for the ensemble can be derived
using a singular value decomposition (SVD) of the ensemble matrix X as follows.

(6)

(7)

The left singular vectors U span the column of the ensemble matrix X and thus, form the basis
of the ODR ensemble. Solving the eigenvalue problem in (7), for the ODR ensemble matrix
X formed using the baseline ensemble {Ibl(m)S×T}, requires solving a ST ×ST system, where
ST ≤ 65,536. Although computational resources are available for solving such a massive
eigenvalue problem, it is unnecessary for the problem under consideration. Moreover, the
ensemble matrix X is singular and does not require a full dimension to describe the ensemble
elements. The dimension of an optimal orthogonal basis needed to describe the ensemble is
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N. Thus, a reduction in the basis computation can be achieved using a reduced SVD approach
as follows.

(8)

The right singular vectors V and the eigenvalues Λ can be computed from (8). This requires
solving a N ×N system. Further, the left singular vectors U can be computed from (6) using
X, V and Λ. The reduced SVD approach for determining an optimal ensemble basis provides
a significant reduction in computation when the ensemble size N ≪ ST, with an ODR size of
S ×T.

VI. Glaucomatous Change Detection Framework
Prior to applying the change detection framework described in this section, rotational
misalignments that we observed in the ONH topographic library from the LEG study were
corrected using the rotational alignment procedure described in section IV. In general, after
delineating the ODR of an eye by manually drawing a contour line (contour line is an ellipse
in the case of TopSS topographies and a spline curve in the case of HRT topographies) and
after aligning baseline and follow-up topographies of an eye, the following steps can be applied
to ONH topographies obtained at either 10° or 15° field of imaging to identify changes in the
ODR of the eye from baseline.

A. Topography Preparation
We selected ODR from each of the topographies by constructing a minimum bounding
rectangle of size (2a + 1) × (2b+1) with center (x0, y0) guided by the ellipse coordinates (x0,
y0) and parameters a and b that mark the optic disk margin in a topography. To select the same
area of ODR from all the exams of an eye for analysis, we chose ellipse parameters a and b
from one of the baseline exams of the eye and applied to each of the follow-up exams.
Alignment among baseline and follow-up exams were maintained by using their respective
ellipse center coordinates (x0, y0). Because any rotational alignment errors were corrected
before this step, using the same baseline ellipse parameters a and b for all the follow-up imaging
sessions ensured that a similar ODR was selected for analysis from all the imaging sessions of
an eye.

As mentioned earlier, let Ibl and If up represent the ODR extracted from the baseline and follow-
up topographies of an eye respectively.

B. Baseline-subspace Construction
An optimal orthogonal subspace at baseline was constructed for each eye as described in section
V using the ODRs of all the baseline topographies of the respective eye (ODR selected as in
step A). The optimal orthogonal subspace, called baseline subspace, describes the baseline
condition of an eye and is used to quantify changes in the ONH of the same eye observed during
a follow-up at a later time. The baseline topographies chosen for subspace construction should
characterize the variability in the appearance of the ONH at the baseline condition and the
measurement variability due to the imaging instrument. In the LEG study, the baseline imaging
sessions N1, N2 and N3 were scheduled at least two weeks apart before inducing an experimental
glaucoma in the glaucoma induced study eyes in order to capture the variability in the ONH
structure at the baseline condition. Therefore, we used topographies from all the 3 baseline
imaging sessions of an eye to construct the baseline subspace of the respective eye.
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Let represent the baseline subspace of an eye, where N is the size of the ensemble of
baseline topographies used for subspace construction. Fig. 5a shows an ensemble of baseline
ONH topographies from the pre-laser treatment imaging sessions N1, N2, and N3 of subject
1D and Fig. 5b shows a pictorial representation of a set of optimal POD basis vectors that form
the baseline subspace of the eye.

C. Representation of Follow-up Topographies in the Baseline-subspace
To determine changes in the ODR of a follow-up topography If up, we identified a topography
Îf up in the baseline subspace of the eye which is structurally similar and geometrically closer
(in a least-squared error sense) to the observed follow-up topography If up. Îf up is referred to
as the baseline subspace representation of the follow-up topography If up and can be uniquely
estimated as an orthogonal projection of If up in the baseline subspace as follows.

(9)

Fig. 6a shows the mean topographies from the pre- and post-laser treatment imaging sessions
of the contralateral normal eye of subject 1D and Fig. 6b shows their respective baseline
subspace representations. Fig. 7a and 7b show the mean topographies and their baseline
subspace representations for the glaucoma induced study eyes of subject 1D. The
corresponding TCA change significance maps for the contralateral normal eye and the
glaucoma induced study eye of subject 1D are shown in Figs. 6c and 7c respectively. For the
contralateral normal eye, it can be seen that the POD baseline subspace representation of the
ONH topographies from the follow-up imaging sessions (Fig. 6b) closely represent the
respective original ONH topographies (Fig. 6a). Because the laser-treated eyes changed
significantly due to the experimental glaucoma from the pre-laser treatment baseline condition,
the POD baseline subspace cannot accurately describe their post-laser treatment ONH
topographies as shown in Fig. 7b.

D. Quantifying ONH Changes in Follow-up Exams
It can be observed that when there are minimal or no changes in a follow-up exam from a
baseline exam, the baseline subspace of the eye can accurately describe the corresponding
follow-up topography. Therefore, glaucomatous changes in the follow-up ODR If up were
quantified by determining the correspondence in topographic measurements from locations
with decrease in retinal height between follow-up If up and its baseline subspace representation
Îf up. The degree of similarity between an optic disk region If up and its orthogonal projection
Îf up can be quantified using an image distance measure. We used L1 and L2 norms, correlation
coefficient, and an IMED parameter (described below) to quantify ONH changes in follow-up
exams.

1. L1 norm, NormL1 (If up, Îf up), computed as

(10)

2. L2 norm or Euclidean distance, NormL2 (If up, Îf up), computed as
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(11)

3. Normalized correlation coefficient computed as in (2)

The L1 and L2 norms give a measure of mismatch between If up and Îf up. Therefore, lower
values of L1 and L2 norms indicate a higher degree of similarity and proportionately lesser
change in the follow-up optic disk region If up from the baseline condition. The correlation
coefficient measures the degree of match between If up and Îf up. Therefore, a higher correlation
value indicates a higher degree of correspondence between them and lesser change from the
baseline condition. These metrics estimate the degree of similarity or dissimilarity by
determining their pixel-to-pixel correspondence between the optic disk region in a follow-up
topography and its baseline subspace representation. Therefore, they may be sensitive to even
small pixel movements and small deformation. The image Euclidean distance (IMED) [31]
takes into account any small pixel displacements while computing a correspondence measure.

Performance degradation in using Euclidean distance for image similarity measurement comes
primarily from the pixel-to-pixel correspondence used and is due to the orthogonal coordinate
system employed for measuring an image distance. The IMED overcomes this drawback by
assigning a varying weight to the adjacent pixels using a non-orthogonal basis. To account for
small pixel displacements, the IMED uses a nonorthogonal basis that assigns a varying weight
to the adjacent pixels while comparing a pixel value between images. Because insignificant
pixel movements are expected to be near their respective original pixel locations, a Gaussian
kernel based pixel weighing scheme would be a natural choice for the image similarity
measurement. The problem of determining an optimal non-orthogonal basis for computing the
IMED is avoided by using a metric coefficient matrix G induced from the non-orthogonal basis.
Using the symmetric positive definite matrix G, the IMED can be computed as a G-
innerproduct as follows.

If the standard deviation σ of the Gaussian kernel is far less than the dimension of If up, then
the construction of the metric coefficient matrix G can be avoided and hence, the IMED
computation can be significantly reduced as follows.

(12)

where Ĩf up can be computed by filtering Îf up using a Gaussian kernel of standard deviation σ.
In this study, we chose σ = 2 for IMED calculations. Fig. 8 shows the trend of the POD IMED
parameter and the TCA CSIZE parameter of the glaucoma induced study eye and the
contralateral normal eye of subject 1D.

VII. Performance Analysis
For evaluating the performance of the POD framework and TCA, we utilized estimates of area
under their respective receiver operating characteristic curves (AUC). The AUC gives a
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measure of average sensitivity of a diagnostic test for all specificity values and thus, provides
an overall diagnostic performance of the test. Refer to [32] for a recent literature survey on
receiver operating characteristic (ROC) curves and associated diagnostic measures.

For constructing the ROC curves of each of the progression summary parameters in the POD
framework and TCA, the respective progression summary parameters from each of the post-
laser treatment imaging sessions were grouped into a stable group and a progressing group.
The post-laser treatment follow-up imaging sessions (i.e. imaging sessions 01 and onwards)
from the glaucoma induced study eyes of all the primates were considered to be progressed
and the follow-ups from the contralateral normal eyes without any laser treatment were
considered to be stable. Using the DeLong’s non-parametric method of comparing correlated
ROC curves, we estimated differences in the AUC estimates (and 95% confidence intervals)
between the best performing summary parameter in the POD framework and one of the best
performing summary parameters in the TCA method. [33], [34]

VIII. Results
Fig. 9 shows the class-conditional nonparametric probability densities of the POD IMED
parameter and the TCA CSIZE parameter for the stable and progressing group of ONH imaging
sessions at 10° and 15° field of imaging. The probability densities for the progression summary
parameters were built using the adaptive mixtures method [35].

The ROC curves of the POD IMED parameter and the TCA CSIZE parameter at 10° and 15°
field of imaging are shown in Fig. 10. The AUC of all the POD parameters and TCA parameters
are listed in Table II. The IMED and L2 norm parameters in the POD framework resulted in
the highest AUC of 0.94 at 10° field of imaging and 0.91 at 15° field of imaging among all of
the progression summary measures. At 10° field of imaging, the difference in the AUC of 0.08
(95% CI = (0.04, 0.11); p-value < 0.0001) between the IMED/L2 norm parameters and the best
performing TCA CSIZE/CSIZE% parameters was statistically significant. The respective
AUC difference of 0.03 (95% CI = (0.00, 0.06); p-value = 0.063) at 15° field of imaging was
of borderline significance.

IX. Discussion
Glaucoma is a disease of progression characterized by progressive changes in the ONH
structure and/or visual function of the eye. Glaucomatous structural changes are often
characteristic in the neuroretinal rim, optic cup and the nerve fiber layer, while the exact role
of relevant structures such as lamina cribrosa are still under investigation. The POD framework
presented in this study focusses on detecting changes exhibited in the optic disk region in the
neuroretinal rim and optic cup and provides the highest diagnostic AUC measures, statistically
significant at 10° field of imaging, for the experimental glaucoma primate subjects from the
LEG study. Also the class-conditional probability densities of the POD IMED parameter has
the least error probability of 0.14 (estimated as the area of overlap between the probability
density functions of the stable and progression groups) at 10° field of imaging. The least error
probabilities associated with the POD parameters show promise for further performance
improvements using the POD framework at 10° field of imaging. Error probabilities at 15°
field of imaging are generally higher with a decrease in the AUC of 0.91 from 0.94 at 10° field
of imaging. This reduction in AUC and the associated increase in error probability is likely
due to the lower imaging resolution available at the 15° field of imaging and therefore, it is
preferable to acquire and use high resolution ONH topographies for analysis using the POD
framework.
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The pixel-wise change analysis technique of TCA analyze ONH topographies at 1/4th of the
original topographic resolution. Also TCA requires two or more additional follow-up exams
to confirm and establish confidence on a detected change. In contrast, the POD framework
analyzes the ONH structure at the original topographic resolution and detects glaucomatous
changes from a baseline condition using only a single follow-up exam.

Both the POD framework and the TCA method are sensitive to any topographic misalignments
because the analysis is carried out at the pixel level. The IMED parameter in the POD
framework can account for small topographic misalignments. In contrast to the TopSS
instrument, the latest HRT-3 instruments acquire high resolution topographic scans for analysis
(for e.g., compare TopSS topographies in Fig. 1 with HRT topographies in Fig. 3c) and utilize
an improved feature based alignment algorithm. With a more accurately aligned high resolution
ONH topographies from HRT, we expect a similar or an improved diagnostic performance of
the POD framework. Performance of the proposed POD framework in a larger group of human
participants from a population based glaucoma study will be investigated in a separate work.

Due to the anatomical arrangement of the ganglion cell axons exiting the eye, neuroretinal rim
is typically thicker in the inferior, superior, nasal and temporal region within the optic disk, in
that order, thus giving a characteristic shape to the optic disk and optic cup. Therefore, detecting
changes within the optic disk margin is expected to provide a specific detection of
glaucomatous changes in an eye. Other techniques such as TCA and SIM of the retina methods
define glaucomatous changes based on observed pixel changes within the optic disk margin.
Therefore in this work, we derived glaucomatous change summary parameters in the POD
framework based on topographic measurements within the optic disk margin. However, in the
POD framework, similar change summary measures can also be estimated in the peripapillary
retina for detecting nerve fiber layer defects.

In the current analysis, the POD framework does not have a graphical representation of pixel-
wise change locations. However, one of the advantages of the POD framework is that other
statistical and computational pixel-wise change detection algorithms can be integrated with
the POD framework. For example, after constructing the baseline subspace representations of
follow-up topographies in section VI-C, pixel-wise changes between follow-up topographies
and their respective baseline subspace representations can be estimated using a statistical
procedure as in the TCA method. Inducing other pixel-wise change detection algorithms within
the POD framework will be studied separately in a future work.

In TopSS, the optic disk region of an eye is delineated using a manually drawn ellipse with its
major axis along the y-axis. When the optic disk is tilted and not aligned along y-axis, the
ellipse fit may not accurately delineate the optic disk region of an eye. However, the effect of
this limitation on the current analysis is minimal because a similar region was chosen from
each of the baseline and follow-up exams of an eye for detecting change over time. HRT
instruments overcome this limitation by using flexible spline curves to accurately delineate the
optic disk region. Using the spline curve coordinates, optic disk region from HRT topographies
can be selected for analysis by constructing a minimum bounding rectangular region as
described in section VI-A.

X. Conclusion
We have presented a novel subspace approach for detecting glaucomatous progression in the
ONH region of an eye. An advantage of the POD framework is its ability to characterize the
topographic measurement variability due to the imaging instrument, and imaging conditions
and more importantly characterize the inherent variability of an ONH structure at a reference
or baseline condition. The POD framework constructs an optimal baseline subspace from a set
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of baseline topographies to characterize the baseline variability of an eye. Glaucomatous
changes in a follow-up exam, typically beyond the structural and measurement variability
observed at baseline, can be detected by comparing the follow-up topography with the baseline
subspace. The IMED and L2 norm parameters in the POD framework provide the highest
diagnostic accuracies at both 10° and 15° field of imaging. The POD framework provides the
best diagnostic accuracy when using high resolution topographies (i.e. TopSS scans at 10° field
of imaging) and therefore it is preferable to use high resolution scans for analysis using the
POD framework. The proposed POD framework can also be used with other imaging
modalities such as optical coherence tomography and scanning laser polarimetry for detecting
glaucomatous structural change over time and can also be extended for detecting visual
function changes.
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Fig. 1.
ONH topographies of subject 1D indicating differences in the resolution at 10° and 15° field
of imaging. The topographic surface represents the vitreo-retinal interface of the eye. An ellipse
is manually fit to mark the optic disk margin
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Fig. 2.
Detecting significant retinal height changes from the baseline session N1 to the follow-up
session 01 of subject 1D using topographic change analysis (TCA)
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Fig. 3.
An example demonstrating the construction of an ONH topography from a stack of HRT-II
ONH optical section images of a human study participant in the Diagnostic Innovations in
Glaucoma Study (DIGS) at Hamilton Glaucoma Center, University of California San Diego.
The reflectance value selection masks (in Figs. a and b) indicate locations in the respective
optical sections that have the highest reflectance value among all optical sections in the scan.
The ONH topography in Fig. c was constructed using the highest reflectance values at each
pixel location among all optical sections in the scan
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Fig. 4.
Follow-up ONH topographies of subject 1D show rotational misalignment after TopSS
software alignment (with reference to a baseline topography from session N1). All follow-up
topographies are aligned with the reference topography from session N1 using FFT based
template matching algorithm
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Fig. 5.
Constructing a set of optimal POD basis vectors that span the baseline subspace of the glaucoma
induced study eye of subject ID. The baseline subspace spanned by the POD basis vectors
(pictorial representation shown in Fig. b) captures the inherent structure variability and the
topographic measurement variability from the pre-laser session baseline topographies
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Fig. 6.
POD analysis and TCA of the contralateral normal eye of Subject 1D. The observed
topographies in Fig. a and their respective baseline subspace representations in Fig. b appear
more similar indicating less changes from baseline. For e.g., IMED 6,338 of the follow-up
imaging session 04 of the contralateral normal eye in Fig. 6b is lower compared to the IMED
14,681 of the post-laser session 04 of the glaucoma induced study eye in Fig. 7b
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Fig. 7.
POD analysis and TCA of the glaucoma induced study eye of Subject 1D with progressive
structural changes. Significant deepening can be visually observed (as increasing dark regions)
in the optic disk region in the observed post-laser follow-up topographies in Fig. a with respect
to their baseline subspace representations in Fig. b indicating significant changes in the
observed follow-up topographies from baseline (i.e. pre-laser). For e.g., IMED 14,681 of post-
laser session 04 of the glaucoma induced study eye in Fig. 7b is higher compared to the IMED
6,338 from the follow-up imaging session 04 in Fig. 6b of the contralateral normal eye
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Fig. 8.
POD IMED and TCA CSIZE parameter trend plots of subject 1D at 10° field of imaging
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Fig. 9.
Stable and progression class-conditional probability density functions of the POD IMED
parameter and the TCA CSIZE parameter.
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Fig. 10.
Comparative ROC curves and AUC estimates of the POD IMED parameter and the TCA
CSIZE parameter; ROC curves of other parameters were not plotted for clarity
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TABLE II
Estimates of area under the receiver operating characteristic curves (AUC) of the POD framework and TCA parameters

Parameters

10° field of imaging 15° field of imaging

AUC (95% CI) Error probability AUC (95% CI) Error probability

POD IMED & L2 norm 0.94 (0.91, 0.97) 0.14 0.91 (0.87, 0.95) 0.20

POD L1 norm 0.93 (0.90, 0.97) 0.15 0.91 (0.87, 0.95) 0.21

POD Correlation 0.92 (0.88, 0.95) 0.21 0.87 (0.83, 0.92) 0.22

TCA CSIZE & CSIZE% 0.86 (0.82, 0.91) 0.17 0.88 (0.84, 0.93) 0.13

TCA Total red-pixels 0.86 (0.82, 0.91) 0.21 0.88 (0.84, 0.92) 0.16
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