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Bluetooth-Based Sensor Networks for Remotely
Monitoring the Physiological Signals of a Patient

Ying Zhang and Hannan Xiao

Abstract—Integrating intelligent medical microsensors into a
wireless communication network makes it possible to remotely col-
lect physiological signals of a patient, release the patient from being
tethered to monitoring medical instrumentations, and facilitate the
patient’s early hospital discharge. This can further improve life
quality by providing continuous observation without the need of
disrupting the patient’s normal life, thus reducing the risk of in-
fection significantly, and decreasing the cost of the hospital and
the patient. This paper discusses the implementation issues, and
describes the overall system architecture of our developed Blue-
tooth sensor network for patient monitoring and the corresponding
heart activity sensors. It also presents our approach to developing
the intelligent physiological sensor nodes involving integration of
Bluetooth radio technology, hardware and software organization,
and our solutions for onboard signal processing.

Index Terms—Bluetooth, healthcare, physiological signals, wire-
less sensor network.

I. INTRODUCTION

N RECENT years, the focus of health policy has been
I shifting from providing more reactive and acute healthcare
in hospital toward providing more proactive and preventive
healthcare outside hospital [1], [2]. Because emergency
admission to hospital and lengthy stay at hospital are extremely
costly, and do challenge the available medical resources, the
mode of healthcare is being innovated to reduce and avoid these
circumstances. In fact, the reason for staying in hospital, in most
cases, is not because a patient actually needs active medical
treatment, but often because the patient needs continuous
observation for reliably detecting the progressive abnormalities
(e.g., the symptoms of a chronic disease), timely monitoring the
therapy effects, or avoiding occurrence of adverse events in the
recovery process of postsurgery. Meanwhile, early detection
of health anomalies can significantly reduce the emergency
admissions to large acute centers.

Therefore, medical society is seeking the technologies to be
able to advance healthcare by early detection of health anomalies
and by early discharge of patients from hospital with continuous
out-hospital observation. This has potential for not only reduc-
ing the risk of cross-infection, but also significantly decreasing
the cost of hospitals. However, most of current medical systems
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Traditional physiological signal measurement.

and instrumentations need tether the patients by unwieldy wires
connected to a confined area in the hospital so that the patients’
physiological signals can be measured and monitored for di-
agnosing a disease or for assessing the treatment effects (see
Fig. 1). These factors may limit the patients’ activity, decreas-
ing the level of comfort, and thus, negatively affecting measure
and diagnostic effects.

Wireless sensor network technology provides a useful method
to remotely acquire and monitor the physiological signals with-
out the need of disrupting the patient’s normal life, thus improv-
ing life quality [3]-[8]. Furthermore, integrating diverse med-
ical sensors together can combine medical information from
multiple sources, thus improving diagnostic accuracy of a dis-
ease, simplifying diagnostic procedure, and discovering poten-
tial knowledge through data fusion of all gathered information.
Actually, recent technology advances in wireless communica-
tion, micropower medical sensors, and network technologies
make it possible to design the new-generation healthcare sys-
tem, which brings together the abundance of existing specialized
medical technology with pervasive, wireless networks, and low-
cost, miniature, lightweight, intelligent physiological sensors.

However, most of recent efforts in health systems confine to
either physiological signal acquisition, data processing, and in-
terpretation [9]-[16], or the advance of a special aspect such as
networking challenges [17], medical sensors [18]-[20], physio-
logical data management system [21], and sensor node design.
For instance, BTnode [22]-[26] from Eidgendssische Technis-
che Hochschule Zurich is a prototyping platform for ad hoc
networks. It consists of an Atmel ATmegal28 microcontroller
and two separate radio modules. One is a low-power Chipcon
CC1000-based [27] industrial, scientific, and medical (ISM)-
band broadcast radio module, which operates in the frequency
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range of 433-915 MHz and uses proprietary protocols. The
other is a Zeevo ZV4002-based [28] Bluetooth radio module. It
supports Bluetooth specification version 1.2. The Zeevo Blue-
tooth radio module can be operated using parts of the Blue-
tooth protocol stack. Its Bluetooth stack supports the host con-
troller interface (HCI), Logical Link Control and Adaptation
Protocol (L2CAP), and RF communication (RFCOMM) lay-
ers, thus allowing for some interoperability with other Blue-
tooth devices. BTnode uses a threaded Nut/OS [29] operating
system for scheduling multiple threads, basic memory manage-
ment, events, synchronization, and streaming I/O and device
drivers. However, it does not support Bluetooth Service Discov-
ery Protocol (SDP). This requires users to manually configure all
connections, and thus, places the BTnode in between standards-
based and proprietary architectures.

Telos [30], [31] is the new generation of wireless sensor de-
vice (i.e., mote) from the University of California (UC) Berke-
ley. It features low power consumption, easy-to-use, and robust-
ness. It uses Texas Instruments (TI) Incorporated’s MSP430
microcontroller and Chipcon CC2420 [32] radio transceiver.
MSP430F1611 [33] is a 16-bit reduced instruction set com-
puter (RISC) processor with a built-in eight-channel 12-bit
A/D converter, serial peripheral interface (SPI) and universal
asynchronous receiver/transmitter (UART) peripherals, a two-
channel 12-bit D/A converter, a supply voltage supervisor, and a
direct memory access (DMA) controller. It can be operated at 6
MHz, and has 10 000 bytes on-chip RAM, 48 000 bytes built-in
flash memory, and 128 bytes of information storage. Chipcon
CC2420 is an IEEE 802.15.4 compliant radio transceiver that
operates in 2.4 GHz frequency band, and provides the physi-
cal layer (PHY) and some media access control (MAC) func-
tions. The CC2420 is controlled by the TI MSP430 microcon-
troller through the SPI port and a series of digital I/O lines
and interrupts. The radio module can be shut off by the micro-
controller for low-power duty-cycle operation. Telos mote uses
TinyOS [34] operating system.

The iMote2 was developed by Intel and UC Los Angeles. It is
based on PXA271 Xscale processor and uses a Chipcon CC2420
radio transceiver, which is a Zigbee (i.e., IEEE 802.15.4) radio
transceiver. This platform is stackable and allows for a multi-
tude of different sensors and power supplies to be attached. It
has 32 MB onboard flash memory and 32 MB onboard static
RAM (SRAM). iMote uses TinyOS operating system. It does not
support standard Bluetooth profiles, but adopts the customized
protocol layers that are written for TinyOS. These layers pro-
vide support for topology establishment and formation of both
single- and multihop networks. The use of TinyOS simplifies
code reuse from other non-Bluetooth mote platform. More in-
formation about iMote2 can be found in [35].

Milenkovic et al. [4], [5] presented the architecture, the is-
sues, and the implementation of a prototype of a wireless sensor
network for personal health monitoring; Chan et al. [36] imple-
mented a wireless sensor network for assessing the care needs
of residents in aged-facilities with multiple sensors: ECG, tri-
accelerometer, body temperature, and light intensity. Gondal et
al. [37] proposed a sensor network architecture that integrates
sensing and diagnosis methods together. Spadini er al. [38]
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implemented a portable monitoring system for ECG data; this
system also integrates the subject’s activity from accelerometers
and environmental data like temperature, humidity, and light in-
tensity, giving a better general picture of where the changes of
ECG data come from. However, these systems have the com-
mon disadvantage of wearability and lack of the combination
with medical data management systems.

The wireless health system described in this paper has sev-
eral key novelties: wearability, reconfigurability, and integra-
tion with medical data management system. It brings together
traditional medical technology with recent advances in wire-
less communication, micropower medical sensors, medical data
management, and network technologies. This system captures
physiological signals from a patient who requires constant mon-
itoring, and then, transmits the collected data to a medical center
or a hospital where medical personnel can remotely observe the
patient’s health status. National Semiconductor’s CP3SP33 con-
nectivity processor is adopted to design the sensor node and the
coordinator node. The main reasons for choosing CP3SP33 are
the following: 1) it is a 16-bit processor; 2) it has an on-chip
Bluetooth peripheral, a Universal Serial Bus (USB) 2.0 periph-
eral, and a 10-bit A/D converter; and 3) it supports different
low-power modes to reduce power consumption in different
operating situations.

This paper describes the overall system architecture of the
developed sensor network and the corresponding heart activity
sensors. It presents our approach to developing the intelligent
physiological sensor nodes, and our methods to integrate Blue-
tooth technology into these sensor nodes, hardware and software
organization, and our solutions for onboard signal processing.
This paper also discusses the implementation issues.

The remainder of this paper is organized as follows. Section II
presents the overall system architecture. Section III describes the
wireless personal area sensor network, the medical sensor node,
and the coordinator node, respectively. Section IV presents the
relevant software organization. Section V describes the appli-
cation scenarios and initial evaluation. Finally, the conclusions
are given in Section VI.

II. OVERALL SYSTEM ARCHITECTURE

This wireless medical system consists of three major parts:
medical sensors (i.e., sensor nodes), gateway module, and med-
ical server and the medical personnel’s terminals at remote loca-
tion (i.e., hospital). The diagram of the whole system is shown
in Fig. 2.

The part of medical sensors includes several sensor nodes.
Each sensor node may have several medical sensors. It is
equipped with the physiological signal conditioning circuits,
a microcontroller, and a Bluetooth interface. Each sensor node
can be configured to sense, sample, and process one or more
physiological signals. For example, an ECG sensor can be used
to collect the physiological signals for monitoring heart activ-
ity, an EEG sensor for monitoring brain electrical activity, an
electromyography (EMG) sensor for monitoring muscle activ-
ity, a blood pressure sensor for monitoring blood pressure, a
blood glucose sensor for measuring the density of glucose, a
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Fig. 2. Overall system architecture.

temperature sensor for monitoring the body temperature, a tilt
sensor for monitoring trunk position, and a breathing sensor
for monitoring respiration. Motion sensors can be used to dis-
criminate the patient’s status and estimate the level of activity.
In addition, some nonmedical sensors can be integrated into
this system architecture to acquire the environmental data like
temperature, humidity, and light intensity. These data may give
a better understanding where the patient is and whether these
factors affect the physiological data.

These sensors can be selectively configured to monitor the
respective physiological signal depending on the diagnostic de-
mands of a patient’s disease. The patient’s physiological signals
are collected by the medical sensors, initially processed by these
sensor nodes at the patient end, and then, the preprocessed data
are transmitted to the coordinator node, which is a part of gate-
way module, via Bluetooth connection.

The gateway module consists of two major parts: a coor-
dinator node with Bluetooth and USB interface, and a home
computer with USB and Internet interface (or a cell phone/a
personal digital assistant (PDA) with USB and general packet
radio service (GPRS) [39], [40] access interface). The coordina-
tor node and medical sensor nodes form a Bluetooth piconet that
includes up to seven slave medical sensor nodes and a master
node.

Here, the coordinator node always acts as a master. If the
patient has a home computer that is configured as a part of gate-
way module, the gateway module communicates with medical
sensor nodes via Bluetooth connection, and communicates with
the medical server through the Internet (see Fig. 2). If the pa-
tient has a PDA or a cell phone that is configured as a part of
gateway module, the gateway module communicates with med-
ical sensor nodes via Bluetooth connection as mentioned before,
but communicates with the medical server through GPRS (see
Fig. 3). Within the gateway module, the coordinator node com-
municates with the patient’s home computer, PDA, or cell phone
through the USB interface. Sequentially, the data are commu-
nicated from gateway module to the medical server through the
Internet, wireless local area network (WLAN), or GPRS. The
choice would largely depend on whether the patient has a com-
puter. The medical data are stored in medical sever and can be
accessed by medical personnel from their computer terminals
that are connected to the medical server via local Ethernet.
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Fig. 3. System configuration with GPRS.

This paper describes our concept-proof prototype system. The
system architecture is shown in Fig. 2. It only monitors ECG
signals and needs the patient to have a home computer to be
a part of gateway module. More physiological sensors can be
easily further integrated into this system framework, and more
data transmission methods can be adopted, such as GPRS.

In the medical server and medical personnel’s computer ter-
minals, a Web-based ECG management system, which offers
the solutions for managing ECGs and testing this prototype sys-
tem architecture, is developed. Open-source freeware with good
performance and stability, such as Apache, Hypertext Prepro-
cessor (PHP), and My Structured Query Language (MySQL),
was used to expedite the development and minimize the cost. In
order to test the prototype system, a simple ECG file structure
and GUI are designed to store and visualize the ECG data on
the patient’s home computer. After the entire system architec-
ture is verified, the next step would be to integrate some med-
ical signal analysis modules, such as ECG pattern recognition,
and the modules for statistical/history analysis into this system.
Then, more modules for other physiological data such as blood
pressure and EEG will be brought in. Hope this system can fi-
nally merge with and be a part of the medical data management
system.

III. WIRELESS MEDICAL SENSOR NETWORK
A. Medical Sensor Network

Traditionally, a couple of wires are used to connect diverse
sensors to a portable/wearable medical device for monitoring
and collecting physiological signals. All these medical sensors
form a wired personal area network to facilitate the integration
of medical information from multiple sources. However, this
architecture is unsuitable for longer and continuous monitoring,
particularly when patients hope to maintain normal activities
without disrupting their daily lives. The system described in this
paper uses a couple of medical sensors to build a wireless per-
sonal area network and collect multiple physiological signals.

This wireless personal area sensor network is a Bluetooth
piconet. Bluetooth is a low-cost, short-range wireless technol-
ogy with small footprint, low power consumption, reasonable
throughput, and hence, suitable for various small, battery-driven
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Fig. 4. Piconet formed by a coordinator node and several sensor nodes.

devices. Bluetooth operates in 2.4 GHz frequency band and uses
frequency hopping spread spectrum (FHSS) technique. There
are 79 channels, each 1 MHz wide, available for hopping [41].
It supports frequency hopping up to 1600 hops/s. ZigbBee pro-
tocol is similar to Bluetooth in that both run in the 2.4 GHz
unlicensed frequency band and both use low power. However,
ZigBee aims more for large-scale automation and remote con-
trol, while Bluetooth focuses more on user mobility and elim-
inating short-distance cabling. In addition, Zigbee’s maximum
data rate is 250 only kb/s, which could be a potential problem
for the data collection in the proposed healthcare network.

This Bluetooth piconet consists of up to seven slave sensor
nodes and a coordinator node (i.e., the master node). Each slave
sensor node senses, samples, and processes one or more physio-
logical signals, and then, sends the data to the coordinator node.
In the Bluetooth piconet, the slave nodes do not communicate
with each other directly—all communication must be through
the master node. This makes Bluetooth piconet particularly suit-
able for the medical sensor network where there is normally no
communication between sensor nodes, and the gateway needs
to collect all the sensor data.

Fig. 4 shows the formed piconet. The coordinator node is pre-
stalled at a fixed location beforehand; it periodically sends out
inquiries over the 32 Bluetooth wakeup carriers to see whether
nearby sensor nodes want to join this piconet. The inquiry pack-
ets contain the inquiry access code (IAC) of a Bluetooth network,
which is known to all of the sensor nodes. When a sensor node
receives an inquiry from the coordinator node, the sensor node
sends back a frequency hopping serial (FHS) packet contain-
ing its device address and timing information to the coordinator
node. The coordinator node then sends a paging packet with the
sensor node’s data access code (DAC) back to the paging car-
riers. After the sensor node receives paging packet, it sends an
acknowledgement to the coordinator node, and then, the coordi-
nator node issues its FHS packet to the sensor node. Finally, the
sensor node acknowledges the receipt of the coordinator node’s
FHS packet and the connection is established.
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Fig. 5 shows the connection establishment procedure between
the coordinator node and a sensor node, including the exchanged
messages and the state transition. In this way, up to seven sensor
nodes can join the piconet that is mastered by the coordinator
node. Once the piconet is established, the coordinator node polls
each sensor node in a round-robin fashion to interrogate whether
a sensor node is ready to send the data that are periodically
collected and formatted. The coordinator node polls at even
timeslots, while the sensor nodes send back at odd timeslots
with packets occupying 1, 3, or 5 timeslots; each timeslot is
625 us long in Bluetooth FHSS.

If a patient stays in a hospital, medical personnel normally
authenticate the patient by asking private information such as
name, birth date, and home address, including postcode, before
taking any medical treatment. While a patient is remotely mon-
itored, authentication needs to be done via the Bluetooth sensor
network. The Bluetooth security defines pairing procedures of
three or four steps: creation of an initialization key, creation
of a link key, authentication, and derivation of an encryption
key [42], [43].

During the first step of creating an initialization key, a per-
sonal identification number (PIN) may be generated based on
the patient’s private information. Before a connection is es-
tablished, the patient needs to input some private information
into the Bluetooth device. A coordinator node should have such
information beforehand of any possible sensor nodes. Such au-
thentication method is user-friendly as it does not require the
patient to remember a secret number. It also prevents a sensor
node from being accidentally played by a child. It is argued here
that the encryption of communications between a coordinator
node and a sensor node is not so necessary unless the patient
is a very important person and the health monitoring is really
sensitive data.
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Fig. 6. Bluetooth and USB 2.0 protocol stacks of the coordinator node and
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Fig. 6 shows the Bluetooth and USB protocol stacks of the
coordinator node and the sensor nodes for the corresponding
communication between a sensor node and the coordinator node,
and inside the gateway module between the coordinator node
and the personal computer.

B. Medical Sensor Node

The medical sensor nodes are responsible for collecting phys-
iological signals from patients by using diverse sensors, and
amplifying and digitizing these signals. The data are then pre-
processed, formatted, and transmitted to the coordinator node
and gateway module at the patient’s home before being relayed
to the medical server at remote location (e.g., the hospital). Med-
ical sensor nodes work as slave nodes in the wireless personal
area network. A medical sensor node comprises three func-
tional blocks: sensing, data processing, and communication.
Each sensor node can have several sensors and the respective
physiological signal conditioning modules, a microcontroller,
and a Bluetooth module. Fig. 7 is the diagram of a medical
sensor node.

A National Semiconductor Corporation’s CP3SP33 proces-
sor [44], which is a typical chip of CP3000 family connectivity
processors, is used to implement the medical sensor node. It
is a 16-bit processor with a built-in Bluetooth peripheral, a
USB 2.0 peripheral, and a ten-channel, 10-bit A/D converter. It
can be operated at 96 MHz with zero wait states. It has 4000
bytes CPU instruction cache, 32000 bytes CPU data RAM,
4000 bytes CPU/DSP shared RAM, 24 000 bytes DSP program
RAM, 24 000 bytes DSP data RAM, 8000 bytes Bluetooth se-
quencer and data RAM, and addresses up to 96 MB of external
memory. As shown in Fig. 7, the sensors are directly connected
to the respective signal conditioning modules. The output of
the conditioning module is then digitized by the 10-bit on-chip
A/D converter of the CP3SP33 processor, with 10 us conversion
time. The processor preprocesses the digitized data, and then,
transmits the data to the coordinator node through wireless link-
age. The linkage is made up of on-chip Bluetooth Lower Link
Controller of the CP3SP33 processor, a National Semiconductor
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Diagram of a medical sensor node.

Corporation’s LMX5252 Bluetooth radio transceiver [45], and
a Yageo’s Phycomp-branded 2.4 GHz antenna.

The corresponding firmware is developed for data collec-
tion from sensors, management of the Bluetooth peripheral, and
communication with the coordinator node. A medical sensor
node is reconfigurable depending on the patient’s medical con-
dition, and then, these selected sensors are allocated to appro-
priate parts of the patient’s body. For instance, a patient being
monitored for a heart condition would have ECG sensors at-
tached to the chest, and a patient being monitored for stroke
symptoms might have EEG sensors attached to the scalp and/or
EMG sensors attached to various muscles in the body.

This system uses a standard ECG front-end design that
can be found in [46]. The sensor node is all integrated on
one board. It has several operating modes. The power sup-
ply Vee = 5.0V, Viyoport = 3.3 V, and Vioe = 1.8 V.
The overall current consumption is different in various op-
erating modes: Icontinous,transmit =96 mA; Icontinuous,receive
= 96 mA; Leceive_data_in_SPP_link = 32 MA; i _mode =
8.5 mA; Isca‘nning,(no,active,link,TL,disabled) = 0.8 mA; and
Iidle,(scanning,disabled,TL,disabled) =120 /~LA' It adopts differ-
ent low-power modes to reduce power consumption in differ-
ent operating situations. The modular structure of the node and
CP3SP33 microprocessor allow the firmware to power down un-
used modules. The low-power consumption modes are shown in
Table 1. The transition between different low-power consump-
tion modes is shown in Fig. 8. The detailed electrical parame-
ters of this sensor node will be reported in another paper under
preparation.

C. Coordinator Node

The coordinator node is a part of gateway module (see Figs. 2
and 3), which mainly has following functions.
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TABLE I
POWER CONSUMPTION MODE ACTIVITY

Power Mode USB Activity Radio Activity ~ Reference Clock
PCMO OFF OFF None
PCM1 ON OFF Main Clock
PCM2 OFF Scanning Main Clock
PCM3 ON Scanning Main Clock
PCM4 OFF SPP Link Main Clock
PCM5 ON SPP Link Main Clock

Bluetooth Radio Activity
Page/Inquiry Scanning
No Radio Activity / Active Link(s)
All Links Released
USB Disable Incoming Link
Wake-up Enabled PCMO PCM2 < PCM4
All Links Released
Disable TL Disable TL Disable TL
TL Enabled
TL Enabled TL Enabled

Link Established
PCM3 PCM

—
All Links Released

USB Enable Scanning Enabled

‘Wake-up Disabled PCM1

—
Scanning Disabled

Transition between different low-power modes.

Link Established

All Links Released

Fig. 8.

1) It communicates with the medical sensor nodes, which
are attached to the patient, via the built Bluetooth wireless
sensor network. The coordinator node actively discovers
other medical sensor nodes, and coordinates data trans-
mission to and from sensors.

2) It keeps the captured medical data for self-record. Before
being transmitted to the medical server at hospital or med-
ical center, the medical data can be saved in the home
computer for self-record.

3) It communicates with the medical server over the Internet,
wide-area networks, or some short-range communication
technology. When a secure channel to medical server is
established, the coordinator node periodically updates the
patient’s medical record at the medical server.

The coordinator node is implemented by using CP3SP33
connectivity processor. The diagram of the coordinator node
is shown in Fig. 9. It has an on-chip USB peripheral and sup-
ports USB specification 2.0 to communicate with home com-
puter within the gateway module. A LMX5252 Bluetooth radio
transceiver is adopted in the coordinator node. It connects to a
Yageo’s Phycomp-branded 2.4 GHz antenna.

IV. SOFTWARE ORGANIZATION

The medical sensor nodes and the coordinator node run
an event-driven real-time operating system (RTOS) called
wC/OS-II [47], which is a portable, ROMable, scalable, mul-
titasking, fully preemptive real-time kernel, and can manage up
to 64 tasks. It specifically addresses the concurrency and re-
source management, and can support the nested interrupts up to
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Fig. 10.  Software of the sensor nodes.

255 levels deep. The execution time for most services provided
by the pC/OS-II operating system is both constant and deter-
ministic. This means that the execution time does not depend
on the number of tasks running in the application. The applica-
tions such as data processing and Bluetooth communication are
written in ANSI C, running on the top of this kernel.

The software of a sensor node consists of three layers, as

shown in Fig. 10.

1) RTOS: The sensor node uses pC/OS-II RTOS. It pro-
vides a multitasking environment with support for task-
scheduling, intertask communication, and other services
that simplify the design of applications.

2) Driver library: A library of peripheral drivers is devel-
oped for interface to the on-chip peripheral hardware of
the CP3SP33 connectivity processor and the off-chip pe-
ripherals developed by sensor-node-level designs.

3) Application support layer (ASL) (see Fig. 11): This layer
is a high-level interface to the Bluetooth kernel and the
Bluetooth protocol stack. The Bluetooth kernel is the en-
gine that maintains connectivity by handling activity on
network side of the interface, such as scanning for new
devices and responding to scans from other devices. The
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interface to the kernel is called service interface (SI).
The Bluetooth protocol stack handles application requests
for services, such as making connections and transferring
data. The upper layers of the stack (above the HCI) are
called host core (HC).

These protocols deal with implementing services such as se-
rial port emulation, service discovery, etc., on top of the packet-
based communications provided by the HCI, similar to the way
that Internet protocols such as Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP) implement services
on top of IP. The layers below HCI are called host controller
core (HCC). These layers implement basic packet communica-
tion services for the HCI, and they control Bluetooth hardware
(i.e., the baseband processor). The Bluetooth kernel, HC, and
HCC are collectively referred to as Bluetooth core.

Although a Bluetooth application could be implemented by
making calls directly to the functions that implement Bluetooth
protocols, it would be a very low level interface. The sensor
nodes in this system use the Bluetooth core provided by National
Semiconductor Corporation. This Bluetooth core has a high-
level interface that greatly simplifies the task of implementing
a Bluetooth application, called ASL (see Fig. 11). This layer
provides all of the functionality that the applications need, but it
does not require expert knowledge of the hundreds of function
calls and data structures used internally within the Bluetooth
core.

A. Bluetooth Protocol Stack

The baseband and lower link control functions are imple-
mented using a combination of National Semiconductor Cor-
poration’s CompactRISC 32-bit processor and the Bluetooth
Lower Link Controller. These processors operate from inte-
grated ROM memory and RAM, and execute onboard firmware,
implementing all Bluetooth functions and data gathering func-
tions. The integrated Bluetooth Lower Link Controller complies
with the Bluetooth specification version 1.2, implementing the
functions such as adaptive frequency hopping; interlaced scan-
ning; fast connect; support for 1, 3, and 5 slot packet types; fast
frequency hopping at 1600 hops/s; access code correlation; and
slot timing recovery.
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Fig. 12.  Bluetooth stack protocol.

The integrated upper layer stack is prequalified and involves
three protocol layers: L2ZCAP, RFCOMM, and SDP. It supports
Generic Access Profile (GAP), Service Discovery Application
Profile (SDAP), and Serial Port Profile (SPP). Fig. 12 shows the
Bluetooth protocol stack with command interpreter interface.
The command interpreter offers a number of different com-
mands to support the functionality given by the different pro-
files. Execution and interface timing is handled by the control
application. The firmware resides inside the CP3SP33 connec-
tivity processor. The corresponding application programming
interface (API) can be referenced in [48].

B. Communication With Medical Sensors

On the top of the Bluetooth link, a simple, but very flex-
ible data exchange protocol, XMLSense (Extensible Markup
Language (XML)-based protocol for data exchange with sen-
sors) [49], is used for transmitting and receiving data to and
from sensors.

Using two types of messages, the gateway module can re-
quest either the list of sensors attached to a particular medical
sensor node or the captured physiological data. Reply messages
have very flexible structure and can relay information about any
number or type of sensors. Sensor node profiles are defined ac-
cording to an XML scheme, and are sent as XML strings in
reply messages. As all relevant information about a sensor node
is contained in its profile (sensor type, measuring unit, accu-
racy, manufacturer, calibration date, etc.), gateway module can
automatically build knowledge of the sensor network and its
characteristics, that is to say, sensor nodes can be deployed in
an ad hoc fashion.

Bluetooth links are maintained as long as the gateway module
and the medical sensor node are in the range. This approach has
its advantages and disadvantages. Good side is that as soon as
an event happens on a sensor node, the sensor node can send
information to the gateway module about the event. Drawbacks
are that power resources are wasted on maintenance of com-
munication link, and it is not possible to have more than seven
sensor nodes in one piconet.

V. APPLICATION SCENARIOS AND INITIAL EVALUATION

There are two typical deployment scenarios for this system.
It can be deployed at home or in a hospital. For the deployment
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at home, each sensor node collects a kind of physiological
signal. The wireless medical sensor nodes attached to the
patient send data to the gateway module, forming a short-range
Bluetooth wireless network. The coordinator node is connected
to the home computer through a USB interface. The home
computer, already connected to the Internet, can establish a
secure channel to the medical server and send periodic updates
for the patient’s medical record and for medical personnel
replying to the diagnostic advices. In this configuration, the
coordinator node, a part of gateway module, always acts as
a master, and the maximum number of the medical sensor
nodes that can be active for physiological signals measuring
is 7. Because this initial evaluation aims only for verifying
practicality of the adopted approach and the overall system
architecture, it used only two sensor nodes: each having only
ECG sensor. Two persons’ ECG signals were monitored.

For the deployment in a hospital, some coordinator nodes are
distributed in the wards of a hospital. These coordinator nodes
are connected to the main medical server through a computer
in the hospital. The coordinator node always acts as a master
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in each piconet. Each patient takes a comprehensive medical
sensor node that integrates the functions of collecting several
physiological signals. The medical sensor node always acts as
a slave in a piconet. In this way, the physiological signals can
be monitored continuously by medical personnel in real time
through the deployment of these unobtrusive medical sensors,
thus avoiding tethering the patients to the conventional medical
equipment. With the same aim as the aforementioned evalua-
tion, the system configuration of this initial evaluation used six
coordinator nodes; each piconet has two ECG sensor nodes. In
total, 12 persons’ ECG signals were monitored.

The initially built system has been tested (see Fig. 13). The
look and feel of the user interface at home computer of a patient
is shown in Fig. 14.

VI. CONCLUSION

A Bluetooth-based wireless sensor network has been devel-
oped for continuously monitoring the physiological signals of a
patient. This new technology has potential for offering a wide
range of benefits to patients, medical personnel, and society
through continuous monitoring feature, early detection of abnor-
malities with high reliability and security, and potential knowl-
edge discovery through data mining of all collected medical
data. There are many advantages of adopting wireless remote
healthcare at home or in hospitals to replace the face-to-face
communication between a patient and a physician. First, med-
ical personnel can get the patients’ physiological information
in time, and then, give real-time diagnostic advices that are
important to patients’ recovery. Second, patients can measure
their physiological signals, and then, send to the hospital re-
motely without the need of going to hospital in person. Third,
patients can move around freely while carrying wireless medi-
cal devices. Furthermore, with the help of this system, medical
personnel can take care of a few patients simultaneously, and
thus, the personnel expenses can be reduced.

Our research and evaluation clearly demonstrates that cur-
rently available systems for monitoring physiological signals
suffer from technical weakness and limitations, resulting in
under-exploitation of potentially lifesaving data. Our innovative
approach creates a system infrastructure that both decreases the
cost involving with monitoring patients and increases the ef-
ficient exploitation of physiological data. As a result of this
system, patients can be benefited by high-quality medical care
in their own home, thus avoiding the distress and disruption
caused by a lengthy impatient stay in hospital.
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