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Abstract—Depression is one of the leading causes of disabil-
ity. Methods are needed to quantitatively classify emotions in or-
der to better understand and treat mood disorders. This research
proposes techniques to improve communication in body sensor
network (BSN) that gathers data on the affective states of the
patient. These BSNs can continuously monitor, discretely quan-
tify, and classify a patient’s depressive states. In addition, data on
the patient’s lifestyle can be correlated with his/her physiological
conditions to identify how various stimuli trigger symptoms. This
continuous stream of data is an improvement over a snapshot of
localized symptoms that a doctor often collects during a medical
examination. Our research first quantifies how the body interferes
with communication in a BSN and detects a pattern between the
line of sight of an embedded device and its reception rate. Then,
a mathematical model of the data using linear programming tech-
niques determines the optimal placement and number of sensors in
a BSN to improve communication. Experimental results show that
the optimal placement of embedded devices can reduce power cost
up to 27% and reduce hardware costs up to 47%. This research
brings researchers a step closer to continuous, real-time systemic
monitoring that will allow one to analyze the dynamic human phys-
iology and understand, diagnosis, and treat mood disorders.

Index Terms—Affective computing, body sensor networks
(BSN), embedded systems, health informatics, medical
applications.

I. INTRODUCTION

THE WORLD Health Organization (WHO) estimates that
depressive disorders affect approximately 121 million

adults and is one of the leading causes of disability in the
world [1]. Depression is a chronic mental disorder, where peo-
ple are usually despondent, lose interest in activities, feel guilty,
have feelings of low self-worth, lack energy, lose their appetite,
and have trouble concentrating. Bipolar disorders are a subset
of depressive disorders, where patients swing between moods
of mania and depression. This disorder is also called manic
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depression and the periods of mania are characterized by a sub-
stantial increase in energy, insomnia, racing thoughts, feelings
of grandiose, short attention spans, and anxious feelings.

Depression and other mood disorders are difficult disorders to
diagnose, understand, and treat due to difficulties in classifying
emotion and the fluctuating nature of the disease. Individuals
with manic depression continuously have changes in energy,
mood, and activity that may not be apparent in office visits.
A quantitative method to continuously track patients and pro-
vide more data on their moods and emotions could improve
how doctors and healthcare clinicians diagnosis and treat the
disease.

Recent research has explored the use of noninvasive mobile
sensors that can be placed on the human body to measure the vi-
tal signs of a patient. These body sensor networks (BSN) allow
patients to be continuously monitored remotely and are useful
for many medical applications, including manic depression. Pre-
vious work by Pentland and coworkers has demonstrated that
accelerometer sensors measuring body movements can classify
depression states and track the treatment of patients [2]. These
sensors can aid in the recognition, interpretation, or inference
of human emotion. The ability to classify depression states and
emotion can fundamentally improve the treatment of patients
with manic depression and mood disorders by being able to
detect patterns in the patient and suggest interventions.

However, an open challenge is how to create a communi-
cation infrastructure that will allow patients to continuously
communicate affective cognitive states through the use of wear-
able sensors. BSN can consist of wearable systems embedded
in cloth or portable embedded systems that can be carried by
the patient in a similar manner as the cell phone. In this paper,
challenges in connectivity of BSN and interference from the
human body itself is addressed.

BSN have different properties than most traditional wireless
sensor networks (WSN). A new class of distributed embedded
systems BSN, is rapidly evolving and the need to develop archi-
tectures from experimental data is needed [3]. Our approach will
build upon our growing understanding and experience with wire-
less ad hoc sensor networks. WSN share key features with BSN.
WSN and BSN sense, self-configure their resources, and provide
actuation under severe communication and memory constraints.
In addition, the systems are tightly coupled to the physical world
and must adapt and self-organize without human intervention.
Due to the dynamic environment that BSN are deployed in, re-
alistic data based on actual events are essential. However, BSNs
differ significantly from WSN in that the system must deal with
a large amount of interference from the body, the systems are
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inherently mobile, and the system as a whole must integrate into
a hospital backbone infrastructure.

Our approach builds upon the growing interdisciplinary field
of computer science merged with psychology, cognitive science,
biomedical engineering, and medicine. Affective computing and
BSN are a subset of these fields, which focuses on the construc-
tion of lightweight medical devices, processing of data based
on affective states, and the usability of this data within a clini-
cal or everyday settings. In these systems, experimental data are
necessary in order to confirm the functionality of these heteroge-
neous systems. This research specifically addresses the problem
of connectivity in a body area network with the optimal place-
ment of sensors in a body area networks that detect the affective
states of people.

II. RELATED WORK

As early as 1649, philosopher Descartes proposed the concept
of duality or mind-body dichotomy, where the mind controls the
body and the body influence an individual’s rational reasoning.
He proposed that if humans think, than they exist. Descartes
incorrectly assumed that emotions stem from the pineal gland
and that animals do not feel emotion, since they do not possess
this gland [4]. Picard proposed that not only animals but also
computers could recognize, understand, and express emotions.
She argued that emotion can be detected with sensors that deter-
mine the affective state or behavior of a person. This new field
affective computing, can aid in learning, information retrieval,
communication, interaction, and the health of people [5]. Neu-
rologist Antonio Damasio argued against Descartes philosophy.
He suggested that even if a human being can think, he/she can
make rational decisions if he/she cannot incorporate emotions
into the decision-making process. Damasio gives the example of
Phineas Gage, whose brain was damaged in an accident, but his
intelligence was not affected. However, Gage’s ability to make
rational decisions was impaired because his emotions could no
longer be included in the decision-making process [6].

Research building on the philosophy of Descartes, Picard,
and Damasio use quantitatively analysis techniques to deter-
mine how emotions affect reasoning and can advance research
in diagnosing, understanding, and treating mood disorders that
are driven by emotion. Several researchers have taken various
quantitative approaches for studying emotion by analyzing data
on people’s speech, gestures, or facial expressions. A micro-
phone sensor has been used to infer emotion from voice pitch,
speech level, and speed [7], [8]. In addition, vision sensors can
capture gestures, facial expressions, and a person’s posture to
infer emotion [9], [10]. Skin temperature and galvanic resistance
can also infer emotion through physiological data, such as heat
and sweat.

Affective computing requires that meaningful patterns be ex-
tracted from experimental data. Various techniques have been
used to process data, such as dynamic-time warping, optical
flow, hidden Markov models, corpa models, eigenface, fish-
erface, dynamic-link matching, and neural network process-
ing. This research does not focus on techniques for extracting

patterns from data. Rather, this research explores how this data
can be efficiently communicated in a BSN.

Previous work has explored several types of body area
communication. Yoo et al. proposed four types of body area
communication: off-body communication, on-body communi-
cation, in-body communication, and through-body communica-
tion [11]. Off-body communication uses several mediums, such
as 2.4 GHz channel radios, Bluetooth, and ultra wideband, to
send data through the air to communicate. The data is usually
sent over 30 to 100 ft [12]. The second type of communication
is on-body communication that travels on the human skin on the
200MHz band [11]. The range of the communication is the max-
imum size of the skin around 8 ft. The third type of body area
communication is in-body communication and is useful for sev-
eral in vivo sensors communicating with one another inside of
a human being. The fourth type of communication investigates
through-body communication, where an in vivo sensor commu-
nicates with an external device [13]. The most common carrier
frequency is the 400MHz channel, but the 2.4GHz channel is
also used.

Previous work in antenna research with wearable systems
has made several important findings. First, the orientation of the
antenna and proximity to the human body impacts the commu-
nication [14], [15]. Also, the body’s biological tissues absorb
approximately 30% to 60% of the antenna’s power. How well
the communication can pass through the human body is greatly
affected by what frequency that it is on [14]. Specifically for
the 2.4 GHz channel, the permittivity of dry skin is 38.1 S/m
and the conductivity is 1.441 S/m. Muscles have a permittivity
of 52.7 S/m and a conductivity of 1.705 S/m. The lungs have
a permittivity of 34.5 S/m and a conductivity of 1.219 S/m.
The overall path loss was 44.2 dB [16]. In addition, the spe-
cific absorption rate (SAR), the measure of how much the radio
frequency is absorbed by the body, is reduced by lowering the
power of the device. As the space between the body and the
radio increases, the SAR also decreases [14].

Previous work has specifically investigated the performance
of the human body on a 2.4 GHz antenna for wearable wire-
less local area networks. One study concluded that the radiation
characteristics of the antenna were not greatly affected by the
human body [17]. However, previous antenna research has fo-
cus mainly on one individual antenna and has not taken into
account how the combination of distance and a human body
affects the communication in the 2.4 GHz channel with wear-
able devices [14]–[17]. Previous research has also neglected to
investigate how the sensor board and processing unit also in-
teract in this system. Also, even though Hao et al. discovered
that variations due to breathing or small body movements affect
the channel, how to quantifiable use or mediate these affects
have not been addressed [16]. Previous work has explored us-
ing motion capture equipment to characterize movements [18].
However, this research is the first to combine motion capture
equipment and communication. In a people network, consisting
of several devices communicating with one another, these prob-
lems are important research topics that should be addressed.
This research quantifies the optimal placement of sensors on the
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TABLE I
OVERVIEW OF DATA DRIVEN APPROACH TO QUANTIFY LINE OF SIGHT AND

RECEPTION RATE IN A MOBILE ENVIRONMENT

human body and investigates how to make use of this data in
the actual systems.

III. BSN FOR MOOD DISORDERS

In our proposed architecture, patients suffering from bipo-
lar disorders, move around in their everyday life with embedded
systems that have accelerometers, galvanic response, electrocar-
diogram, or audio sensors. The accelerometer sensors detect the
movement of the patient on an x-, y-, and z-plane. Movement
is an effective measurement of a bipolar patient’s emotion and
mood. Recall that bipolar patient swing between states of mania
and depression. When bipolar patients are depressed they have
less energy and the accelerometers will detect the reduction in
movement and physical activity. In addition, the audio sensors
can gather data on the patient’s pitch, level, and speed of speech.
Patients in a manic state usually have racing thoughts and are
hyperactive, while patients in a depressed state have reduced
social activity and slower speech. These symptoms can be be
detected by audio sensors. In addition, galvanic response and
electrocardiogram sensors may detect a change in the patient’s
mental state, metabolism, or sympathetic and parasympathetic
responses.

In addition to the vital signs of the patients, data on whom
the patient encounters, where he/she goes and his/her reaction
to events and people can be recorded. This data can aid patients
in identifying what stimuli are triggers to manic or depressive
episodes and correlate patterns in their affective state with their
surrounding environment. Additionally, patients may even re-
ceive feedback from this system to help them deal with their
emotions in a healthy way and use their emotions correctly in
making rational decisions.

These sensors gather data on the affective state of patient
and their surroundings, and can infer their mental state to help
them to manage their emotions when making decisions. These
sensors will be worn continuously on the patients during their
everyday life and data will be continuously uploaded to a central
server. In order for this to occur, an efficient communication
infrastructure must be in place to gather data pervasively. Our
research explores techniques to improve this communication
infrastructure taking into account the unique properties of BSN.
Our data driven approach is shown in Table I.

Fig. 1. Setup of the measurement study with seven motes sending and
receiving.

Fig. 2. Reception rate of links in a BSN at various ranges and positions.

IV. MEASUREMENT STUDY

To quantitatively measure communication in a BSN, experi-
mental measurements were conducted. A mobile measurement
study was done outside in order to measure received signal
strength, delay, and reception rate. Fig. 1 shows the setup of the
experiment with seven motes placed on different parts of the
body. Two people wore embedded systems on various locations
of their body standing from 0 to 100 ft apart from one another.
From our experiments, we were able to determine that the body
produces a recurring interference that can be predicted, and
therefore, mediated to improve throughput. When the systems
were in close proximity to each other, they experienced higher
throughputs and receive signal strength indicator (RSSIs), as
expected from previous work. In contrast, embedded systems
whose radio communication traveled through two people’s body
resulted in a lower receive rate and RSSI. Fig. 2 demonstrates
that whenever the medical embedded system deals with inter-
ference from the body, the throughput drops significantly. The
embedded system placed in the front of the human body during
the experiment, usually had a direct line of sight to the remote
node. The system placed on the back, usually had no line of
sight to the remote node. Finally, the embedded system placed
on the arm had partial line of sight to the remote system.
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Fig. 3. Quantitative analysis of sensors using motion tracking software. (Left) 3-D image of a person wearing various markers on them. (Right-top) X coordinate
of all the markers. (Right-middle) Y coordinate of all the markers. (Right-bottom) Z coordinate of all the markers.

V. CORRELATION BETWEEN LINE OF SIGHT

AND RECEPTION RATE

Experiments in the ambient environment suggested that there
was a direct correlation between line of sight and the reception
rate. However, in this mobile environment, where the user was
continuously moving, it is difficult to determine quantitatively
for various individuals the correlation. To order to quantitatively
determine the relationship between line of sight at certain time
points, a second set of experiments were conducted with mo-
tion capture equipment to quantify the degree of visibility of
the embedded system at various time instances. Three hundred
minutes of experimental data was collected from ten subjects.
Subject’s weights ranged from 112 to 229 pounds. Subject’s
heights ranged from 5 ft 5 in to 6 ft 4 in. In these measurements,
a sensor board was used with motion capture equipment that
could capture the x, y, and z of markers placed on the object.
Fig. 3 shows a 3-D image of the human body in the motion
capture software [19], [20].

In addition, the base station mote was placed on top of the
camera. Therefore, whenever the camera could accurately detect

the base station, this quantitatively verified that it was in full view
of the base station mote. The quantitative capabilities of the
motion capture equipment ensured that the experiments could
be reproduced and verified. Reproducibility is a cornerstone of
quality research.

Another characteristic that needed to be modeled in the ex-
periment was the fact that the radios could be partially visible
to the base station mote. In particular, nodes on the side or on
the top of the head often were visible to more angles. How-
ever, the entire surface was not visible to each node and the
throughput was lower. In order to quantitatively represent this
phenomenon, we used a cluster of markers on the embedded
medical system. Therefore, the camera had the opportunity to
detect multiple markers instead of one. This removed the quan-
titative 0 or 1 component representing the visibility of a single
marker. The test was set up so that two people wearing markers
representing embedded system and experiments were run inside
and outside. Data has verified that reception rate and visibility
of two people at different ranges are directly correlated when
the person is outside. Outside it was difficult to setup the motion
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Fig. 4. Correlation between line of sight and reception rate.

capture cameras, but throughout the testing if the person moved
minimally, the number of markers stayed the same. The recep-
tion rate for markers at various distances indoors and outdoors
are shown in Fig. 4. For outdoors, there was a high correla-
tion between reception rate and line of sight of the markers.
When the experiments were done indoors, the body also caused
interference. However, due to multipath reflections, the signal
has a high reception rate. This is an interesting characteristic to
discover for later construction of communication.

VI. MINIMUM NUMBER OF RADIOS FOR OPTIMAL COVERAGE

A direct relationship has been established between line of
sight, and reception rate. Therefore, one can easily understand
that if a radio is always within line of sight of the base station
than the throughput will be greater. Assuming that radios are a
commodity and can easily be placed on most places on the body
comfortably; an interesting research problem is to determine
the minimal number of radios for optimal convergence. In this
scenario, a radio would always be visible to the base station.

When modeling this data, an essential component to address is
whether there are enough markers on the person and if enough
data has been gathered. In order to address the first research
problem, an abundant number of sensors were placed on the
body, and then, patterns of correlations among the sensors were
detected. Sensors that are correlated are sensors that appear in
every angle together. We then eliminate one of the correlated
sensors. In order to address the second challenge of determining
if enough data on various movements had been collected, the
data was split into two parts. We analyzed the first portion and
if all the information in the first portion can be found in the
second portion than enough data had been collected. Otherwise,
the dataset was doubled and split it again.

Now that the model has been devised, the problem can be
formulated as an integer linear program. In our dataset, the
human subject is dynamic, and continuously changing positions
and orientations. For each body position k that a subject is
in at each time instance, the markers m that were visible are
extracted. The markers ranged between 1 and N , where N is
the total numbers of markers. Each marker has an x, y, and z
coordinate that is represented by the variable j. In this scenario,

there may also be several different types of obstacles o, blocking
the radio. Each marker has a position p at an angle k. Embedded
devices can also be periodically blocked by the patient’s arms
or obstacles in a real deployment. In order to quantitatively
analyze, how obstacles affected the amount of markers that
were needed, obstacles were randomly created in a uniform and
random distribution for various percentages of the 3-D space. If
a marker and an obstacle were in the same 3-D square, then it was
not visible to the camera. Visibility is represented with variable
v. The various grid sizes of the obstacle were also modified to
represent different sizes of obstacles or different size areas that
a marker could cover.

Problem Statement: Given N markers at coordinates x, y, and
z, what is the minimal number of markers needed to that each
marker is visible regardless of whatever position p and angle k
that a person may be in. Also, assume that there are obstacles o
that may be blocking communication.

Problem Formulation:

Minimize :
N∑

i=1

mi. (1)

Subject to the following constraints:

0 ≤ mi ≤ 1 (2)

∀p ∀k

N∑

i=1

vpk mip k
≥ 1 (3)

∀k mix y z
(4)

� k oxyz ≡ mijk ⇒ mijk ≡ 0 (5)

∀p ∀k 0 ≥ vpk ≤ 1. (6)

Constraint (2) ensures that each marker is a binary integer 0 or
1. Constraint (2) guarantees that for all angles k, each marker has
an xyz coordinate. Constraint (3) ensures that for all positions p
and angles k, there exists at least one marker visible. If obstacles
xyz is equal to marker xyz at angle k, then no marker is needed
to cover area for angle k (see Constraint 5). Lastly, each marker
is visible or invisible for position p at angle k by Constraint (6).

The results of the experiment with various percentages of
obstacles are shown in Fig. 5. The dataset of body movement and
markers were derived from 300 min of experimental data taken
from ten participants. The optimal number of markers or radios
was compared with how many randomly added radios would be
needed so that any radio is visible at any point and time. The
optimal number of markers was derived from the linear program
described earlier. A simulation created the random placement
of systems on the human body. The systems were randomly
placed using a uniform random number generator that choose
coordinates on the x-, y-, and z-plane. The embedded radio uses
41 mW of power and cost approximately $70. Additionally, the
power for these systems with a sensor board is 468 mW and
the equipment cost approximately $200. Fig. 6 shows that the
power costs between the optimal number of markers or radios
and randomly choosing the position of markers is from 16%
and 27%. Fig. 7 shows the hardware saving of using the optimal
approach is from 37% to 45%.
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Fig. 5. Minimal number of cameras with markers.

Fig. 6. Power results for optimal and random placement.

Fig. 7. Costs for optimal and random placement.

VII. CONCLUSION

BSN can continuously collect data on the affective states of
patients. This research specifically investigates communication
in a BSN and how to optimally place sensors to improve com-
munication. The experimentation quantified communication in
a BSN and analyzed the correlation between line of sight and
reception rate. An linear formulation determined the optimal

placement and number of sensors so that at any time a radio
would be visible to a base station. Portions of the experiments
were done in a motion capture laboratory and quantitative data
were collected on the xyz coordinates and acceleration of the
marker. Further work will determine the optimal number of
accelerometers that need to be available to gather data for pro-
cessing of information to classify the state of depression of the
patient. Not only do these approaches save power up to 27%
and reduce cost up to 45%, but the experimental analysis results
in an efficient BSN that shrewdly makes use of its resources.
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