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Abstract—Noninvasive ultrasound imaging of carotid plaques
allows for the development of plaque-image analysis methods asso-
ciated with the risk of stroke. This paper presents several plaque-
image analysis methods that have been developed over the past
years. The paper begins with a review of clinical methods for vi-
sual classification that have led to standardized methods for image
acquisition, describes methods for image segmentation and de-
noizing, and provides an overview of the several texture-feature
extraction and classification methods that have been applied. We
provide a summary of emerging trends in 3-D imaging methods
and plaque-motion analysis. Finally, we provide a discussion of the
emerging trends and future directions in our concluding remarks.

Index Terms—Assessment of stroke, carotid, despekle filtering,
plaque imaging, segmentation, texture analysis, ultrasound.

1. INTRODUCTION

ARDIOVASCULAR disease (CVD) is the first leading
C cause of death and adult disability in the industrial world.
According to [1], 80 million American adults have one or more
types of CVD, of whom about half are estimated to be age 65 or
older. Of all the deaths caused by CVD among adults aged 20
and older, an estimated 6 million are attributed to coronary heart
disease and to stroke, with atherosclerosis as the underlying

Manuscript received February 14, 2009; revised July 13, 2009 and December
23, 2009; accepted March 8, 2010. Date of publication April 8, 2010; date of
current version July 9, 2010. This work was supported in part by the Cardiovas-
cular Disease Educational and Research (CDER) Trust, U.K. and in part by the
CDER Trust, Cyprus.

E. C. Kyriacou is with the Department of Computer Science and
Engineering, Frederick University, CY-3080 Limassol, Cyprus (e-mail:
e.kyriacou@frederick.ac.cy).

C. Pattichis is with the Department of Computer Science, University of
Cyprus, CY-1678 Nicosia, Cyprus (e-mail: pattichi@ucy.ac.cy).

M. Pattichis is with the Department of Electrical and Computer Engineering,
The University of New Mexico, Albuquerque, NM 87131-0001 USA (e-mail:
pattichis@ece.unm.edu).

C. Loizou is with the Department of Computer Science, School of
Sciences, Intercollege, CY-3507 Limassol, Cyprus (e-mail: loizou.c@lim.
intercollege.ac.cy).

C. Chistodoulou is with the Department of Computer Science, University of
Cyprus, CY-1678, Nicosia, Cyprus, and also with the Department of Computa-
tional Intelligence, Cyprus Institute of Neurology and Genetics, 1683 Nicosia,
Cyprus (e-mail: cschr2@ucy.ac.cy).

S. K. Kakkos is with the Department of Vascular Surgery, University of Patras
Medical School, Patras 26500, Greece (e-mail: kakkosstavros @ gmail.com).

A. Nicolaides is Prof. Emeritus at Imperial College, London, SW7 2AZ, U.K.,
and with the Vascular Screening and Diagnostic Centre, London, W1G 7BZ,
U.K., and also with the Cyprus Cardiovascular Disease Educational Research
Trust, 2368 Nicosia, Cyprus (e-mail: andisnicolai @gmail.com).

Digital Object Identifier 10.1109/TITB.2010.2047649

®)

Fig. 1. Segmentation of CCA images. (a) IMT segmentation image, example
where despeckle filtering was applied only in the area of the IMT. (b) Far-wall
plaque segmentation results after normalization and despeckling.

()

cause. Stroke accounted for about one for every 16 deaths in the
United States. A recent study by the World Health Organization
revealed that by 2015 almost 20 milion people will die from
CVDs, mainly from heart disease and stroke [2].

High-Resolution ultrasound has made the noninvasive visu-
alization of the carotid bifurcation possible, and has thus been
extensively used in the study of arterial wall changes. Studies
include measurement of the thickness of the intima-media com-
plex [intima-media thickness (IMT)], estimation of the severity
of stenosis due to atherosclerotic plaques, and plaque character-
ization in order to assess the risk of stroke [3]-[5] (see Figs. 1
and 2).

Clinical applications of carotid-bifurcation ultrasound in-

clude the following:

1) Identification and grading of stenosis of extracranial
carotid artery disease often responsible for ischemic
strokes, transient ischemic attacks (TIAs), or amaurosis
fugax (AF);

2) follow-up after carotid endarterectomy;

3) evaluation of pulsatile neck mass;

4) investigation of asymptomatic neck bruits, where severe
internal carotid artery stenosis is used as a predictive factor
for future stroke;

5) cardiovascular risk assessment where the presence of
carotid bifurcation atherosclerotic plaques is associated
with increased cardiovascular mortality [6]-[9];

6) clinical studies on the effect of lipid lowering and other
medications on carotid IMT, which includes plaque thick-
ness [10]-[14].

During the past 20 years, the introduction of computer-aided

methods and image standardization has improved the objec-
tive assessment of carotid plaque echogenicity [15], [16] and
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Fig. 2.
features are given. (SGLDM: spatial gray-level-dependence matrices.)

heterogeneity [15], [17] and has largely replaced subjective (vi-
sual) assessment [3], [18] that had been criticized for its rela-
tively poor reproducibility [19].

In general, computer-aided diagnostic systems require the use
of a wide variety of methods that are reviewed in this paper. First,
a clinical-image-acquisition protocol is necessary for reducing
variability during the acquisition process. Second, an image-
normalization procedure is needed to further standardize the
images.

Plaque-image segmentation methods allow us to isolate the
region of diagnostic interest. Noise from the extracted plaques
can be removed with image despeckling methods. Texture fea-
tures are subsequently computed over the segmented images.
Texture features are then used as inputs to classifiers to provide
an overall assessment of the input plaque images.

As an early indicator of CVD, we are also interested in the
segmentation and characterization of the intima-media layer. We
will provide an extensive summary of intima-media segmenta-
tion methods.
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Emerging approaches in plaque-ultrasound-image analysis
include the recent introduction of 3-D imaging methods, plaque
motion analysis, stress and strain imaging, and the use of con-
trast agents.

A review of visual classification methods is given in
Section II. Image segmentation and despeckling methods are
reviewed in Section III. A summary of texture-feature extrac-
tion and classification methods is given in Section I'V. Emerging
methods are given in Section V. Concluding remarks on the
emerging trends and future directions are given in Section VI.

II. VISUAL CLASSIFICATION IN THE ASSESSMENT OF
ATHEROSCLEROTIC PLAQUES IN ULTRASOUND IMAGING

High-resolution ultrasound provides information not only
on the degree of carotid artery stenosis, but also on the
characteristics of the arterial wall, including the size and consis-
tency of atherosclerotic plaques. Several studies have indicated
that “complicated” carotid plaques are often associated with ip-
silateral neurological symptoms and share common ultrasonic
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TABLE I

ULTRASOUND CAROTID PLAQUE HETEROGENEITY AND CLINICAL IMPLICATIONS

Author Year Ref Ultrasound carotid plaque heterogeneity Clinical implications
O’Donnell Jr et al. 1985 [20] Visual classification; distinguished fine vs rough and Histology study
random vs regular texture
Aldoori et al. 1987 [21] Visual classification Plaque classification
Leahy et al. 1988 [22] Plaques containing echolucent components. Heterogeneous plaques were symptomatic and
Homogeneous plaques had uniform consistency associated with ipsilateral infarction on CT scan
suggestive of sclerotic plaques more frequently than homogenous plaques
Langsfeld et al. 1989 [23] Predominantly echolucent plaques with a thin “egg Heteroneous plaques more frequently symptomatic.
shell” cap of echogenicity and echogenic plaques with Heterogeneous plaques became symptomatic more
substantial components of echolucency frequently during follow-up
Widder et al. 1990 [24] Visual estimation, plaques being classified into four Histology study
categories (homogeneous, slightly or markedly
heterogeneous and non visible)
ECPSG 1995 [25] Mixed composition Heterogeneous plaques contained more calcification
Kagawa et al. 1996 [26] Plaques composed of a mixture of hyperechoic, Heterogeneous lesions consisted of a mixture of
isoechoic and hypoechoic plaques. Normal intima-media  atheroma and fibrosis on histology and demonstrated
complex used to define isoechoicity calcification more frequently than the homogeneous
ones
Kardoulas et al. 1996 [27] Mixed echo level pattern Association of plaque heterogeneity with symptoms
less consistent in comparison with echolucency
AbuRahma et al. 1998 [28] Plaques composed of a mixture of hyperechoic, Heterogeneous plaques more frequently
isoechoic and hypoechoic plaques. Normal intima-media ~ symptomatic
complex used to define isoechoicity
Lal etal. 2002 [29] Ultrasound B-Mode image relation to histology features Ultrasound and Histology study
ACSRS 2005 [30] Visual classification of high risk plaques based on Asymptomatic carotid stenosis follow-up study
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follow-up of a group of patients

characteristics, being more echolucent (weak reflection of ul-
trasound, and therefore, containing hypoechoic structures) and
heterogeneous (having both hypoechoic and hyperechoic ar-
eas) [25]-[28]. In contrast, “uncomplicated” plaques that are
often asymptomatic tend to be of uniform consistency (uni-
formly hypoechoic or uniformly hyperechoic) without evidence
of ulceration [3], [20], [31].

Different classifications of plaque ultrasonic appearance have
been proposed in the literature (see Fig. 2). Reilly et al
classified [3] carotid plaques as homogenous and heteroge-
neous, defining as homogeneous plaques those with “uniformly
bright echoes” that are now known as uniformly hyperechoic
(type 4) (see next). Johnson et al. classified plaques as dense
and soft [32], Widder er al. classified plaques as echolucent
and echogenic based on the their overall level of echo pat-
terns [24], while Gray-Weale et al. described four types: type
1, predominantly echolucent lesions; type 2, echogenic lesions
with substantial (>75%) components of echolucency; type 3,
predominately echogenic with small area(s) of echolucency oc-
cupying less than a quarter of the plaque; and type 4, uniformly
dense echogenic lesions [18]. Geroulakos et al. subsequently
modified the Gray-Weale classification by using a 50% area
cutoff point instead of 75% and by adding a fifth type, which, as
a result of heavy calcification on its surface, cannot be correctly
classified [31] (see also Fig. 2).

In an effort to improve the reproducibility of visual (subjec-
tive) classification, a consensus conference has suggested that
echodensity should reflect the overall brightness of the plaque
with the term hyperechoic referring to echogenic (white) and the
term hypoechoic referring to echolucent (black) plaques [33].
The reference structure, to which plaque echodensity should

be compared with, should be blood for hypoechoic, the ster-
nomastoid muscle for isoechoic, and bone for hyperechoic
plaques. More recently, a similar method has been used by Polak
et al. [34].

In the past, a number of workers had confused echogenicity
with homogeneity [3]. It is now realized that measurements of
texture are different from measurements of echogenicity. The
observation that two different atherosclerotic plaques may have
the same overall echogenicity, but frequently have variations of
texture within different regions of the plaque has been made,
as early as 1983 [35]. The term homogeneous should therefore
refer to plaques of uniform consistency, irrespective of whether
they are predominantly hypoechoic or hyperechoic. The term
heterogeneous should be used for plaques of nonuniform consis-
tency, i.e., having both hypoechoic and hyperechoic components
(Gray-Weale et al. [18], types 2 and 3). Although O’Donnell
et al. in 1985 and Aldoori et al. in 1987 proposed this otherwise
simple classification [20], [21], there has been a considerable
degree of diversity in terminology used by others, as shown in
Table 1. Because of this confusion, frequently, plaques having
intermediate echogenicity or being complex are inadequately
described. For example, echolucent plaques have been consid-
ered as heterogeneous [23]. As a reflection of this confusion, a
report from the committee on standards for noninvasive vascular
testing of the Joint Council of the Society for Vascular Surgery
and the North American Chapter of the International Society for
Cardiovascular Surgery proposed that carotid plaques should be
classified as homogeneous or heterogeneous [36].

Regarding the clinical significance of carotid plaque hetero-
geneity, it seems that the heterogeneous plaques described in
the three studies published in the 1980s (see Table I) include



1030

hypoechoic plaques. Also, heterogeneous plaques in all studies
listed in Table I contain hypoechoic areas (large or small) and
appear to be the plaques that are associated with symptoms or,
if found in asymptomatic individuals, they are the plaques that
subsequently tend to become symptomatic [30].

An important feature of visual classification that has emerged
as an important characteristic of unstable-—symptomatic plaques
in the last years is the juxtaluminal (the site of the plaque near
the lumen) location of an echolucent region in heterogenous
plaques, which was shown to be an additional marker of in-
creased risk [37].

III. ULTRASOUND-IMAGE PREPROCESSING AND
SEGMENTATION

Visual classification of atherosclerotic plaques on ultrasound
is subjective in the sense that if scanning is performed in a rel-
atively dark room, the sonographer reduces the image gain and
vice versa. This may explain the relatively poor reproducibility
results [19], [34], [38], [39]. In order to overcome this problem,
some authors applied linear scaling for image normalization
using blood and adventitia as reference points [40].

A. Image Acquisition

The use of a standardized acquisition protocol has been
shown to result in reproducible measurements of overall plaque
echogenicity with a high inter and intraobserver reproducibil-
ity [39], [41].

Essential guidelines for standardized image acquisition in-
clude: 1) maximum dynamic range; 2) low persistence level
with high frame rates for improved temporal resolution; 3) time-
gain compensation curve (TGC) sloping through the tissues and
vertically through the lumen of the vessel; 4) noise reduction
using low gain increased until small amounts of noise appear in
the lumen; 5) linear histogram stretching; 6) ultrasound-beam
propagation at 90° to the arterial wall; 7) minimum depth imag-
ing for low attenuation; 8) normalization using clearly visible,
hyperechoic adventitia adjacent to the plaque; and 9) acquisi-
tion that facilitates subsequent successful image normalization
(described next).

B. Normalization

It has been shown that image normalization reduces variabil-
ity caused by different gain settings, different operators, and
different equipment thus allowing more reproducible gray-scale
measurements [15], [16], [41], [42]. In a recent study by Griffin
et al. [40], the ultrasound images of the common carotid artery
(CCA) were normalized using linear histogram stretching. For
8-bit images, the gray-level value of blood was mapped to a
value of 0, and the gray level of the middle 2/4th of the ad-
ventitia (artery wall) to a value of 190. Thus, ultrasound-image
intensity throughout the image is readjusted according to the
gray-scale values of two reference regions (blood and adventi-
tia). Thus, to maintain high reproducibility using image normal-
ization, we need to have a representative sample of the adventitia
region. This is accomplished by imaging with the ultrasound-
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beam propagating at right angles to the adventitia so that it is
visible adjacent to the plaque. It has been demonstrated that
using this method reproducible measurements of grayscale can
be obtained when the same subject is being scanned in different
rooms by different ultrasonographers and scanners [39], [41].

C. Despeckling

Diagnostic ultrasound-image resolution is significantly lim-
ited by speckle noise. Speckle is not truly a noise in the typical
engineering sense because its texture often carries useful infor-
mation about the image being viewed. It is the primary factor that
limits the contrast resolution in diagnostic ultrasound imaging,
thereby limiting the detectability of small, low-contrast lesions,
and making the ultrasound images generally difficult for the non-
specialist to interpret [43]-[45], [47], [56]. Due to the speckle
presence, ultrasound experts with insufficient experience may
not often draw useful conclusions from the images [6]. Speckle
noise also limits the effective application of image processing
and analysis algorithms (i.e., edge detection, segmentation) and
display in 2-D and volume rendering in 3-D. Therefore, speckle
is most often considered as a dominant source of noise in ul-
trasound imaging and should be filtered out [44]-[46] without
affecting important features of the image. In [47], where areview
on ultrasound-image segmentation methods has been presented,
it was discussed whether speckle should be treated as noise or a
feature. It was concluded that from a segmentation perspective,
you may chose to remove it or utilize it for the information it
contains.

Additionally, there are a number of recent research pa-
pers, where ultrasound-imaging despeckling was proposed (e.g.,
[48]).

As a result, speckle reduces detectability of small, low-
contrast lesions, thus making the ultrasound images generally
difficult for the nonspecialist to interpret [43]-[47], [49]-[52],
[56]. In arecent study [53], for images of the carotid artery, it was
shown that despeckle filtering increases image quality. In addi-
tion, normalization combined with speckle reduction filtering
also improved the performance of both automated as well as the
manual segmentations of the IMT [54] and the plaque [52], [55],
and enhanced computer-aided diagnosis [56].

D. Segmentation

Several ultrasound-segmentation algorithms have been re-
viewed in a recent survey by Noble and Boukerroui [47]. Here,
we are primarily interested in reporting on recent algorithms
that were used for the segmentation of the plaque and the intima
layer.

The IMT of the CCA can serve as an early indicator of the
development of CVD, like myocardial infarction and stroke. Pre-
vious studies indicated that increase in the IMT of the CCA is
directly associated with an increased risk of myocardial infarc-
tion and stroke, especially in elderly adults without any history
of CVD [57]. Therefore, the development and evaluation of new
IMT segmentation techniques is of importance.

Table II summarizes various computerized methods that have
been developed for ultrasound segmentation of the IMT.



KYRIACOU et al.: REVIEW OF NONINVASIVE ULTRASOUND IMAGE PROCESSING METHODS

1031

TABLE II
CAROTID IMT 2-D AND 3-D ULTRASOUND SEGMENTATION TECHNIQUES

Author Year Ref.  IMT Segmentation IMTy [mm] IMT, [mm] S/INS N AIC/ MSI/MCP
method NAIC

Wendelhag et al. 1997 [60] Dynamic programming 0.88+0.25 0.92+0.25 - 50 NAIC MSI/MCP
algorithm

Liang et al. 2000 [61]  Multiscale dynamic 0.88+0.24 0.93+0.24 - 50 NAIC MSI/MCP
programming

Mao et al. 2000 [62]  Discrete dynamic contour - - - 7 NAIC MSI

Zahalka et al. 2001 [63]  Deformable models in 3D - - NS (95%) 69 NAIC MSI/MCP
images

Selzer et al. 2001 [64]  Edge tracking based on 0.75+0.21 0.78+0.17 NS (97%) 24 NAIC MSI/MCP
Canny edge detection

Cheng et al. 2002 [58]  Snakes (active contours) - 0.65+0.16 - 32 NAIC MSI/MCP

Gutierez et al. 2002 [65] Active contour model 0.63+0.12 0.72+0.14 - 30 NAIC -
using a Balloon snake

Stein et al. 2005 [66]  Gradient based method 0.67+0.15 0.674+0.12 NS 50 AIC MSI/MCP
(image gradient) (95.9%)

Delsanto et al. 2007 [67]  Fuzzy C-means algorithm 0.77+£0.22 0.71£0.16 NS (93%) 200 AIC MSI
with snakes

Loizou et al. 2007 [54]  Snakes (with normalization  0.67+0.16 0.68+0.12 NS (96%) 100 AIC MSI/MCP
and speckle reduction)

Faita et al. 2008 [68]  First order absolute 0.57+0.14 0.56+0.14 NS (96%) 150 AIC MSI
moment edge operator

IMTy;: manual IMT 5 IMT d IMT IMT ean £ SD (standard deviation), IMT eapv = SD: mean IMT + SD for manual and automated measurements, N: number of

images; S/NS: significantly/not significant difference between manual and

5 AIC:

ic initial contour; NAIC: user should indicate the initial contour manually; MSI: manual

system interaction by the user, and MCP: manual user corrections possible.

A gradient-based segmentation method proposed in [66] pro-
duced large variability in the measurements, whereas the meth-
ods in [67] and [68] were allowing manual corrections. Recent
commercial systems, which support IMT segmentation, include
snakes-based segmentation in [58] and using a contouring ap-
proach in [59].

In a recent study [54], we proposed a snake’s segmentation
method (Williams and Shah) with manual initialization [see
Fig. 1(a)]. In Fig. 1(a), the despeckle filter LSMV (local statistics
mean filter based on the mean and the variance of the pixel val-
ues in each sliding moving window) was iteratively applied for
five times with a moving pixel window of 7 x 7 pixels [54], [56].
We did not find significant differences between the manual and
automated IMT measurements. Furthermore, it was shown that
when normalization and despeckle filtering are applied prior
to IMT or plaque segmentation, the automated segmentation
measurements are in better agreement with manual measure-
ments [54]. Furthermore, the estimation and positioning of the
initial snake contour may sometimes result to segmentation er-
rors. This should be placed as close as possible to the area of
interest, otherwise it may be trapped into local minima or false
edges and converge to a wrong location. In the present study in
less than 5% of the cases, the positioning of the initial snake
contour was not calculated correctly. The applicability of the
proposed snakes border detection in cases, where the IMT is
larger than 1.4 mm, is not possible, i.e., because for larger IMT,
a different initialization procedure, based on plaque segmenta-
tion, should be followed as proposed in [55].

The risk of stroke increases with the severity of carotid steno-
sis and is reduced after carotid endarterectomy [15], [16]. The

degree of internal carotid stenosis is the only well-established
measurement that is used to assess the risk of stroke [16]. Indeed,
it is the only criterion at present used to decide whether carotid
endarterectomy is indicated or not [22], [69]. The need for the
accurate segmentation of the atherosclerotic carotid plague in
ultrasound imaging in order to assess the degree of stenosis is,
therefore, a very important task.

In Table III, we summarize several recent methods for seg-
menting carotid plaques. In summary, we have segmentation
methods based on edge detection and snakes [55].

A user-independent plaque characterization and IMT-
segmentation method was proposed in [72], based on
interest-identification stage, gradient-segmentation stage, and a
contour-refinement stage, using deformable parametric model.
The overall accuracy of the system determined as normalized
error was overall to 8%.

In a recent study [55], we proposed a snake-segmentation
method based on the Lai and Chin snake for segmenting the
atherosclerotic-carotid plaque. The initial contour estimation
was carried out without user interaction using the blood-flow im-
age. It was also shown that normalization and speckle-reduction
filtering improves the outcome of the plaque segmentation. The
user was able to interact and correct the segmentation results
manually. A limitation of the proposed method includes the
presence of acoustic shadowing together with strong speckle
noise, which hinders the visual and automatic analysis in ultra-
sound images. Furthermore, only vessels without atherosclerotic
plaques were segmented in this study.

Fig. 1(b) shows segmentation results of the plaque at the far
wall of the CCA, where normalization and speckle-reduction
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TABLE III
RECENT SEGMENTATION TECHNIQUES FOR CAROTID PLAQUE 2-D AND 3-D ULTRASOUND

Author Year Ref. Plaque Segmentation method N R/TPF S/FPF
Zahalka et al. 2001 [63] Deformable models in 3D images 69 0.95%
Hamou et al. 2004 [70] Morphological based in 2D, based on histogram 5 )
equalization, canny, and morphology.
Abdel-Dayen et al. 2004 Morphological approach for 2D images based on
[71] speckle reduction contour quantization, and 2 - -
morphological contour detection.
Area of interest identification, gradient
Delsanto et al. 2006 [72] segmentation, and contour refinement by a 45 0.92 -
deformable parametric model (2D).
Loizou et al. 2007 [54] Snakes with initial contour estimation, 80 0.82/ 0.94/
normalisation and speckle filtering in 2D 82.7% 5.86%
Guerrero et al. 2007 [73] Star Kalman Algorithm (2D) - - -
Slabaugh et.al. 2009 [74] Region based active contour segmentation (2D ) - - -

R: sensitivity, S: specificity, TPF: tru-positive, fraction, FPF: false-positive fraction.

filtering was applied prior to segmentation. There was no signifi-
cant difference between the manual and the snakes segmentation
regions.

In [73], a method based on a Star—Kalman algorithm was
used to determine vessel contours and ellipse parameters using
an extended Kalman filter with an elliptical model. The segmen-
tation and tracking were implemented in real time and validated
using simulated ultrasound data with known features and real
data, for which expert segmentation was performed. Results in-
dicate that mean errors between segmented contours and expert
tracings are on the order of 1%—2% of the maximum feature
dimension, and that the transverse cross-sectional vessel area,
as computed from estimated ellipse parameters determined by
the algorithm, is within 10% of that determined by experts.

IV. ULTRASOUND-IMAGE ANALYSIS: FEATURE EXTRACTION
AND CLASSIFICATION

A. Feature Extraction

Following segmentation, we extract features from the region
of interest (see Figs. 1(b) and 2). In what follows, we provide a
summary of the extracted feature sets.

Earlier studies have been primarily focused on basic statis-
tical features, such as the gray-scale medial (GSM), the mean,
the median, the standard deviation, skewness, and kurtosis [16],
[371, [75]-[77]. In these earlier studies, the GSM was found to
be very successful in differentiating between symptomatic and
asymptomatic cases [16], [76]. Depending on the image prepro-
cessing method, threshold values for the GSM were provided for
differentiating between symptomatic and asymptomatic cases.
Here, brighter plaques tended to be asymptomatic (see Table IV
and Section I'V-B, see also Fig. 2).

More extensively, histogram features were later used to pro-
vide plaque-signature vectors [57], [78]-[80]. Similarly, his-
tograms of grayscale occurrences at different angles and dis-
tances (correlograms, not the same as used in spatial statistics)
were reported in [57].

Standard texture features have been extensively used for the
classification of carotid plaques [57], [78], [81]-[83]. An early

discussion of standard texture features can be found in [84]. The
most commonly used texture features include: 1) spatial gray-
level-dependence matrices (SGLDM); 2) gray-level-difference
statistics; 3) neighborhood gray-tone difference matrix; 4) sta-
tistical feature matrix; 5) laws texture energy measures; and
6) fractal-dimension texture analysis. A summary of the basic
differences between texture characteristics from symptomatic
and asymptomatic cases is discussed in [78] and also illustrated
in Fig. 2.

More recently, we have used morphological features for
plaque-image characterization [57], [82], [83]. The most suc-
cessful morphological features were based on a multilevel de-
composition, associated with different plaque image compo-
nents. In the multilevel approach, each normalized plaque is
thresholded at three different intensity ranges (low, medium,
and high). The darkest (low) components are associated with
unstable plaque components, such as lipid and hemorrhages.
On the other hand, more stable plaque components are captured
at higher brightness levels. For each one of the three cases,
we compute pattern spectra to provide size distributions of the
plaque components [85], [86]. We then use the pattern spectra
as texture features for classification.

B. Classification

Several classification techniques were used for the classifi-
cation of the carotid plaques. We have neural classifiers, such
as the self-organizing map (SOM) [57], [78], the back propaga-
tion (BP) [81], the radial basis function (RBF), the probabilistic
neural network (PNN) [82], [83]. More recently, we see classi-
fication based on support vector machines (SVMs) [82], [83].
In addition, we also have research done with statistical classi-
fiers, such as the K-nearest neighbor (KNN) [57], [78] or simple
statistical analysis of the plaque characteristics [75]-[77], [87].
For measuring performance, the leave-one-out method has been
commonly used together with receiver-operating characteristic
(ROC) analysis [78], [81]. We provide a brief survey of a num-
ber of classification studies and comment on the association
between the extracted plaque characteristics and cerebrovascu-
lar symptoms. These studies are further tabulated in Table IV.
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TABLE IV
ULTRASOUND CAROTID PLAQUE CLASSIFICATION STUDIES

Author Year

Ref.

Short description of study

Score

Statistical Analysis Studies

Geroulakos et al. 1994

[75]

Tested the hypothesis that the ultrasonic characteristics of carotid artery plaques
were closely related to symptoms. An association was found of echolucent plaques
with symptoms and cerebral infractions, which provided further evidence that
echolucent plaques are unstable and tend to embolize.

105

El-Barghouty etal. 1995

[76]

In a study with 94 plaques, the gray scale median (GSM) of the ultrasound plaque
image was used for the characterization of plaques as echolucent (GSM < 32) and
echogenic (GSM > 32). An association between carotid plaque echolucency and
the incidence of cerebral computed tomography (CT) brain infractions was
reported.

94

lannuzzi et al. 1995

[77]

Identified significant relationships between carotid artery ultrasound plaque
characteristics and ischemic cerebrovascular events. The features that were more
consistently associated with TIAs were low echogenicity of carotid plaques,
thicker plaques, and presence of longitudinal motion.

549

Elatrozy et al. 1998

[16]

A study where 80 patients were examined and reported that plaques with GSM<40
are more related to ipsilateral hemispheric symptoms.

80

Wilhjelm et al. 1998

[87]

In a study with 52 patients scheduled for endarterectomy presented a quantitative
comparison between subjective classification of the ultrasound images, first and
second order statistical features, and a histological analysis of the surgically
removed plaque. Some correlation was found between the three types of
information where the best performing feature was found to be the contrast.

52

Rakebrandt et al. 2000

[79]

This study aimed to construct parametric images of B-scan texture and assess their
potential for predicting plaque morphology. Sequential transverse in vitro scans of
10 carotid plaques, excised during endarteectomy, were compared with
macrohistology maps of plaque content.

Asvestas et al. 2002

(88]

A pilot study with 19 carotid plaques. Indicated a significant difference of the
fractal dimension between the symptomatic and asymptomatic groups.

Intelligent Diagnostic Systems

Christodoulou et al. 2003

[78]
[57]

A study with 230 plaque images where ten different texture feature sets were
extracted. The plaques were classified into symptomatic or asymptomatic using the
SOM and KNN classifiers and combining techniques. Furthermore a carotid
plaque image retrieval system was developed, based on texture, histogram and
correlogram features.

230

73%

Mougiakakou et al. 2007

[81]

A study with 108 plaque images where first-order statistical features and Laws’
texture energy measures with the neural network back propagation algorithm were
used. An overall accuracy of 99.1% in the classification into symptomatic or
asymptomatic plaques was reported.

108

99%

Holdfeldt et al. 2007

[89]

In this master thesis an automated system was developed for the classification of
echogenic Vs echolucent plaques using an adaptive threshold. The plaques were
labeled as echogenic or echolucent by the human expert.

97

91%

Kyriacou et al. 2007

[82]
[83]

In this work an integrated system for the assessment of the risk of stroke based on
clinical risk factors and non-invasive investigations and carotid plaque texture
analysis and multilevel binary and gray scale morphological, analysis in the
assessment of atherosclerotic carotid plaques.

274

73%
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Geroulakos et al. [75] tested the hypothesis that the ultrasonic
characteristics of carotid artery plaques are closely related to
symptoms and the plaque structure may be an important factor
in producing stroke, perhaps more than the degree of steno-
sis. In this paper, the authors categorized the carotid plaques
into four ultrasonic types: echolucent, predominately echolu-
cent, predominately echogenic, and echogenic. An association
was found of echolucent plaques with symptoms and cerebral
infractions, which provided further evidence that echolucent
plaques are unstable and tend to embolize.

El-Barghouty et al. [76] in a study with 94 plaques reported
an association between carotid plaque echolucency and the in-
cidence of cerebral computed tomography (CT) brain infrac-
tions. The GSM of the ultrasound-plaque image was used for

the characterization of plaques as echolucent (GSM < 32) and
echogenic (GSM > 32).

lannuzzi et al. [77] analyzed 242 stroke and 336 TIA patients
and identified significant relationships between carotid artery
ultrasound-plaque characteristics and ischemic cerebrovascular
events, respectively. The results suggested that the features more
strongly associated with stroke were either the occlusion of the
ipsilateral carotid artery or wider lesions and smaller minimum
residual lumen diameter. The features, which were more consis-
tently associated with TIAs, were low echogenicity of carotid
plaques, thicker plaques, and the presence of longitudinal mo-
tion.

Elatrozy et al. [16] examined 96 plaques (25 symptomatic and
71 asymptomatic) from 80 patients with more than 50% internal
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carotid artery stenosis. They reported that plaques with GSM
< 40, or with a percentage of echolucent pixels greater than
50% were good predictors of ipsilateral hemispheric symptoms
related to carotid plaques. As echolucent pixels were defined,
pixels with gray level values below 40.

Wilhjelm et al. [87] in a study with 52 patients scheduled for
endarterectomy, presented a quantitative comparison between
subjective classifications of the ultrasound images, first- and
second-order statistical features, and a histological analysis of
the surgically removed plaque. Some correlation was found be-
tween the three types of information, where the best-performing
feature was found to be the contrast.

Rakebrandt et al. [79] demonstrated that texture analysis of
B-mode ultrasound images of carotid plaques using histogram
features (in conjunction with co-occurrence matrices, fractal
models, and first-order statistics) can predict plaque composition
using histological methods.

Asvestas et al. [88] in a pilot study with 19 carotid plaques
indicated a significant difference of the fractal dimension be-
tween the symptomatic and asymptomatic groups. Moreover,
the phase of the cardiac cycle (systole/diastole) during which
the fractal dimension was estimated had no systematic effect on
the calculations. This study suggests that the fractal dimension
could be used as a single determinant for the discrimination of
symptomatic and asymptomatic subjects.

Kakkos et al. [80] used histogram measures and found out
that the percentage of pixels below 10 and gray scale median
between 1 to 25 (i.e., the darkest parts of the plaque) were
associated with symptoms (AF, TIA, and stroke).

In most of the aforementioned studies, the characteristics of
the plaques were usually defined subjectively or using simple
statistical measures, and the association with symptoms was es-
tablished through simple statistical analysis. In the following
studies, intelligent diagnostic systems were developed for the
automatic classification of plaques into symptomatic or asymp-
tomatic.

Christodoulou et al. [78] extracted a total number of 61 texture
and shape features from 230 ultrasound-plaque images, and
these features were analyzed using a multifeature multiclassifier
methodology. A diagnostic yield of 73.1% was reported, thus
indicating that it is possible to identify a group of patients at
risk of stroke based on texture features and neural networks. In
content-based image-retrieval study, Christodoulou et al. [57]
showed that correlograms gave slightly better performance than
traditional texture features.

Mougiakakou er al. [81], in a study with 108 plaque im-
ages, extracted first-order statistical features and Laws’ tex-
ture energy measures that were classified with a neural net-
work BP algorithm. They claimed an overall accuracy of
99.1% in the classification of symptomatic and asymptomatic
plaques.

Holdfeldt [89] developed an automated system for the clas-
sification of echogenic versus echolucent plaques using heuris-
tics and an adaptive threshold. The plaques were labeled as
echogenic or echolucent by a human expert. Holdfieldt reported
that the system could correctly identify the plaques with a suc-
cess rate of 91%.
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Kyriacou et al. [83], [86] describe an integrated system for
the assessment of the risk of stroke based on clinical risk factors
(noninvasive) and carotid plaque texture analysis. The system
was validated on 274 images. It included semiautomatic plaque
segmentation, morphological image analysis, and classification
using multiple classifiers. For image features, the system com-
pared the use of a new multilevel morphological decomposition
(see Section IV-A) versus standard gray-scale morphological
analysis. For classification, comparisons were made between
a PNN and a SVM with RBF kernels. The best classification
result was at 73.4% using the SVM classifier with multilevel
morphological features.

V. EMERGING STUDIES
A. 3-D Studies

The use of 3-D techniques has primarily focused on measur-
ing volume changes through time to monitor disease progression
[90]-[92]. Landry et al. [90] demonstrated that plaque volume
change can be reliably measured using 3-D ultrasound. They
showed that a 20%—35% change can be measured with 95%
confidence for plaques of volume < 100 mm?. For larger plaques
(volume >100 mm?), with 95% confidence, they showed that
we can measure finer changes of the order of 10%-20%, respec-
tively. Chiu et al. [91] developed a 3-D segmentation method
for measuring the combined thickness of the plaque, the intima,
and media (vessel wall plus plaque thickness or VWT). The
authors proposed the use of 3-D VWT and VWT-change maps
for identifying disease progression in relations to disturbances
of flow. The authors extended their work in [92], where they
measured VWT volume changes for assessing and monitoring
carotid artery disease.

B. Motion

The majority of motion studies are focused on the use of
2-D ultrasound. However, Meairs and Hennerici [93] reported
on an important early study on the use of 4-D ultrasound for
motion estimation. Using 45 patients, the authors showed that
asymptomatic plaques maintained plaque-surface motion vec-
tors that were approximately equal to motion vectors of the in-
ternal carotid artery. In contrast, plaques from symptomatic pa-
tients exhibited independent motion with larger surface motion.

For B-mode ultrasound, Murillo ef al. [94] computed motion
trajectories over the plaques and used the results to develop re-
alistic, synthetic models of plaque motion. Murray et al. [95]
developed a new motion estimation model and demonstrated
that it can provide for dense estimates over the entire cardiac cy-
cle. In [96], Golemati et al. used tissue mimicking phantoms and
synthetic motion models to verify motion estimation using block
matching and optical flow methods. A mathematical model was
developed by Golemati et al. in [97], and the results were com-
pared with the block-matching software developed in [98].

C. Stress—Strain

Scmitt et al. [99] proposed the use of elastography for mea-
suring stiffening and mechanical interactions between plaque
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structures. Here, we note that research on improving motion
estimation can also benefit future work in this area.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

The majority of plaque-image analysis studies are focused
on the development of 2-D ultrasound systems. In general,
these studies present effective methods for image segmenta-
tion, image despeckling, and texture feature extraction. Due to
the large number of parameters involved, we can see many
variations in the results. Thus, even for 2-D systems, there
will always be an interest in developing more robust segmen-
tation methods, new multiscale texture features and the ap-
plication of innovative classification techniques. Some of the
most interesting challenges are associated with emerging studies
(see Section V). These methods can be used in order to focus
on new 2-D problems associated with early plaque formation.

The extraction of 3-D shape and structure information can be
used to further for our understanding of carotid plaque morphol-
ogy. We believe that research will continue in establishing 3-D
volumetric changes and their associations with atherosclerosis.

Plaque-motion analysis holds significant promise as well. The
relative motion among different plaque components should be
investigated. The future development of very accurate 3-D/4-D
systems will also help with the development of accurate motion
analysis systems.

It would be interesting to develop noninvasive, multimodal-
ity plaque-image analysis systems. The advancement of 3-D
ultrasound will help these efforts. Basically, high-resolution
3-D ultrasound reconstructions will be much easier to fuse with
2-D slices from other modalities. To do this, we would need to
register the geometric features of the 2-D slice to the 3-D volume
or to use a mutual information registration method. It would also
be interesting to examine how 2-D histological studies match
3-D ultrasound reconstructions.
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