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Abstract
We develop an adaptive active contour tracing algorithm for extraction of spinal cord from MRI
that is fully automatic, unlike existing approaches that need manually chosen seeds. We can
accurately extract the target spinal cord and construct the volume of interest to provide visual
guidance for strategic rehabilitation surgery planning.

Index Terms
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I. Introduction
In this paper, we focus on injury close to the lower part of the spinal cord, which controls
walking and stepping of the legs. In order to restore some functions of the legs after injury,
intraspinal microstimulation (ISMS) has been studied in our Heritage Medical Research
Centre. ISMS require the implant of microwires from the back of the spinal cord to stimulate
nerve cells. It is therefore important to minimize the damage to the spinal cord system
during an operation by identifying an optimal path to insert the microwires. A traditional
solution is to obtain computed tomography (CT) or MRI scans for visual identification by
the clinicians. In this paper, we propose a novel spinal cord segmentation technique as a
preprocessing step to assist rehabilitation surgery planning. Our technique is based on the
detection of reflective symmetry to dynamically trace the boundary of the target region.
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MRI scans of a cat were used in our experiments because of the similar size of their spinal
cord relative to that of humans [1].

One of the early attempts on spinal cord image segmentation is semiautomatic, where edge
pixels are tracked to recover the spinal cord canal [2]. A knowledge-guided, anatomy-based,
and task-oriented image-processing plan is proposed in [3]. In [4], a combination of
manually initialized active contour and region-growing-based segmentation detects central
canal region of a particular slice, and then, propagates that segment information in
subsequent slices in order to reconstruct 3-D volumetric view. McIntosh and Hamarneh
introduce 3-D deformable organism, tubular crawler, which grows and deforms to take the
tubular structure of a 3-D spinal cord [5]. In contrast, our segmentation approach evolves an
image-gradient-based open-ended contour, which we refer to as an active trace of a segment
boundary, utilizing a dynamic-programming-based energy-minimization technique.

Next, we present the image segmentation technique followed by the description of the
evolution of an active trace. Finally, Section IV presents results followed by the conclusions.

II. Proposed Segmentation Technique
An image of a typical 2-D spinal cord slice is shown in Fig. 1(a). The contrast of the pixels
representing the spinal cord in a 2-D slice is distinctly different with respect to the pixel
values of the vertebra bone and muscles seen in the image. The segmentation result of the
spinal cord is shown in Fig. 1(b). Given that the spinal cord is identified, we first present a
technique for the image unskewing process, which is a precursor to the segmentation of
other target regions.

We draw a circle at the center of mass of the spinal cord region. Any diameter of this circle
partitions the circle into two half circles. From the anatomy, the axis of symmetry of the
image is a unique diameter of the circle that creates reflective symmetry to the half circles.
These half circles are divided into N sectors. To match two sectors, we consider the
Bhattacharya coefficient (BC) between the intensity histograms of the sectors; the matching
score between two half circles C1 and C2 is as follows:

(1)

where  and  are two intensity histograms on two corresponding sectors C1 and C2,
respectively. The choice of number of sectors N is discussed in Section IV. The diameter
that yields the highest score value is considered as symmetry axis. Alignment of the
symmetry axis with the vertical y-axis through rotation unskews the image. The result of
unskewing the image of Fig. 1(a), using the symmetry line of Fig. 1(c), is shown in Fig.
1(d). Given the unskewed image, the challenge is to segment the muscle region using the
active tracing algorithm described next.

Fig. 2(a) shows the result of active tracing of the left and the right lobe muscles for the
image shown in Fig. 1(a). The start and end points are marked using star-shaped markers.
Segment boundary detection is posed as a problem of active tracing of pixel points
satisfying certain local image-gradient-based energy constraint. Consider two neighboring
pixels p and q in an eight-neighborhood setting. The cost c(p, q) of tracing pixel p to q is
given by
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(2)

The cost in (2) has two components, gradient magnitude |∇I| and gradient orientation |∇Iθ| at

every pixel of the image I.  and |∇Iθ| = tan−1 Iy/Ix, where Ix and Iy are the
partials of the Gaussian convolved image I in the x and y directions, respectively. The
parameter Sm = 0.1 scales edge gradient magnitude with respect to the range of edge
orientation values. The active tracing using minimum cost path c(p, q) can be posed as a
problem of directed graph search for an optimal or shortest path in the energy surface
defined by c(p, q). For the points between which tracing is not desirable, c (p, q) = ∞ forces
disconnection.

The shortest path active tracing process is sensitive to image noise, as shown for slice 2 in
Fig. 2(c). Even though the initial and terminal points are disconnected in this case, the
shortest path found does not match the desired boundary. This necessitates introduction of
an additional set of disconnection such that the shortest path traces the desired segment
boundary. Fig. 2(b) shows the segmented vertebra bone region. The bounding box of the
vertebra bone region and the vertical symmetry line provide the necessary disconnection in
c(p, q) space so that successful automatic tracing of the image shown in Fig. 2(c) is
achieved, as shown in Fig. 2(d).

Since our objective is to run the active tracing algorithm for all the slices and create a 3-D
visualization of the entire spinal cord, we need to make sure that the shortest path tracing for
muscle segmentation works for all the slices. However, this is not the case in some of the
slices due to the presence of anatomical irregularities, as shown in Fig. 3(a) and (b). Note
that while for slice 1 [see Fig. 3(a)], the active trace works perfectly, for slice 5 [see Fig.
3(b)], the active trace finds the shortest path through a region outside the left lobe. At the
same time, it is almost impossible to introduce disconnection at all such points. Therefore,
we need to evolve the active trace results (for one slice) along the normal direction of the
contour to counter abnormalities (in other slices), which we elaborate next.

III. Evolution of Active Trace
The objective at this point is to take a successful active trace output of a particular slice
image and evolve it to segment the muscle region in subsequent slices. We can assume that
an active trace is a collection of points pi, with pn + 1 = p1. Given an initial active trace, its
final position in a neighboring slice seeks the minimum energy of the discrete function

(3)

The internal contour energy is given by Eint (pi) = αi |pi − pi− 1|2 + βi|pi + 1 − 2pi + pi −1|2,
where αi and βi are local weights influencing first- and second-order continuity terms,
respectively. The external energy term Eext (pi) evaluates the image gradient oriented along
the direction normal to the active trace or its current position. With (nx, ny) as the normal
direction at a point (x, y) on the active trace, Eext (pi) = (Ix, Iy) (nx, ny). A set of such normals
across the initial active trace derived from slice 1 [see Fig. 3(a)], overlaid on slice 5, is
shown in Fig. 3(c).
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The term Esym (pi) imposes global symmetry constraints between the shapes of the left and
right lobes of active traces exploiting symmetry information. For every point (xL, yL) on the
active trace of the left lobe, a corresponding point (xR, yL) is determined on the active trace
of the right lobe having same yL value. Note that (xL, yL) and (xR, yL) are almost equidistant
(along the x-axis) from the vertical symmetry line. The symmetry constraint minimizes the
separation between symmetry point along yL and the mean ordinate of xL and xR. The same
constraint is put for all the points on both the active traces, left and right lobes, provided a
corresponding point is detected. Fig. 3(d) shows the corresponding symmetry points of the
active traces of the left lobe on the right for the active trace of Fig. 2(a).

Given m possible positions or states on each of the n contour points pi to find the new
position of pi in another slice, the minimization of (3) may look for global minima after
computationally prohibitive mn number of exhaustive searches. However, the
computationally attractive alternative is to use a technique, such as dynamic-programming-
based energy minimization, as proposed in [6]. The forward pass of the algorithm for
dynamic-programming-based minimization is as follows [6]:

∀j ∈ [1, m], E(1, j) = 0

for i = 2 to n {n number of contour points}

 for j = 1 to m {m number of states of each contour point}

E(i, j) = min
l,l∈ 1,m

{E(i − 1, l)

+αpl
∣ pl − pi−1, j ∣

2 + βpl
∣ pi+1, j − 2pl + pi−1, j ∣

2

+ (I pl
, I pl

) · (npi
, npi

) + dpl
}

  P(i, j) = l for min E(i, j); {stores minimum energy state}

 end

end

The overall complexity is O(nm3). At any point in time, the current active trace point is
dependent on two of its neighboring points on the active trace. The evolution of a contour
using dynamic programming can be repeated until consecutive evolutions of a contour result
in insignificant changes. The result of dynamic-programming-based successful evolution of
active trace [see Fig. 3(a)] with symmetry constraint is shown in Fig. 3(e), as compared to
Fig. 3(b). Fig. 3(f) shows the result of evolution of active trace of slice 2 on slice 5 following
(3), enforcing symmetry constraint.

Use of active trace of one slice to initiate curve evolution of another slice raises an important
question of deciding which slice should be used for initialization. Considering symmetry
between the left and right lobes of the spinal cord to be an important characteristic, we find
the most symmetric active trace obtained using a shortest path energy minimization
approach. We calculate the first-order moments of all points on the left lobe active trace and
right lobe active trace against the vertical symmetry axis. The active trace configuration that
generates the minimum difference between the left and right lobe moments provides the
initial contour for dynamic-programming-based contour evolution.

While evolving the active trace of one slice for segmenting another, the morphological
change in slice anatomy can be incorporated using a temporal constraint. The motivation for
temporal constraint is clear if we look at the example image in Fig. 4(a). The active trace
result in Fig. 4(a) for slice 1 between the two star-marked points on the edge fails to capture
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the concavity details for slice 5, as shown using red contours in Fig. 4(b). The initial active
trace in Fig. 4(a) is evolved using the dynamic-programming-based edge energy
minimization procedure of (3). The failure of correct tracing in Fig. 4(b) is clearly caused by
the uniform search region of each active trace point along its normal direction, which is
shown in Fig 4(b) using magenta straight lines. Therefore, the motivation for using a
temporal constraint is to introduce a variable search space for each active trace point along
its orthogonal direction, depending on the spatial distortion between the slice from where the
initial contour is generated and the slice for which the active trace is to be found. Lines
connecting the midpoint of the bitangent of the concavity and the initial active trace points
provide variable search length for active trace evolution, as shown in Fig. 4(c). This variable
search space finds the correct active trace for slice 5, as shown in Fig. 4(d) from the initial
active trace of slice 1 [see Fig. 4(a)].

IV. Results and Discussions
The two major proposals of this paper are the symmetry line estimation followed by the
active tracing approach. The 2-D image slices of spinal cord MRI was acquired with a 2-D
spoiled gradient echo sequence operating in multislice mode. Images were T2* weighted to
emphasize gray/white matter contrast in the spinal cord. The repetition time was 1600 ms,
the echo time was 14 ms, the flip angle was 60°, and the acquisition bandwidth was 50 kHz.
We collected 30 interleaved slices, each 1 mm thick with no interslice gap. Fat saturation
pulses were applied immediately prior to each excitation pulse. In-plane resolution was
acquired at 0.25 × 0.30 mm2 and then interpolated by a factor of 2.

Fig. 5(a) is the plot of the coefficient of variation (standard deviation over mean) of the error
in orientation of the estimated symmetry. This error is the absolute difference in orientations
of the symmetry lines estimated using (1) and human experts. The error values are averaged
for entire MRI dataset and estimated after varying the number of sectors from 1 to 30 to
estimate the symmetry line. The plot in Fig. 5(a) shows that the variation in error is marginal
when the choice of number of sectors is more than 15. This justifies our selection of number
of sectors as N = 16 in (1).

Some successful active trace results are shown in Figs. 2(a) and (d) and 3(f). Fig. 5(b) shows
the desired contour obtained after expert-guided manual segmentation for slice 5. We have
correlated the area enclosed by the proposed active trace and the area enclosed by the trace
generated using manual segmentation. The mean correlation value for the entire dataset
under consideration is 0.94.

V. Conclusion and Future Work
We have proposed an automatic spinal cord image segmentation approach in order to assist
rehabilitation surgery planning process. Differing from other semiautomatic techniques that
extract only the spinal cord, our approach segments the neighboring regions of interest
providing better visual guidance for ISMS implant. The methodology introduces a novel
application of active tracing of segment boundary, the evolution of which is implemented on
a unique contour energy minimization surface. In future work, we will establish a 3-D
visualization framework to support intraoperative surgery and measurement for ISMS
operation.
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Fig. 1.
(a) Slice 1. (b) Segmentation of spinal cord. (c) Vertical symmetry axis. (d) Unskewed
image.
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Fig. 2.
(a) Traced contour of the muscle of Fig. 1(d). (b) Vertebra bone region. (c) Failure of tracing
in slice 2. (d) Correct segmentation.
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Fig. 3.
(a) and (b) Partial active trace on slices 1 and 5. (c) Normals across active trace of Fig. 3(a)
overlaid on slice 5. (d) Corresponding symmetry points of active trace for the left lobe
overlaid on the right. (e) Convergence of active trace on slice 5 after dynamic programming.
(f) Muscle region segmentation result on slice 5, using initial active trace from slice 2.
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Fig. 4.
(a) Active trace on slice 1 between the two star-marked points. (b) Failure in using initial
active trace (yellow contour) of (a) for slice 5 using dynamic programming (red contour). (c)
Variable search regions (green lines) with temporal constraint for each point on the active
trace. (d) Correct tracing of the concavity in (b).
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Fig. 5.
(a) Error in orientation of symmetry with respect to expert estimation for different number
of sectors N of (1). (b) Manual estimation of muscle and spinal cord boundary of slice 5.
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