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Abstract
In this paper, we describe the design and development of a multi-tiered CBIR system for
microscopic images utilizing a reference database that contains images of more than one disease.
Proposed CBIR system uses a multi-tiered approach to classify and retrieve microscopic images
involving their specific subtypes which are mostly difficult to discriminate and classify. This
system enables both multi-image query and slide-level image retrieval in order to protect the
semantic consistency among the retrieved images. New weighting terms, inspired from
information retrieval (IR) theory, are defined for multiple-image query and retrieval. Performance
of the system was tested on a dataset including 1666 imaged high power fields (HPF) extracted
from 57 Follicular Lymphoma (FL) tissue slides with three subtypes and 44 Neuroblastoma (NB)
tissue slides with four subtypes, where each slide is semantically annotated according to their
subtypes by expert pathologists. By using leave-one-slide out testing scheme, the multi-image
query algorithm with the proposed weighting strategy achieves about 93% and 86% of average
classification accuracy at the first rank retrieval, outperforming the image-level retrieval accuracy
by about 38 and 26 percentage points, for FL and NB diseases, respectively.

Index Terms
Content-based image retrieval; microscopy multi-image queries; weighting scores; information
retrieval

I. Introduction
THANKS to the technical advances in diverse modalities such as X-Ray, CT and MRI, and
their common use in clinical practice, the number of medical images is increasing every day.
These medical images provide essential anatomical and functional information about
different body parts for detection, diagnosis, treatment planning and monitoring as well as
medical research, and education. Exploration and consolidation of the immense image
collections require tools to access structurally different data for research, diagnostics and
teaching. Picture archival and communication systems (PACS) provide the hardware and
software for the storage, retrieval and management of radiological images [1]. However,
such systems use the patient information, and/or modality to index and search the images;
the content of the image is not utilized. Content-based Image Retrieval (CBIR) systems [2],
[3], [4], [5], [6], [7] for medical images are important to deliver a stable platform to
catalogue, search and retrieve images based on their content.
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Although several CBIR projects exist for radiology [8], [9], [10] and several other projects
are underway, there is an acute need for a comprehensive and flexible CBIR system for
microscopic images with direct implications for the field of pathology and cancer research.
Microscopic images present novel challenges because they i) are large in size ii)
demonstrate high degree of visual variation and the often low visual distinctiveness between
classes due to large variation in preparation (e.g. staining, thickness), iii) show huge
biological variation. Therefore, a well-designed CBIR system for microscopic images can be
extremely useful resource for cancer research, diagnosis, prognosis, treatment and teaching.
In other words, such a system can i) assist pathologists in their diagnosis and prognosis, ii)
potentially help to reduce inter- and intra-reader variability in clinical practice for the
diseases, especially those with complicated classification, iii) help cancer researchers in
better understanding of cancer development, treatment monitoring and clinical trials, iv)
train future generation of researchers by providing consistent, relevant and always available
support and assistance. In this paper, we describe the design and the development of a multi-
tiered CBIR system for microscopic images from a reference database that contains more
than one disease.

To provide a motivating example and to test the ideas developed in this work, images in our
reference database include sample regions cropped from digitizedhematoxylin and eosin
(H&E) stained whole-slides. Neuroblastoma (NB) and Follicular Lymphoma (FL) tissue
images have been collected as part of our ongoing projects for both diseases. The input
images to our system are digitized using a Scope XT digitizer (Aperio, San Diego, CA,
USA) at 40× magnification. FL tissue slides were collected from the Department of
Pathology, The Ohio State University in accordance with an IRB (Institutional Review
Board) approved protocol. NB whole-slide tissue samples were collected from the
Children’s Oncology Group slides. According to the recent medical statistics FL accounts
for 20–25% of non-Hodgkin lymphomas in the US [11] and affects predominantly adults,
particularly the middle-aged and elderly. FL cases are stratified to three histological grades
from low risk to high risk category as follows: Grade-I, Grade-II and Grade-III. NB is the
most common extracranial solid cancer in childhood and in infancy. According to the
International Neuroblastoma Classification System, NB tissues are mainly divided into two
subtypes such as Stroma-rich or Stroma-poor based on the degree of Schwannian stroma
development [12]. Additionally, stroma-poor tissue has three subtypes such as
Undifferentiated, Poorly Differentiated and Differentiating. These subcategories as well as
the mitosis karryorrhexis index are used for prognostication.

Annotation of microscopic images, e.g. H&E stained pathology slides, with subtypes of the
main disease needs an expert pathologist to select pathology-bearing regions, or regions of
interests (ROIs) from the whole slide. Then each selected region is annotated semantically
by giving a score according to its visual qualitative characteristics. For example, the number
of centroblasts or mitotic-karryorrhectic cells can establish a score to interpret the
underlying subtype of that disease. The final decision on the grade or subtype of the disease
for the whole slide is given after considering the annotations of all sample regions, i.e., the
average subtype-related score over all sample regions is assigned as the final score of that
whole slide. Considering the extremely large sizes of microscopic images, it is obvious that
manual annotation of these images is a time-consuming process and those annotated images
may not be easily available for clinical use. Therefore, one of the aims of this study is to
organize the annotated microscopic images in a database and utilize these images for the
training of a CBIR system for microscopic images with different disease types and with their
subtypes.

The novel aspects of our multi-tiered approach are: 1) it retrieves the most similar disease
types in the slide-level rather than in the image-level by enabling multi-image queries in
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order to ensure the consistency among the retrieved images, 2) Slide-level scores are
weighted in a sophisticated way by modifying the term frequency – inverse document
frequency weighting concepts of information retrieval (IR) theory [13] to decrease the
sensitivity of the proposed CBIR system to erroneously annotated sample images in the
database. These aspects were designed to mimic the evaluation methodology of pathologists
when they review a whole slide microscopic image. Since in real medical applications,
especially for microscopic images at high magnifications, the query object is more likely to
be a set of sample images extracted from a whole slide image rather than being a single
image, the multi-image query model suits perfectly for our case. It has been also proved that,
query by multi-images leads to more scalable and satisfactory query performances by
overcoming the limitation on the specification of image content of single-image queries
[14], [15].

In CBIR systems, images are typically represented with feature vectors extracted using low-
level image processing techniques [8], [9], [16]. However, similarities in feature vector level
does not always guarantee the semantic similarity, (i.e., interpretations of images according
to their predefined categories), between query image and retrieved images. This is known as
the semantic gap problem [17], [18]. In this paper, we will explore the effect of slide-level
retrieval system with multiple query images in order to increase the semantic relevance of
query image set and retrieved images.

A general flowchart of the proposed CBIR system is illustrated in Fig. 1. It shows the main
steps of the CBIR algorithm, e.g., feature extraction, major disease type classification (1st

Tier), image retrieval according to the subtypes of the diseases (2nd Tier).

The rest of the paper is organized as follows; Section II presents related works on CBIR
methods for medical images. Section III explains the features extracted from the database
images. Two-tier retrieval approach is explained in Section IV. Database description and
results of the experiments are discussed in Section V. Conclusions are drawn in Section VI.

II. Related work
Most of the commercial search engines (e.g. Google, Yahoo!, Bing Image Search) are built
around a semantic search, i.e. the user needs to type in a series of keywords and the images
in those databases are also annotated using keywords, the match is accomplished primarily
through these keywords. CBIR systems have been developed in the recent years to organize
and utilize the valuable image sources effectively and efficiently for diverse collections of
images. Most of the recent CBIR systems in biomedicine [5], [8], [9], [19], [20] are
designed to classify and retrieve images according to the anatomical categories of their
content, i.e., head or chest X-ray images or abdominal CT images. For example, the
ASSERT system [5] was designed for high resolution computed tomography (CT) images of
the lung where each set of feature was extracted from the pathology-bearing regions.
Similarly, CBIR for CT images of three types of liver lesions was investigated by
incorporating semantic features observed by radiologist as well as features computationally
extracted from the images [8]. Previously, a prefiltering approach [9] was proposed to
reduce the search space of query images by categorizing the images using multi-class
support vector machines and fuzzy c-mean clustering. Twenty different modality specific
semantic categories based on body region, and orientation differences and the database for
retrieval included microscopic images of leukemia, Alzheimer’s disease, bacterial
meningitis and skin lesions were used for retrieval. The retrieval after prefiltering was done
according to main disease categories only, which is similar to the first-tier of our two-tiered
approach. In another study [19], expectation-maximization algorithm was used to generate
clusters of block-based low-level features extracted from radiographic images. Then, the
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similarity between two clusters was estimated as a function of the similarity of both their
structures and the measure components. Pourghassem and et. al [20] proposed two level
hierarchical medical image classification method. The first level was used to classify the
images into the merged and non-merged classes. They tested their algorithm on medical X-
ray images of 40 classes. Although this is a two-level hierarchical classification, it is
different from our approach because only the merged classes were evaluated in the second
level to be classified with MLP classifiers into one of 40 classes.

Traditional indexing and search strategies used in radiological systems are not directly
applicable in the context of digital microscopy, since it is not obvious how to define a
primary key or major anatomical structure for such images. To complicate things further,
most known structures (e.g. cells, its components, tissue, etc.) are much more complex and
require more detailed analysis than that would be needed at the higher resolutions and scale
of radiological images. The feature extraction from microscopic images is also challenging
because these images are composed of varying textures, overlapping structures, and different
cell constituents even for the same disease types.

For the last decade, a few CBIR systems for the microscopic images have been developed
for clinical use [6], [21], [22], [7], [16]. Mehta et al. designed a region specific retrieval
system based on sub-image query search on whole slide images by extracting scale invariant
features on the detected points of interests and 80% of match was achieved with the manual
search for prostate H&E images [22] in the top five searches. In another study, image-level
retrieval of four special types of skin cancer [21] was performed by constructing a visual
word dictionary under a bag-of-features approach in order to represent a relationship
between visual patterns and semantic concepts. Zheng et al. [6] proposed a CBIR system
based on the weighted similarities of four feature types such as color histogram, image
texture, Fourier coefficients and wavelet coefficients. The retrieval performance of their
system was tested using agglomerative cluster analysis for different pathology image
categories and the best retrieval performance was observed for prostate query images.

Recently, Yang et al. [7] developed a web-based system called PathMiner which includes
automatic segmentation, CBIR and classification modules to assist diagnostics in pathology.
They evaluated the classification performance of their system on five different blood cells
such as chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), follicular
center cell lymphoma (FCC), and acute lymphocytic leukemia (ALL) and acute
myelogenous leukemia (AML) by using support vector machine (SVM) classifiers with
texton histogram features and 87.27% of classification accuracy was achieved on an open-
set with large variations in staining characters.

Most of the CBIR approaches designed for microscopic images have their own specific
application area, specific feature extraction technique or a specific similarity measure for the
evaluation. For example, disease-specific CBIR systems [22], [21], [16] have been
developed for clinical decision support of specific diseases while some of the CBIR systems
were designed for the classification of different types of pathology images, i.e., liver tissue,
prostate tissue, breast tissue, lymph node and etc [6].

Although many promising CBIR approaches were developed for medical applications, there
are still gaps in terms of image contents, retrieval methodology, performance evaluations
and their application areas [17], [18], which make this research area an open problem for
further studies. Particularly, the majority of the retrieval methodology of the published
CBIR techniques focused on image-level retrieval either by choosing or defining an
appropriate distance metric to compare the feature vectors from the query and database
images [8], [16], [23]. However, multi-image query based retrieval is more suitable for
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challenging medical CBIR applications. Especially, microscopic images at high
magnifications require multi-image queries in order to specify the query images more
efficiently. Therefore, our CBIR method will focus on defining a retrieval methodology for
multi-image queries, which can be also applicable for any type of multi-image query and
retrieval application.

In summary, our approach focuses on one modality, which is the digital brightfield
microscopic images of tissue slides and it does not aim to provide a way to search and index
generic medical image collections. It differs from the existing microscopic CBIR methods
mainly in two aspects. First, two different diseases (FL and NB) are processed within a
CBIR system with their high level semantic annotations. The framework can also be
extended to several other diseases. Second, our approach enables multi-image queries
instead of one image query and provide a slide-level retrieval by keeping the slide-level
consistency among retrieved images by using weighting scores depending on the image-
level rank order and distributions of the subtypes over the reference dataset.

III. Feature Extraction
In this section, we will explain the feature extraction techniques that we employed to the
images in our database.

A. Low level feature extraction
There are many factors affecting the performance and accuracy of CBIR systems, such as
choosing more discriminative features, similarity measurement criteria, query formulation
and so on. In order to design an effective CBIR system, the initial step in our work is to
extract discriminative features from the images in the reference database. These features will
also be calculated for query images.

One of the most discriminating characteristics of microscopic images is color, especially
when compared to most common radiological images, which are mostly gray-level. Due to
the high resolution of microscopic images, subtle changes in characteristics of cells,
combinations of cells, structures and tissues can also be differentiated from each other by
texture characteristics. Therefore, for our CBIR design, we heavily make use of color and
texture characteristics and extract these features using low level image feature extraction
techniques.

1. Color features: H&E images have considerably limited color spectrum, i.e., there
are few dominant colors (hues of blue and pink) as shown on the sample images in
Fig. 4 and Fig. 5. Therefore, in order to better represent the limited color
information in more detail we used two more color spaces in addition to red-green-
blue (RGB) color space. These additional color spaces are CIELab (Lab) and Hue-
Saturation-Value (HSV) color spaces. In the Lab color space L corresponds to
illumination and a and b channels corresponds to color opponents. Thus, features
extracted from the Lab space characterize the intensity and color information of
images separately [24]. On the other hand, the HSV color space is known with
similarity to the human conceptual understanding of colors. Besides this, HSV
space can separate the chromatic and achromatic components, i.e., hue (H) channel
distinguish colors, saturation channel (S) represents the percentage of white light
added to a pure color space and value (V) refers to intensity of perceived light [24].
For each channel of a given color space; mean value and standard deviation is
computed as first and second order statistics features. In total, 18 (2 features × 3
channels × 3 color spaces) color features are extracted from each image.
Additionally, mean value, standard deviation, skewness, kurtosis, maximum and
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minimum values, energy and entropy values are computed for gray level intensity
image. In summary, 26 color and gray-scale features are extracted using three
different color spaces for a given image.

2. Texture features: Microscopic images with different disease types and subtypes can
be distinguished via their homogeneity or texture characteristics. To capture the
discriminative texture information, we investigated several texture feature
extraction methods in the literature [25], [26], [27]. Co-occurrence histograms are
the most frequently used method for texture feature extraction [4], [27], [28], [29].
They can be defined as a sample of a joint probability density of intensity levels of
two pixels separated by a given displacement. The distribution in the histograms
depend on the rotation angle and distance relationship between pixels. Once the co-
occurrence histogram is computed, various features can be extracted related to
texture characteristics, lower and higher order statistics, information theory related
features and correlation measure. As a consequence, we extracted the following
features: mean, standard deviation, contrast, correlation, energy, entropy and
homogeneity from the normalized co-occurrence histograms for each RGB and Lab
color channels and gray-level images. In addition, mean value, homogeneity and
entropy values are extracted from the difference histograms [30] of the normalized
co-occurrence matrix. For a given image, a total of 80 texture-based features are
extracted using RGB, HSV color spaces and gray level intensities. It should be
noted that, average of the co-occurrence histograms for eight different directions,
i.e., 0°, ±45°, ±90°, ±135°, 180°, are calculated in order to obtain rotation invariant
features. It should be noted that the images are at the same magnification level
therefore, no scaling of the features is needed.

Once all color and texture features are extracted, they are concatenated to form a 106
dimensional feature vector. After feature extraction, a Z-score normalization is applied to
each extracted feature in the feature vector by subtracting the mean of that feature followed
by dividing to the standard deviation of that feature computed over the reference dataset.
This normalization step converts all extracted features to a common scale with an average of
zero and standard deviation of one. Then normalized feature vectors (NF) are stored for
further CBIR processes. When the query image set is given to the system, the system will
employ the same feature extraction and normalization procedure to the query images.

Instead of analyzing the contribution of extracted features based on selected color spaces or
texture features by using feature selection algorithms, we preferred to use subspace
projection method in order to represent the feature vectors more sparsely by decreasing the
correlation among the features. In the literature, subspace projection methods have been
widely used for dimensionality reduction and feature extraction. They are popular to analyze
structures where large amount of correlated numerical data is available. Nonnegative Matrix
Factorization (NMF) [31] is one of the data driven subspace projection method, which aims
to factorize a data matrix into basis vectors and their combiner coefficients. They perform
better for features extracted from partially represented data [32]. In our case, features from
different color spaces and texture features can be assumed to be features of a partially
represented data. Using a training data set, FDS with size lxT, the m basis vectors, columns
of W, are obtained as:

(1)

Here, l is the length of the feature vector, T is the number of samples in the dataset and m (m
< l) is the size of NMF features. In the factorization in Eq. 1, the columns of the lxm matrix
W stand for the basis vectors and the columns of the mxT matrix H determine how the basis
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vectors are activated to reconstruct the feature matrix FDS. The columns of H represent the
NMF-based feature vectors of the corresponding data. The classification of a test feature
vector FQ is based on its NMF features given by h = W+FQ. The number of columns m in
the (basis) matrix W was determined for each disease type empirically during training stage.
In this study, the implementation of NMF code was based on the projected gradient method
[33].

IV. Two-tier retrieval approach for multi-image queries
Our CBIR system operates at two tiers. In the first tier, the designed classifier categorizes
the query image/images into one of the major disease types such as FL and NB. Once the
disease category of the image is determined, the search for the query image can be carried
out among the category relevant subtypes in the subsequent tier. For example, when the
query image belongs to NB disease, database images in the first tier will be filtered
according to the NB disease category. Then the subsequent search will be only performed on
the NB category subset to retrieve the images from the correct category of the query images.

In the second tier, we will use our proposed multi-image query and retrieval methodology to
retrieve the images from the reference database in the order of their image-level visual
similarities by preserving the slide level semantic similarity.

A. First tier: Classification of disease type with SVM
A support Vector Machine (SVM) type classifier was employed to categorize the query
image into one of the major disease type such as NB or FL using the extracted features
which are explained in Section III-A. SVM classifiers are well founded in statistical learning
theory and have been successfully used for various classification tasks in computer vision.
Their purpose is to find a decision hyperplane for a binary classification problem by
maximizing the margin, which is the distance between the hyperplane and the closest data
points of each class in the training set that are called support vectors. The hyperplane is
chosen among all the possible hyperplanes through a complex combinatorial problem
optimization, so that it maximizes the distance (called the margin) between each class and
the hyperplane itself. As SVMs are restricted to binary classification, several strategies are
developed to adapt them for multiclass classification problems [34] such as one-against-all
classification and pairwise classification.

In our SVM classifier, we selected the radial basis function which is one of the most
frequently used kernels and it gives better results than other kernels for the categorization of
our data. Libsvm Matlab code [35] was used in the experiments of this study.

B. Second tier: Slide level image retrieval
In this part of the CBIR algorithm, we proposed a two-level retrieval system, in the first
level the search is performed similar to traditional CBIR systems such that the images are
retrieved based on their image-level similarities. In the second level, the images will be
retrieved according to their similarities in the slide-level. Once the category of the query
image is detected in the first tier, further search is performed on the prefiltered database
which includes only the sample images of the detected disease category. As we described in
Section V-A, each disease has higher level semantic annotations based on their histological
grades such as Grade-I, Grade-II and Grade-III in FL disease or differentiating levels such as
Stroma-rich, Undifferentiated, Poorly Differentiated and Differentiating in NB disease.
Therefore, it is necessary to retrieve images related to their higher level semantic
characteristics in order to provide more accurate results to the user of the CBIR system.
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Algorithm 1 summarizes the image-level search and Fig. 2 illustrates a sample nearest
neighbor search scheme for a given query image set in image level. Here we used the term
of image-set in order to represent multiple images in one query. Note that, image set may
include only one image or several images cropped from one tissue slide. The distance
between each image of query Q and the individual images in the dataset are computed using
the correlation distance measure as shown in Equation 2.

(2)

where N is the number of individual query entities in the given query image set Q, T is the
number of images in the reference dataset DS, FQn represents the feature vector of the nth

query image, FDSt represents the feature vector of the tth image of the given dataset, 〈·, ·〉 is
the inner product, || · || is the L2 norm and | · | is the cardinality.

Algorithm 1 provides us the frequency of similar images per image in the dataset to a given
query image set or a slide in terms of scores. Scores are computed by summing the number
of occurrences of each image in the dataset for a KNN search of that query image set. The
output of this algorithm is the traditional image-level based retrieving of most similar
images from the given dataset and their image level scores.

In our alternative approach to image-level retrieval, we propose to retrieve similar images
from the database by keeping the slide level semantic grade among the retrieved images. For
this purpose, we introduced a slide-level retrieval methodology, which is summarized in
Algorithm 2. The conventional way of ranking the similarity of slides to a given query
image-set is by sorting the similarity scores of the reference slides independent from their
subtypes and retrieving the highest scored slides from the database, which means that
subtypes of the slides are considered equally important. In our proposed approach, the first
step is to scale the score of each slide by assigning different weight parameters based on
subtype frequencies over the reference database. For example, in our dataset the number of
slides per subtype is not equal, i.e., FL Grade-I has 15 slides while FL Grade-III has 22
slides. Therefore our algorithm assigns higher weights to the slides of FL Grade-I since its
frequency is lower than FL Grade III. Similarly, the number of images per slide is varying
among the slides. In order to make a sophisticated and intelligent relevance ranking system,
it is necessary to take into account those statistical variations among slides and subtypes.
The computational model illustrating all intermediate levels of the proposed slide-level
CBIR system is given in Fig. 3 for a sample query image set.

Assigning weights to each slide and to each subtype based on the distribution (or frequency)
of images per slide and distribution of slides per subtype is motivated by similar approaches
in information retrieval theory [36]. In information theory, “term frequency (tf)” refers to the
frequency of an index term in a reference document and “inverse document frequency (idf)”
is inversely proportional to the number of documents containing that index term [37], [38],
[39], [40] and they are used to assign weights for each term of the documents before
computing similarity. However, in our case we do not have definite terms (i.e. words in
documents) but we have scores representing the unweighted similarities between the query
image set and the reference slides. Therefore, we adapted these concepts to assign weights to
normalize the similarity scores of each slide and each subtype depending on the slide-level
and image-level statistics of the dataset (e.g. the number of images per slide or the number
of slides per subtype).
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In our slide-level retrieval system, we redefined scores in terms of image term frequency
(itf) which corresponds to normalized number of image count of a particular slide for a
given query set.

Additionally, inverse slide frequency (isf) is inversely proportional to the number of slides
per subtype, and it gives lower weights to the slides occurring in a larger set of subtype.
Equation 3 represents the calculation of isf per subtype.

(3)

where c = 1, …, C, and Sc is the number of total slides for the cth disease subtype.

Algorithm 2 summarizes the proposed weighting score approach. In order to take into
account the rank of the slides in terms of their itf scores (Score_itf ), we assigned a
weighting term, called Rank_weight, to each subtype. First, Score_itf values were sorted in
descending order and top K2 of the sorted scores are summed according to their subtypes.
These summed scores represent the Rank_weight term for each subtype. Basically,
Rank_weight term corresponds to the proportion of summed itf scores within the top K2 itf
scores per subtype. The purpose of Rank_weight is to increase the likelihood of retrieving
the subtype of the highest scored slides by assigning higher weights to the slide scores of
that subtype. Notice that, unlike Score_itf and Rank_weight, Subtype_isf term depends only
on the statistics of the dataset and hence it can be computed offline independent from the
query image set.

V. Dataset and experimental results
A. Annotated microscopic image dataset

Table I lists the details of the database that we used in this study and Fig. 4 shows randomly
selected sample images belonging to different histological grades of FL cases. The number
of cropped images per slide is between 11 and 30 for FL cases and 7 and 35 for NB cases.
For FL slides, a team of experienced hematopathologists selected about ten random
microscopic high power fields (HPF) to interpret the disease grade in terms of the average
number of centroblasts per HPF. Note that, for both FL and NB, we use internationally
accepted and clinically practiced standards. For FL, our collaborating pathologists use the
World Health Organization (WHO) grading system. For NB, the International
Neuroblastoma Classification System, invented by our collaborator Dr. Hiroyuki Shimada,
is used. In our database each HPF corresponds to one image and each slide belongs to one
patient. Note that, in order to simplify the terminology of this paper, we used “image set”
and “slide/patient” pairs interchangeably. The consensus of pathologists is used to stratify
cases into their histological grades. The sizes of the cropped images are 1353×2168 pixels
for FL cases and 1024×1024 and 1712×952 pixels and for NB cases.

For NB slides, pathologists pick the representative regions (images) from the whole slide
and examine those regions at higher magnifications. The final decision for the differentiation
grade of the entire slide is based on the grades of the sample images selected from that slide.
Due to this differentiation grades, NB disease is differentiated to two subcategories such as
Stroma Rich (SR) and Stroma Poor (SP). Stroma Poor subtype has three more subtypes such
as Differentiating (D), Poorly Differentiated (PD) and Undifferentiated (UD). In total, NB
disease has four subtypes. Figure 5 illustrates sample images cropped from different slides
with different differentiation grades of NB to give an idea about their visual appearances.
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Because of the heterogeneous characteristic of these tumors, all image-level annotations
may not match with the annotation of the entire slide, which causes intra-slide variations.
Additionally, there may be variations among inter-and intra-readings of pathologists,
because of which, FL Grade-I and FL Grade-II subtypes [41] and NB-PD and NB-UD
subtypes [25] are the most confused subtypes of the FL and NB diseases, respectively.

B. Results of the first tier
The organization of the test set and training set is performed in patient (slide) independent
manner. In other words, none of the images of a test slide is included in the training set in
order to obtain more realistic results both in first tier and second tier experiments.

In the experiments of the first tier evaluation, we randomly selected five FL and five NB
slides for each test set and the remaining slides were used for the training of the SVM
classifier. In total, ten slides were randomly chosen for test set and 91 slides were used for
training. In order to comprehensively test and train all NB and FL sample slides with
different test sets, we repeated the testing scheme until all the slides were used as a test slide,
an approach similar to the leave-one-out testing.

The classification results of the first tier, summarized as a confusion matrix in Table II, were
computed as the overall average over 50 test repetitions. These results were obtained with
SVM classifiers trained with normalized features. The classification accuracies were
evaluated in two different ways. One way is to evaluate the results at the image level, such
that each image is classified independent from the other images of that test slide. The other
way is to interpret the results at the slide-level by combining the decisions on all images of a
test slide using decision fusion rules. Here, the majority rule is employed to the assigned
classes of the test images to determine the slide level classification of that image set. In other
words, the majority of the assigned classes for each test image is chosen as the
representative class for that given slide. It is observed that, 0.6% of FL test images (6
images) were classified as NB at image level and after majority voting, all FL slides were
classified correctly. For NB case, 5.3% of NB test images (38 images) were misclassified.
After majority voting, all NB test slides except one with differentiating grade were correctly
classified. It is noticed that, all images of that NB slide were also misclassified at the image
level. This misclassified NB slide was used with both NB and FL slides in order to evaluate
the retrieval accuracy in the second tier of the algorithm in case of a misclassified slide.

C. Results of the second tier
After determining the classes of query slides in the first tier, the next step is to retrieve the
most relevant images from the database according to the main disease type of the query
image set. Leave-one-slide-out cross validation testing scheme was employed for each
disease type separately such that at each round one tissue slide with all corresponding
images were used as a query image-set and the images of the remaining slides were used as
the reference dataset for that query.

The organization of the performed experiments for the second tier is shown in Fig 6. For the
slide level retrieval, we used the proposed weighted scores to rank the slides according to
their relevancy to a given query slide. In order to assess the performance of Rank_weight on
the retrieval system, we evaluated the experiments both with (Slide-level II) and without
(Slide-level I) using this weighting term.

We used both precision and Area Under Presicion versus Recall Curves (AUPRC) to
measure the retrieval accuracy in our experiments. For a query Q, let K be the number of
retrieved images and B be the number of relevant images among K retrieved images for that
query. Then precision (P) and recall (R) values are calculated as in Equation 4.

Akakin and Gurcan Page 10

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(4)

Here M represents the number of all relevant images in the dataset to the query Q. PR curves
can jointly represent the false alarms and dismissals for different K values in one plot. In this
paper, the retrieved image or slide is considered to be correct if its semantic annotation
(subtype of the disease) is same as the semantic annotation of the query image set.

When we analyzed the reults given in Tables III–VI and Fig. 8 for the retrieval of NB and
FL slides, we had the following observations:

Retrieval for FL disease:

• In FL case the proposed weighting scheme results a higher retrieval accuracy for all
subtypes of the FL disease when compared with image-level retrieval. The retrieval
performance improvement between image-level retrieval and slide-level retrieval
schemes is shown in Table III. The average retrieval performance for both NMF
and NF features increases gradually from Image-level to Slide-level II, e.g., 30, 45
and 54 AUPRC values were achieved for Image-level, Slide-level I and Slide-level
II schemes with NMF features, respectively.

• Table IV presents the confusion matrix of NMF features in terms of precision
values with top rank retrieval indices. Each row of the confusion matrix represents
the precision values for the corresponding retrieval indices for the actual disease
type (given in the first column of each row). For example, when the search image
belongs “Grade I” and the retrieval rank is 3 as shown in Table IV, the correct
retrieval accuracy is 77.9% and 22.1% were retrieved from other grades, e.g.,
13.3% of the samples were retrieved from Grade II and 8.8% of them were
retrieved from Grade III diseases. Grade I and Grade II are the most confused
subtypes of FL disease, which is also the case clinically. Grade III achieved 95.5%
of precision for the first rank. An average classification accuracy of 93% was
achieved for FL diseases for the first rank retrieval. It should be noted that, even
though one NB slide was misclassified as an FL slide, it was consistently retrieved
at the last rank so that this misclassified slide did not degrade the performance of
the retrieval.

Retrieval for NB disease:

• The retrieval performance for NB slides was improved with the proposed weighting
scheme as suggested (Tables V–VI). Especially, for SR and PD subtypes of the NB
disease, higher precision values were achieved when compared with D and UD
cases. A possible explanation for this observation is that, PD and UD subtypes are
the most commonly confused subtypes because of their high visual similarities
[25].

• Even though visual similarities between PD and UD cases are high, the proposed
score weighting approach with NMF features improved the retrieval accuracy for
about 32 AUPRC points for PD subtype by using weighted score with
Rank_weight (Slide-level II) when compared with image-level retrieval accuracy.
On the other hand, although UD case was the most difficult subtype to classify
among all subtypes, 12 and 20 AUPRC points improvement was achieved via
Slide-level I and Slide-level II aprroaches, respectively, when compared with
image-level retrieval.
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• Average AUPRC retrieval accuracies of NB slides for image-level, Slide-level I
and Slide-level II methods are 39, 63 and 72, respectively.

NF versus NMF features:

• We compare the retrieval performance of these two feature types in Tables III and
V. As suggested, NMF features perform slightly better than NF features, such that,
4 and 8 average AUPRC points for improvement for NB slides and 1 and 3 average
AUPRC points improvement for FL slides were achieved by using Slide-level I and
Slide-level II weighting approaches, respectively.

Comparison of precision values for Slide-level II and image level retrieval with NMF
features is shown in Fig. 7. The proposed weighting strategy achieved about 93% and 86%
of average classification accuracy at the first rank retrieval, outperforming the traditional
image-level retrieval accuracy by about 38 and 26 percentage points, for FL and NB
diseases, respectively.

In order to analyze the effect of the number of query images on the retrieval accuracy, we
conducted an extra experiment on FL-NMF features with Slide-level II weighting approach.
The number of query images was increased from one to maximum number of available
images for a given query slide. The number of images per FL slides varies between 11 to 30.
Figure 8 shows the precision values as a gray level image, where bright pixels represent
higher precision values (i.e. pure white indicates a precision of 1 and pure black indicates 0).
It is observed from this figure that, as the number of query images was increased the retrival
accuracy was also increased.

An important point for the efficiency of this proposed approach is the parameter selection,
i.e., K and K2 parameters used to compute weightings of the scores, where K represents the
number of searched images in image-level retrieval which is used further for computing both
unweighted and weighted scores of the slides and K2 is used to compute the Rank_weight
parameter. In order to find the best parameters, we conducted an exhaustive search. We ran
the proposed CBIR algorithm for K = 1, …, T, and K2 = 1, …, 7 where T is the total number
of images in the reference dataset. For NB disease, K = 21 and K2 = 5 gives the best
retrieval results while for FL disease, K = 40 and K2 = 5 gives the best retrieval results.
Different number of NMF features, i.e., 10 to 100, were tested for both FL and NB cases and
best performances were obtained with 40 NMF features for NB and FL cases. Therefore, it
is necessary to select these parameters separately for each main disease type during training.

VI. Conclusion
In this paper, we have presented a novel content-based microscopic image/slide retrieval
algorithm. We have demonstrated that by using the proposed weighting scheme inspired by
information retrieval theory, the slide-level retrieval performance of the CBIR system is
considerably better than the traditional image-level retrieval accuracy for all seven subtypes
of two challenging diseases, which have inter-and intra-reading semantic variations, intra-
slide semantic variations and inter-subtype visual similarities. In the first tier, only one slide
among 44 NB slides is misclassified and in the second tier, about 26 percentage points of
improvement was achieved on the classification accuracy at the first rank retrieval over all
diseases by using the proposed score weighting strategy. This CBIR system can enable the
user, e.g, a pathologist, to select multiple HPF regions from a suspected tissue and submit
those images as a query to the CBIR system and retrieve the most relevant slides with their
semantic annotations with higher accuracies. The results, achieved under those challenging
conditions, are also promising for automatic and unsupervised selected query images based
on their HPF regions. Application of the proposed weighting strategy, inspired by the
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information retrieval theory is not limited to microscopic images only, and can be also
useful for any type of multi-query search and content-based retrieval systems.

In our future work, we will i) investigate more effective texture and color feature extraction
methods [42], [43], [44] ii) improve the robustness of the system by increasing the number
of patients/slides in the database, iii) enhance the diversity of the database by including
microscopic images from different disease types, iv) evaluate the performance of the system
on automatically selected HPF regions for the query and finally v) develop a multi-purpose
web-based tool for training future generations of researchers by providing consistent,
relevant and always available support and assistance for the challenging diseases and finally
help cancer researchers in better understanding of cancer development, treatment monitoring
and clinical trials.
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Fig. 1.
The general flowchart for the CBIR system for a given query image or images
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Fig. 2.
Sample image-level nearest neighbor search scheme for a given query image-set
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Fig. 3.
Computational model representing the transition from image level-scores to slide-level
retrieval, where i =image number, c = subtype number and s = slide number. Here, the query
Q is an image set with 20 images belonging to subtype 1. Image-level scores, slide-level
scores, Score_itf, Rank_weight, relevancy rank of slides with weighted scores are computed
respectively for the given sample query.
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Fig. 4.
Sample H&E stained FL images associated with the three grades. (a) Grade - I (b) Grade - II
and (c) Grade - III.
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Fig. 5.
Sample NB images associated with the four grades. (a) SR, (b) D (c) PD and (d) UD.
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Fig. 6.
The second tier experimental scheme
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Fig. 7.
Comparison of average precision values for Slide-level II and image-level retrieval
algorithms for FL and NB diseases.
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Fig. 8.
Analysis of number of query images per slide with top rank retrieval indices in terms of
precision values. The precision values are represented as a gray level image.
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TABLE I

Distribution of main diseases and their subtypes in the database

total # of images Follicular Lymphoma (943)

Subtypes Grade I (269) Grade II (372) Grade III (302)

Number of slides (Patients) 15 20 22

total # of images Neuroblastoma (723)

Subtypes
Stroma Rich (174) Stroma Poor (549)

Differentiating (163) Poorly Differentiated (193) Undifferentiated(193)

Number of slides (Patients) 13 8 12 11
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TABLE II

Average classification results (%) for the 1st tier over 50 test repetitions

FL - image NB - image FL - slide NB - slide

FL 99.4 0.6 100 0

NB 5.3 94.7 2.3 97.7
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Algorithm 1

Image-level Retrieval

 for for a given query image-set Q, with K retrieval do

  Image_Score (1 … T) = [0 … 0]

  // Initially score of each image in the corresponding dataset equals to zero.

  for n = 1 to N do

   for t = 1 to T do

    distance(n, t) = Dist(FQn, FDSt)

   end for

   ind = sort(distance) in descending order,

   Retrieve and display the K-closest images to the user

   and

   Image_Score(ind[1 : K]) = Image_Score(ind[1 : K]) + 1

   // Add 1 to the score of K-nearest images which has the smallest distance from the corresponding dataset to the query image

  end for

  // Scores are accumulated if N > 1

 end for
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Algorithm 2

Slide-level Retrieval

 for for a given query image-set Q, with K image-level retrieval do

  Perform Algorithm 1

  // Do not display the retrieved images to the user

 end for

 for c = 1 to C do

  for s = 1 to Sc do

Score _it f (c,s) = ∑i=1
I (c,s)

Image _Scorei
c,s / I (c,s)

  end for

 end for

 // Sort Score_itf in descending order and select top K2 to compute Rank_weight

for c = 1 to C do

Rank _weight (c) = ∑k=1
K 2

Sorted _Score _it f (c,k)

 end for

 for c = 1 to C do

  for s = 1 to Sc do

Weight _Score (c,s) = Score _it f (c,s) ∗

Subtype _is f c ∗ Rank _weight (c)

  end for

 end for

 // Sort the weighted scores in descending order

 // Display the user n-highest scored slides
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