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Abstract

There are many examples of problems in pattern analysis for which it is often possible to obtain 

systematic characterizations, if in addition a small number of useful features or parameters of the 

image are known a priori or can be estimated reasonably well. Often, the relevant features of a 

particular pattern analysis problem are easy to enumerate, as when statistical structures of the 

patterns are well understood from the knowledge of the domain. We study a problem from 

molecular image analysis, where such a domain-dependent understanding may be lacking to some 

degree and the features must be inferred via machine-learning techniques. In this paper, we 

propose a rigorous, fully automated technique for this problem. We are motivated by an 

application of atomic force microscopy (AFM) image processing needed to solve a central 

problem in molecular biology, aimed at obtaining the complete transcription profile of a single 
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cell, a snapshot that shows which genes are being expressed and to what degree. Reed et al. 

(“Single molecule transcription profiling with AFM,” Nanotechnology, vol. 18, no. 4, 2007) 

showed that the transcription profiling problem reduces to making high-precision measurements of 

biomolecule backbone lengths, correct to within 20–25 bp (6–7.5 nm). Here, we present an image 

processing and length estimation pipeline using AFM that comes close to achieving these 

measurement tolerances. In particular, we develop a biased length estimator on trained coefficients 

of a simple linear regression model, biweighted by a Beaton–Tukey function, whose feature 

universe is constrained by James–Stein shrinkage to avoid overfitting. In terms of extensibility and 

addressing the model selection problem, this formulation subsumes the models we studied.

Index Terms

Atomic force microscopy (AFM); Beaton–Tukey; biased estimation; biomolecule; biweight; 
cDNA; digital contour; DNA; image processing; length estimation; linear regression; machine 
learning; RNA; single molecule; supervised learning

I. Introduction

There are many examples of problems in pattern analysis for which it is often possible to 

obtain systematic characterizations, if in addition a small number of useful features or 

parameters of the image are known a priori or can be estimated reasonably well. Examples 

of such feature-based analysis of patterns occur in human speech [1], genomic data analysis 

[2], face recognition [3], etc. Often the relevant features of a particular pattern analysis 

problem are easy to enumerate, as when statistical structures of the patterns are well 

understood from the knowledge of the domain. We study a problem from molecular image 

analysis, where such a domain-dependent understanding may be lacking to some degree and 

the features must be inferred via machine-learning techniques. Similar techniques are 

beginning to appear in natural image processing [4], [5], neural connectomics analysis [6], 

population genomics [7], etc., but have not been explored in the area of molecular image 

analysis, which poses very specific problems of its own. In this paper, we propose a 

rigorous, fully automated technique for this problem. In particular, we address several 

computational questions related to the problem: namely, how can one use standard image 

processing approaches to get an initial estimate of the length of a dsDNA from its atomic 

force microscopy (AFM) image and characterize the residual errors? how can one discover a 

parsimonious set of features that can explain the residue and improve the length estimate? 

how can one automatically learn the contributions from a well-chosen subset of features 

using a training set of calibrating molecules, which may be assumed to contain a large 

number of “good” examples but possibly corrupted with a few false positives?

We are motivated by an application of image processing needed to solve a central problem 

in molecular biology, aimed at obtaining the complete transcription profile of a single cell, a 

snapshot that shows which genes are being expressed and to what degree. Seen in series as a 

movie, these snapshots would give direct, specific observation of the cell's regulation 

behavior. Taking a snapshot amounts to correctly classifying the cell's ∼300 000 mRNA 

molecules into ∼30 000 species, and keeping accurate count of each species. The cell's 

transcription profile may be affected by low abundances (1–5 copies) of certain mRNAs; 
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thus, a sufficiently sensitive technique must be employed. A natural choice is to use AFM to 

perform single-molecule analysis. Reed et al. [8] developed such an analysis that classifies 

each mRNA by the following three steps: 1) synthesize a complementary DNA (cDNA) 

copy of each mature mRNA, 2) multiply cleave the cDNAs with a restriction enzyme, and 3) 

construct each cDNA classification label from ratios of the lengths of its resulting 

fragments. Thus, they showed the transcription profiling problem reduces to making high-

precision measurements of cDNA backbone lengths—correct to within 20–25 bp (6–7.5 

nm).

Thus, the solution of the image-processing algorithm needs to be particularly accurate, 

significantly more than the one that has been demonstrated with previous approaches, and 

must do so over a wider range of DNA sizes. The approach must be fully automated, and yet 

be competitive against the manual or semimanual approaches that currently outperform 

computers. The yield from the automatic analysis must be close to perfect; otherwise, the 

low-copy-number gene expressions will be miscounted. Finally, it has to be compatible with 

the chemistry and the sensing physics; in other words, the molecules need to be elongated on 

a sticky uneven surface, may not be fully stretched, may entangle with other molecules, etc. 

Similarly, AFM may generate multidimensional information (e.g., a magnitude and a phase), 

may use a wide variety of scanning strategies, may use parallel scanning with an array of 

probes, may operate in real time to accommodate low latency and high throughput, etc. 

None of the previous work that we discuss below addresses these issues.

A. Related Work

For more than a decade, researchers have investigated the problem of how to accurately 

measure DNA contour length by computer analysis of AFM images. This study falls into 

three broad categories: manual methods, where human operators hand-draw piecewise linear 

backbones over objects extracted from the image background1; semiautomated methods [9] 

that involve human interaction with image processing and object segmentation algorithms; 

and automated methods [10]–[18] that perform their analysis and measurement 

unsupervised. For reasons of speed and reproducibility, we focused our investigation on 

automated methods.

The problem breaks down into two steps: image processing and length estimation. Image 

processing takes as input an AFM image of high resolution (say, 1024 × 1024 pixels 

representing a microscopic area of 1000 × 1000 nm) and outputs a set of 1-D, eight-

connected pixel paths in a transformed image that form the discrete representation of the 

continuous molecule backbone contours. Length estimation assigns to these backbones 

numerical values that purport to measure the true end-to-end length of the molecules.

All of the automated processing methods employ a pipeline of image processing steps. In 

common are steps that remove noise, extract foreground objects, iteratively erode each 2-D 

object into a joined 1-D line structure (tree), and finally, prune each tree's branches from its 

trunk—the backbone contour to be measured next. The erosion (alternatively called thinning 

or skeletonizing) algorithms employed are surveyed in [19]. Some of the automated methods 

1Using a tool like NIH Image (http://rsbweb.nih.gov/nih-image/), for example.
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[10], [11], [15]–[18] insert a step after erosion that uses a line-continuity heuristic to decide 

whether to recover tip pixels that were eliminated during the erosion step. In his masters 

thesis (2007), S. Cirrone innovated the last, tree-pruning step by transforming it from a strict 

image processing problem to a graph optimization one, where instead of eliminating branch 

pixels until the trunk is encountered, the tree is represented as a graph. In this scheme, a 

node is a pixel at the point of path bifurcation or path termination; an edge is a pixel path 

whose weight is given by a linear combination of two types of distance, determined by the 

relative orientations of consecutive pixel pairs: unit distance for horizontal and vertical, √2 

for diagonal; the longest path traversal through this graph represents the trunk, or molecule 

backbone in this application.

For nearly 50 years, since Freeman's pioneering works in the image analysis of chain-

encoded planar curves [20], the study of contour digitization has received much attention. 

Namely, what is the most accurate estimator of the end-to-end length of an arbitrary 

continuous contour that underlies its discrete representation as a 1-D pixel path? The 

literature contains numerous estimators and frameworks to evaluate their relative 

performance [21]–[29]. All of the automated processing methods mentioned earlier employ 

a pipeline of length estimation steps chosen from this set of estimators. These pipelines' 

approaches vary from those that simply traverse the chain code to yield a linear combination 

of unit and √2 distances [10]–[12] to those that use one of a variety of parametric estimators 

[13], [15]–[18] to one that takes a signal processing approach based on fast-Fourier 

transformation followed by the Gaussian filtering and normalization [14].

A related focus of investigation involves estimating the intrinsic curvature of DNA from 

AFM images [30], [31]. Intrinsic curvature of DNA is a function of the nucleotide sequence, 

independent of dynamic components of curvature brought on by thermal agitation. This 

study may eventually improve DNA backbone contour length estimates by inputting 

accurate estimates of curvature to a length estimator that models the DNA contour as a 

sequence of straight lines and circular arcs [23], [25], [29].

B. Our Approach

We first process the AFM images in a manner typical to the literature: filter the image to 

extract binary features from background, erode the binary features into 1-D backbone trees, 

and then prune the trees to extract the backbones. For this last step, we employ the graph-

based method used by Cirrone, specified earlier. The sum of the straight line segments in 

this backbone gives its first length estimate LLS. Then, we fit each backbone pixel path with 

a sequence of cubic splines, one for each five-pixel subpath, where the last pixel of a given 

subpath is the first pixel of the next (i.e., all subpaths share one extremity pixel). A tailing 

subpath  having p < 5 pixels is handled by fitting a cubic spline to the subpath formed by 

prepending to  the prior 5 — p pixels, then counting the spline's length from its closest 

approach to the first and last pixels in . The resulting summed length of the cubic splines 

gives the second backbone length estimate LCS.

We correct LCS by a linear combination of five features, given below. The true length ℒ is 

thus modeled as LCS plus a linear combination of the feature terms plus an error term ε 

where the feature term coefficients derive from an overdetermined system of linear 
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equations obtained from a set of calibrating molecules of known length. We assume ε ∼ N 

(0, σ2) represents a Gaussian noise, thus satisfying the Gauss–Markov condition.

Our system implements a meta-approach to the problem of feature-based length estimation. 

Any number of image-based features may be incorporated into our simple linear model in an 

easily extensible way, giving rise to backbone length estimates whose error is not 

necessarily constrained by geometric lower bounds in terms of, for example, pixel density 

[21], [22], [25] or multigrid convergence [26], [28]. In this way, our approach subsumes the 

length estimation formulations comprised in small, fixed sets of backbone chain code 

parameters cited earlier.

Each image-based feature provides limited predictive power for backbone contour length. 

But integrated into a properly chosen model, with each feature contributing according to its 

demonstrated informativeness during training, in principle, the collective result should be 

superior to any rendered by strict subsets, provided there is no overfitting. Moreover, aside 

from computational complexity considerations, there should be no bound on the number of 

features one applies to the problem.

Our motivation for using the simple machine learning approach of linear regression is 

manifold.

1. It is easy to implement: off-the-shelf libraries are robust, optimized, and have 

undergone rigorous testing and debugging.

2. It is easy to interpret: coefficients are comparatively meaningful as feature weights.

3. It is easy to extend: it can support an arbitrary number of image features.

4. The Gauss–Markov theorem guarantees that among all “linear” unbiased 

estimators, ordinary least squares (OLS) estimates have the smallest variance, and 

thus, OLS is a best linear unbiased estimator (BLUE).

5. The mathematical form of linear regression (Na⃗ = l⃗) naturally admits two 

refinements, aimed at reducing systematic and modeling error, respectively:

a. empirical Beaton–Tukey biweighting, to address statistical significance: 

each weight acts on the corresponding row of N, the q × k feature matrix 

(q calibration molecules by k image features).

b. James–Stein shrinkage, to address overfitting by reducing feature 

dimensionality: shrinkage uses the mean of each column of N to derive a 

shrinkage factor that acts on the corresponding feature coefficient in a⃗; 

features that are noisy (arising from systematic error) or dependent 

(arising from modeling error) are thus eliminated.

In sum, the training process is supervised learning that is based on a set of examples and 

counter examples and the universe of features. Since our method is entirely automated, it 

lends itself to high-throughput applications.
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II. Methods

Our application, called AFM Explorer, implements an image processing and a length 

estimation pipeline. Details of these are given in the “Methods” section of the 

Supplementary Materials, but we give a brief synopsis here.

The image processing pipeline has four phases: filter, erode, select, and remove. The 

original 24-bit RGB image from the AFM is filtered through a series of stages into a binary 

image where the molecules are represented as white blobs against a black background. Each 

blob is eroded down to a set of candidate 1-D molecular backbones, an eight-connected 

pixel tree graph structure. This structure is examined and the longest path in the tree is 

selected to represent the molecular backbone contour. Finally, backbones that stray close to 

the image boundary are removed since these represent molecules at the edge of the viewing 

area that will likely introduce truncated fragments.

The length estimation pipeline first makes an initial and secondary estimation of the 

backbone contour length, then performs four phases upon the secondary estimation: train, 

weight, shrink, and apply. We first estimate the length of the backbone contour b⃗ by 

stringing together straight line segments joining each pixel pair along b⃗ and call this estimate 

LLS (b⃗). We next estimate the length of b⃗ by stringing together cubic splines, each fitting a 

set of five contiguous pixels, and call this estimate LCS (b⃗).

When the application runs in train mode, we extract six features from each backbone b ⃗: the 

number of horizontal pixel pairs nhorz; the number of vertical pixel pairs nvert; the number of 

diagonal pixel pairs ndiag; the number of pixel triples arranged as perpendiculars nperp; the 

coefficient of variation for height nhtcv; and the coefficient of variation for thickness ntkcv 

These together with LCS(b⃗) form the data of a possibly overdetermined linear system. We 

assume the images used to train represent a polydisperse set of molecules having known 

theoretical length ℒ. We train a linear regression model on q ≥ 6 calibrating molecule 

backbones b⃗ having known theoretical length ℒ, using values from these six features: {nhorz, 

nvert, ndiag, nperp, nhtcv, ntkcv}, giving Na⃗ = l⃗, where N is the q × 6 feature matrix, a⃗ is the 

correction coefficient six-vector to solve for, and l⃗ is the length estimate error q-vector […, 

(ℒ − LCS(b⃗
i)), …], where i = 1,…, q. The model has the analytic solution a⃗ = (NTN)−1 NTl⃗. 

This gives a trained estimator L′T as computed in the apply phase below.

This formulation of ℒ′T assumes all fragments that have equal weight, owing to their 

equivalent validity as observations. However, such an assumption may be challenged on the 

grounds that upon taking into consideration the difference between the empirically measured 

null distribution and the actual shape of the distribution in LCS measurements, certain 

observations appear to be false positives, and others false negatives—a notion that we 

address in the weight mode by using robust regression, namely, the Beaton–Tukey 

formulation [32], implemented by MATLAB's robustfit command (with default parameters). 

This gives a weighted trained estimator ℒ′W as computed in the apply phase below.

In our modeling of estimation error above, one or more features in training may introduce 

too much variance (systematic error) or dependence (model error). We would like our model 

to have an extensible and adaptive structure, where any number of features may be used, and 
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proceed with confidence, knowing that noisy or dependent features will have a contribution 

to the estimate that shrinks to zero. In shrink mode, the application applies the James–Stein 

shrinkage algorithm [33] to the correction coefficients a⃗ without applying the resulting 

backbone contour length estimator to test data—the task of apply mode.

When the application is in apply mode, the model correction coefficients are locked—they 

are unadjusted from training—and are loaded from disk. Then, each b ⃗ obtains its final 

estimate, ℒ′ ∈ {ℒ′T, ℒ′W}, from the correction function, C(b⃗) = a1nhorz(b⃗) + a2nvert(b⃗) + 

a3ndiag(b⃗) + a4nperp(b⃗) + a5nhtcv(b⃗) + a6ntkcv (b⃗), and is given by ℒ′(b⃗) = LCS(b⃗) + C(b⃗).

We presently discuss the experimental results of our model's performance, and related 

factors, on a large set of training and test images.

III. Experiments and Results

A prototype version of AFM Explorer reported LLS for all existing fragments in the image. 

Comparing these preliminary, automatically computed values with the length estimates of 

hand-drawn backbones (Supplementary Fig. 2) gave us reason to believe that while an 

image processing pipeline can bring us close to the apparent length of DNAs and RNAs, 

more would be required. Namely, bridging the gap between apparent and true length would 

first require using a better length estimator (e.g., LCS), and then from that modeling the 

systematic error intrinsic to the problem.

A. Experiments

Our experiments used four datasets, summarized in Table I. They consist of the following.

1. Train data: 17 images comprising a set of 1865 cDNA fragments having known 

theoretical lengths {74.9, 139.6, 223.0, 351.8, 453.1, 583.8 } nm.

2. Test A data: 20 images comprising a set of 3415 cDNA fragments having unknown 

theoretical lengths {33.0, 66.0, 99.0, 132.0, 165.0, 170.6, 198.0, 231.0, 264.0, 

297.0, 330.0, 396.0, 500.6} nm.

3. Test B data: 9 images comprising a set of 646 cDNA fragments having unknown 

theoretical lengths {135.3, 258.7, 492.4} nm.

4. Test C data: 14 images comprising a set of 1292 cDNA fragments having unknown 

theoretical lengths {265.0, 299.0, 444.2, 588.1 } nm.

Note that “known” fragment lengths were provided to the length estimation algorithm for 

training the linear estimator; these were provided exactly as the set given earlier, not as 

molecular labels (i.e., so the algorithm would know the LCS values would be comprised of a 

mixture of six distributions centered at those six values). The algorithm was blind to 

“unknown” fragment lengths (known to the experimenter) for testing. Let us reiterate that 

unlike our preliminary experiment illustrated in Supplementary Fig. 2, these experiments 

used unlabeled data. That is, none of the molecules in the train or test data were labeled with 

their respective theoretical lengths.
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Upon acquiring LCS and the six-feature vector n⃗ for each of the 1865 Train backbones, we 

trained our linear regression model by solving for the six feature correction coefficients a⃗. 

We created a histogram of the cubic spline LCS values for the training data (Supplementary 

Fig. 3).

B. Results

The cubic spline LCS and estimated length after weighted training ℒ′W results for Test A, 

Test B, and Test C are summarized in Table II. In all AFM data, after image processing, 

there are a large number of short noisy objects. The noise is a combination of electronic and 

vibration signal noise in the AFM system (very low in our experimental system), and real 

particles or small bumps on the surface generated by the sample preparation (present in our 

experimental system)—in general, these are never as long as even the smallest DNA 

molecules which we are interested in measuring.

For each Test A, B, and C, we created two histograms, corresponding to algorithmic output 

of LCS and  (Supplementary Figs. 4–6, respectively). We applied a smooth function fit of 

the histogram data, using MATLAB's ksdensity function with kernel width 5, to obtain a set 

of peaks. The locations of these peaks give our estimation of the theoretical fragment lengths 

in each test Images were processed using the 0.97  conversion factor.

Measured (LCS and ) versus theoretical lengths for the 15 distinct cDNA fragment 

lengths in Tests A, B, and C are shown in Supplementary Fig. 7. Their respective percentage 

errors ( . 100 and . 100, given in Table II) are shown in Supplementary 

Fig. 8.

We would like to highlight some of our observations and decisions regarding our 

experiments and error analyses.

1. Test A, τ = {198.0} nm: No peak was detected using our chosen smoothing 

settings; thus, it is a false negative and we did not report this error in Table II.

2. Test A, τ = {165.0, 170.6{ nm: The peak finding detected only one of the two 

peaks because these were so close together; thus, we used their arithmetic mean (μ 

= 167.8 nm) as the “known” theoretical value for the sake of reporting the 

corresponding errors in Table II.

3. Test A, τ = {396.0, 500.6} nm: The abundances of these two species are too low to 

be meaningful; thus, we did not report these errors in Table II. This is an inherent 

property of the sample, not our experimental method: Test A is a 100 bp sizing 

ladder used for size standards in gel electrophoresis; by design the shorter species 

have higher abundance, not an artifact of sample preparation or data processing.

4. Test C, τ = {444.2} nm: Peaks were detected at LCS = 489.44 and , 

giving respective errors of: 45.24 and 25.75 nm (10.19% and 5.80%)—obvious 

outlier errors. Since the original sequence provided for the plasmid by the vendor 
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did not reconcile with our measurements, we decided to investigate further. It turns 

out that the plasmid we used had a modification that was not documented; thus, the 

detected peaks represented a true unknown. This can happen in cases where the 

plasmid is obtained from a large collection (as ours was) and the vendor's quality 

control is not 100% effective. We obtained the sequence of the plasmid ourselves 

and discovered the correct theoretical length is 475.60 nm instead of 444.20 nm. 

The corrected theoretical length is reported in Table I, and the corrected error 

values are reported in Table II and Supplementary Figs. 7 and 8.

5. Test C: We observed a large number of objects measured for 200 nm and shorter. 

These are not real molecules measured incorrectly but are rather upstream image 

processing artifacts from the background thresholding step. (While we could 

improve this thresholding in theory, we feel it is not central to the thrust of this 

paper or the feature-based error correction we are investigating.) The large number 

of these short, noisy artifacts give all of our Test C distributions (for LLS, LCS, and 

) a heavy left tail. We want to make it clear that the errors we report are 

estimates of systematic error and are not affected by the artifacts.

Moreover, we do not estimate and report dispersion in our length measurements in the test 

data. If we wanted to drive this down, we could simply increase the sample size N, and the 

standard deviation would decrease proportionally to . Instead, we calculate bias in our 

LCS and  length estimators, which is a systematic error that persists across sample sizes. 

Hence, for each theoretical length (for each type of molecule we know is in the test set), we 

compute LCS and  errors (estimator bias) as described earlier: the distance between the 

theoretical length and the closest detected peak in the smooth function fit over the 

distribution of length measurements.

IV. Discussion

In the problem described in this paper, there are two principal sources of error: bias from the 

method of estimation (the extrinsic factors), and systematic error (the intrinsic factors) that 

come from chemistry experimental error, and AFM operation and measurement error. We 

have given a BLUE estimator for molecular backbone contour length, namely, the piecewise 

cubic spline fitting measure LCS But, this estimator gets us only part way to the answer, 

since systematic error underlies all such measurements. We improved on LCS by training a 

linear regression model to estimate the systematic error and thereby correct LCS, yielding a 

superior estimator . By weighting the linear regression training based on computed 

Beaton–Tukey biweights, we created another estimator  that further improves 

performance. These estimators were trained on the aforementioned six features. James–Stein 

shrinkage analysis gave almost undetectable improvement, suggesting the six features were 

neither noisy nor dependent (Supplementary Table I). One consequence of such a design is 

an inherent adaptability and extensibility: a researcher may compose any number and 

arrangement of features into the estimation. We believe our approach will help ameliorate 

the model selection problem in this context.
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A. Comparison With Other Studies

In the following discussion, we define: the known theoretical length of a given molecular 

fragment to be τ; the best reported length estimator in a given study to be ℒ; the error in nm 

for a given measurement with respect to a given τ to be |τ − ℒ | and the error percentage for 

the given measurement with respect to given to τ to be . 100.

Among the automated methods studied, Fang et al. [12] have published the most 

comprehensive work on this issue to date, where they achieved an error percentage in the 

range [1.67, 10.67]% for 13 distinct theoretical lengths of fragments in the length range 

[30.00, 750.00] nm. Sanchez-Sevilla et al. [14] reported error percentage in the range [0.56, 

1.46]% for two distinct theoretical lengths of fragments in the length range [206.00, 355.00] 

nm. More impressively, Ficarra et al. [18] described a method that achieved better sizing, 

reporting error percentage in the range [0.31, 1.18]% for two distinct theoretical lengths of 

fragments in the length range [633.40, 1098.00]. We report error percentage in the range 

[0.28, 3.24] % for 15 distinct theoretical lengths of fragments in the length range [66.00, 

588.10] nm. We present all comparative results in Supplementary Table II and 

Supplementary Fig. 9, where for our study we define ℒ to be .

We should note the trends that are evident in Supplementary Fig. 9. Viewed as a function of 

fragment length, error percentage: increases for Fang, et al. [12] inside a wide dispersion of 

N = 16 data points; decreases for Sanchez-Sevilla et al. [14] inside a dispersion of N = 2 data 

points; increases for Ficarra, et al. [18] inside a dispersion of N = 3 data points; and 

decreases for our results inside a narrow dispersion of N = 15 data points. Our trend gives us 

reason to believe that our estimation method would yield accurate (< 1 error percentage) 

length measurements for molecular fragments larger than 600 nm. While our results do not 

strictly speaking outperform those reported by Sanchez-Sevilla et al. [14] and Ficarra et al. 

[18], we believe our results achieve nearly the same length measurement accuracy through a 

novel supervisory learning approach that benefits from empirical-Bayesian statistical 

insights. We should also note that we (and Fang et al. [12]) tested our approach more 

comprehensively than did Sanchez-Sevilla et al. [14] and Ficarra et al. [18] (i.e., more 

fragments, wider range of sizes, etc.)

The other studies we found took the image processing aspect of the problem to the limit. The 

approach taken by Ficarra et al. [18] is a good example. These studies also use simple length 

correction methods to address the errors that pixel quantization imposes upon the smooth 

and continuous molecular backbone contours whose lengths are to be estimated. Regarding 

systematic error estimation, all these studies use an image processing step to thin 2-D 

objects into 1-D eight-connected pixel paths, and some approaches reclaim pixels at the 

ends, while others argue that this is unfounded. This is as far as they go to address the tip 

convolution problem, discussed below; they assume the dilation effects are symmetric and 

uniform, while this may not be the case. And none of these studies address the problem of 

thermal drift, discussed in the “Unique Aspects of AFM” section of the Supplementary 

Materials.
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We give a meta-approach to the problem of backbone contour length estimation that learns 

to characterize the systematic error from the data, namely, image features whose values 

depend on the lengths of backbone contours. In our current AFM system, thermal drift is 

negligible over the time scale for one molecule to be imaged (a few seconds).

One may use such an approach to address the extended problem of distinguishing DNA 

fragments using length estimation. While fragment distinction is beyond the scope of this 

paper, we analyze the feasibility of using a coding scheme to do this in [8] and we make this 

the center of our discussion in [34].

V. Summary and Conclusion

The approach developed in this paper builds upon the concept of “supervised learning,” a 

widely used methodology in machine learning with applications to systems biology and 

internet tools. In this methodology, a supervisor trains a machine learning algorithm to select 

a model by looking for significant features from large corpora of correct examples. In this 

way, we attempt to learn various subtle features in the data and how these features are 

related to systematic error; these models are then used to rectify the systematic errors. 

However, if the supervisor is imperfect, and allows some number of false positive examples, 

then these outliers can confound the machine learning algorithm, as it attempts to 

compensate for the presumed systematic errors even when there is no relationship between 

the perceived errors in these false positive examples and the extracted features. The resulting 

process would then lead to an undesirable bias in the statistical estimation. The solution to 

these problems would require either manual marking of the correct examples or some form 

of outlier detection and robust estimation process. Our approach involves a weighted 

scheme, in which a weight is assigned to each training example, and corresponds to the 

probability that the putative training example belongs to a particular theoretical length. We 

built an empirical method for assigning weight around the Beaton–Tukey biweighting 

algorithm. In this scheme, the statistical estimator algorithm was suitably modified to 

minimize a weighted sum-of-square error. Afterward, James–Stein shrinkage provides a 

means of constraining the universe of features to retain those that informatively describe 

molecular backbone length correction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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