Loading [MathJax]/extensions/MathMenu.js
Notice of Retraction: Iris-Based Medical Analysis by Geometric Deformation Features | IEEE Journals & Magazine | IEEE Xplore

Notice of Retraction: Iris-Based Medical Analysis by Geometric Deformation Features


Abstract:

Iris analysis studies the relationship between human health and changes in the anatomy of the iris. Apart from the fact that iris recognition focuses on modeling the over...Show More
Notes: Notice of Retraction L. Ma, D. Zhang, N. Li, Y. Cai, W. Zuo and K. Wang, "Iris-Based Medical Analysis by Geometric Deformation Features," in IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 1, pp. 223-231, Jan. 2013, doi: 10.1109/TITB.2012.2222655. After careful and considered review of the content of this article by a duly constituted expert committee, this article has been found to not meet IEEE standards for quality. Specifically, this article presents information that falls outside of the scope of acceptable IEEE content. Therefore, IEEE has retracted the content of this article from Xplore. When informed of the retraction, the authors did not provide a response.

Abstract:

Iris analysis studies the relationship between human health and changes in the anatomy of the iris. Apart from the fact that iris recognition focuses on modeling the overall structure of the iris, iris diagnosis emphasizes the detecting and analyzing of local variations in the characteristics of irises. This paper focuses on studying the geometrical structure changes in irises that are caused by gastrointestinal diseases, and on measuring the observable deformations in the geometrical structures of irises that are related to roundness, diameter, and other geometric forms of the pupil and the collarette. Pupil- and collarette-based features are defined and extracted. A series of experiments are implemented on our experimental pathological iris database, including manual clustering of both normal and pathological iris images, manual classification by nonspecialists, manual classification by individuals with a medical background, classification ability verification for the proposed features, and disease recognition by applying the proposed features. The results prove the effectiveness and clinical diagnostic significance of the proposed features and a reliable recognition performance for automatic disease diagnosis. Our research results offer a novel systematic perspective for iridology studies and promote the progress of both theoretical and practical work in iris diagnosis.
Notes: Notice of Retraction L. Ma, D. Zhang, N. Li, Y. Cai, W. Zuo and K. Wang, "Iris-Based Medical Analysis by Geometric Deformation Features," in IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 1, pp. 223-231, Jan. 2013, doi: 10.1109/TITB.2012.2222655. After careful and considered review of the content of this article by a duly constituted expert committee, this article has been found to not meet IEEE standards for quality. Specifically, this article presents information that falls outside of the scope of acceptable IEEE content. Therefore, IEEE has retracted the content of this article from Xplore. When informed of the retraction, the authors did not provide a response.
Published in: IEEE Journal of Biomedical and Health Informatics ( Volume: 17, Issue: 1, January 2013)
Page(s): 223 - 231
Date of Publication: 24 October 2012

ISSN Information:

PubMed ID: 23144041

Contact IEEE to Subscribe

References

References is not available for this document.