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Abstract—Large collections of electronic patient records
provide abundant but under-explored information on the
real-world use of medicines. Although they are maintained
for patient administration, they provide a broad range
of clinical information for data analysis. One growing
interest is drug safety signal detection from these lon-
gitudinal observational data. In this paper, we proposed
two novel algorithms—a likelihood ratio model and a
Bayesian network model—for adverse drug effect discov-
ery. Although the performance of these two algorithms
is comparable to the state-of-the-art algorithm, Bayesian
confidence propagation neural network, the combination of
three works better due to their diversity in solutions. Since
the actual adverse drug effects on a given dataset cannot
be absolutely determined, we make use of the simulated
OMOP dataset constructed with the predefined adverse
drug effects to evaluate our methods. Experimental results
show the usefulness of the proposed pattern discovery
method on the simulated OMOP dataset by improving the
standard baseline algorithm—chi-square—by 23.83%.

Index Terms—adverse drug effect, correlation, BCPNN,
likelihood ratio, Bayesian network.

I. I NTRODUCTION

Drug safety is a major public health concern in the
world. Though America’s drug-approval process has
the most world-renowned rigorous standards on safety
and effectiveness, it cannot possibly uncover everything
about a drug’s performance that may occur even with
pre-market clinical trials involving thousands of people.
One important issue related to drug safety is how to
detect adverse drug reactions. Adverse drug reactions are
defined as those unintended and undesired responses to
drugs beyond their anticipated therapeutic effects during
clinical use at normal doses [13]. In the US, people
spend billions of dollars on prescription drugs each year.
Most of them are safely used. However, the few adverse
drug reactions can cause serious healthcare and financial
burdens. It is estimated that 6-7% of hospitalized patients
experience severe adverse drug reactions each year with
a potential of 100,000 deaths, which makes it the fourth
largest cause of death in the US [8]. In addition, adverse
drug reactions require extra treatment and prolong hospi-
talization, which causes a big financial problem. There-
fore, effective methods for determining the relationship
between pharmaceutical drugs and conditions (potential
adverse events) are highly in need.

Currently, spontaneous adverse event reporting sys-
tems record every specific self-report of a suspected
causal association between a drug and an adverse event
for post-marketing safety detection. For observational
analysis, methods need to provide useful information
about associations between drugs and outcomes across
a population of interest. It is unnecessary to ascertain
whether a specific person had a particular outcome due to
a particular drug, but instead we need to infer whether a
population of individuals exposed to a drug experiences
more of the outcome than expected. This population-
based approach differs from the spontaneous adverse
event reporting systems currently used. Many methods
have been developed for post-marketing signal detection
such as Bayesian confidence propagation neural network
(BCPNN) [1], χ2-statistics, and proportional reporting
ratios (PRR) [5]. These methods assign each drug and
adverse event pair a score. If one pair has a high
score and is not confirmed before, it is the promising
hypothesis to check.

However, due to poorly characterized data, insuffi-
ciently recorded clinical observations, and confounding
effects, the true causal relationships between drugs and
adverse events cannot be absolutely detected. In order
to test the performance of different methods, the true
causal relationships are required. Because of these above
issues, the Observational Medical Outcomes Partnership
(OMOP) [11] designed and developed a procedure to
construct simulated dataset for method evaluations. The
procedure generates fictional persons with fictional drug
exposure and fictional adverse event occurrences with
predefined association between fictional drugs and fic-
tional outcomes. Though the dataset is contrived, to the
best of our knowledge, it is the best simulated dataset
and close to real observational data.

The goal of this paper is to develop methods to iden-
tify the associations that OMOP predefined to simulate
data from the observational simulated dataset. Section 2
introduces the simulation procedure of OMOP data. D-
ifferent signal detection models are discussed in Section
3. Experiments are conducted and the characteristics of
different models are analyzed in Section 4. Finally, we
draw a conclusion in Section 5.



II. DATA SIMULATION

The OMOP simulation is a project funded by Foun-
dation for the National Institutes of Health. It in-
volves pharmaceutical industry, academic institutions,
non-profit organizations, the Food and Drug Adminis-
tration (FDA), and other federal agencies. The whole
simulation procedure is complicated and details can be
found at [11]. There has been some existing research
[6], [14] conducted on this dataset. In the following, we
provide a brief introduction of the simulation procedure.
The simulated dataset contains 10 million persons, 90
million drug exposures from 5000 different drugs and
300 million condition occurrences from 4500 different
conditions over a span of 10 years. For only 1.8% of the
20 million possible drug-condition combinations, there
exists a true causal association between the drug and
the condition. For the remaining combinations, no causal
association exists.

The nature of the temporal relation between drugs and
outcomes can vary. For example, many site reactions
from vaccinations or biological injections can be ob-
served within one day of exposure. Other outcomes can
only be observed after many years due to slow changes
in biology or the need for cumulative dose. Some drugs
have increased fracture risks from years of exposure due
to gradual bone loss from calcium malabsorption. For
most outcomes, the temporal relationship between the
drug and outcome is not clear. The occurrence of the
outcome can appear anytime after exposure. Insidious
outcomes are also common for rare and serious events
because of the small number of observed cases, which
makes it difficult to infer the temporal relationship.

Due to the above complicated temporal relationship
of a true causal association between the drug and the
condition, OMOP categories associations into constant
risk onset or constant rate onset types. Constant risk
onset types have a 50% chance to be acute, 40% chance
to be insidious, and 10% chance to be delayed. Constant
rate onset types have a 90% chance to be insidious,
and 10% chance to be delayed. For the acute type,
the outcome appears within the first week after drug
exposure. For the insidious type, outcome appears at
any time after the drug exposure. For the delayed type,
outcome appears between one year and ten years after
drug exposure.

III. S IGNAL DETECTION MODELS

We adopted an ensemble of three different methods, t-
wo disproportionality analysis techniques and a Bayesian
network model, to discover the association between
drugs and potential adverse events (conditions). The

disproportionality analysis methods calculate the pair
correlations by comparing the expected and observed
co-occurrences of a drug and a condition. We explored
multiple counting methods and correlation measures and
chose two that were both accurate and complementary.
The Bayesian network model estimates the pair risk
factors by using a Bayesian network. Finally a weighted
combination of the raw scores from the three models was
computed for each drug-condition pair to give the final
ranking of possible associations.

A. Disproportionality Analysis

In order to apply disproportionality analysis, we need
to generate a good two-by-two contingency table from
the raw data first, and then use correlation measures to
infer the ranking of possible associations.

1) Two-by-two Contingency Table: We generated the
two-by-two contingency table based on the Modified
SRSs (Spontaneous Report Systems) method [12]. The
foundation of correlation measures was a collection of
2-dimensional tables of the form in Table I.

Condition C1
Yes No

Drug D1 Yes a b a+b
No c d c+d

a+c b+d a+b+c+d=n

TABLE I
TWO-BY-TWO CONTINGENCY TABLE

The counts for drugs and conditions were given d-
ifferent weights, based on empirical observation. For
example, conditions and drugs that start on the same
day have an unclear causal relationship due to the
characteristics of the simulated dataset. We don’t know
whether the condition is caused by the drug or the drug
is dispensed for the condition. Therefore, the weight of
conditions and drugs on the same day was set to be
small. However, if time is more precisely recorded and
we know whether a given drug is used before a given
condition or not, we might set a large weight for the
condition after drug exposure, and 0 or negative weight
for the condition before drug exposure. In this paper, we
designed a weighting scheme according to the OMOP
data generation mechanism in Section 2. Such weighting
scheme needs to be changed according to the empirical
observation of given datasets. A condition occurring on
the first day of drug usage was assigned weightw1. A
condition occurring during a drug period of less than
7 days was given weightw2. A condition occurring
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within 7 days of the beginning of the drug use but
outside the drug period was given weightw3. If the
condition happened within 7 days of the beginning of
the drug use and the drug period is greater than 7, we
still use weightw3. If the condition occurred later than
7 days from the beginning of the drug use and during
the drug period, we use weightw4. w1, w3, and w4

are constants.w1 was set to be small. The drug could
be usedw2 might be a fixed valueC, or dynamically
calculated as(C − w3) ∗ (7 − DrugPeriod)/7 + w3,
giving interactions within a shorter drug period a higher
weight. Since conditions caused by drugs were assumed
to be caused by a single drug, we modified the counts
for conditions occurring during a period with multiple
drugs. Specifically, if the condition is strongly correlated
with one of the co-occurring drugs, we reduce the count
value for the co-occurrence with all the other drugs being
taken during that period.

2) BCPNN: Probability Ratio,Pr = tp/ep, is s-
traightforward and means how many times the com-
bination happens more than expected. However, the
Probability Ratio is very volatile when the expected
value is small, which makes it favor the rare combi-
nations rather than significant trends in the data. In
order to solve the problem, people use shrinkage [1],
[3], [10] to regularize and reduce the volatility of a
measure by trading a bias to no correlation for decreased
variance. Specifically, we add a continuity correction
number to both nominator and denominator. Suppose the
continuity correction iscc, the formula of BCPNN is
BCPNN = ln(tp + cc)/(ep + cc). Normally, we set
cc = 0.5/n; however, it could be any positive number.
This shrinkage strength has been successfully applied to
pattern discovery in the analysis of large collections of
individual case safety reports. Noren et al. [10] used it
for drug signal detection and claimed that it precludes
highlighting any pattern based on less than three events
but is still able to find strongly correlated rare patterns.
From a frequency perspective, BCPNN is a conservative
version of Probability Ratio, tending towards 0 for rare
events and with better variance properties. Astp andep
increase, the impact of the shrinkage diminishes.

B. Likelihood Ratio

The Likelihood Ratio (LR) is similar to a statistical
test based on the loglikelihood ratio described by Dun-
ning [4]. The concept of a likelihood measure can be
used to statistically test a given hypothesis, by applying
the likelihood ratio test. Essentially, we take the ratio
of the highest likelihood possible given our hypothesis
to the likelihood of the best “explanation” overall. The

greater the value of the ratio, the stronger our hypothesis
will be.

Given the counts, we calculate the true probability of
D1 and C1, tp = a/n, the probability ofD1, pd =
(a + b)/n, the probability ofC1, pc = (a + c)/n, and
the expected probability ofD1 andC1, ep = pd · pc. To
apply the likelihood ratio test as a correlation measure, it
is useful to consider the binomial distribution. This is a
function of three variables:Pr(p, k, n) → [0 : 1]. Given
our assumption of independence of drug and outcome,
we predict that each trial has a probability of success
ep. Then the binomial likelihood of observingk out of
n records isPr(ep, k, n). However, the best possible
explanation of each trial probability istp instead of
ep. Therefore, we perform the Likelihood Ratio test,
comparing the binomial likelihood of observingk out
of n records under the assumption of independence with
the best possible binomial explanation. Formally, the
Likelihood Ratio in this case isLikelihoodRatio(S) =
Pr(tp, k, n)/Pr(ep, k, n).

1) Region Bias: In this section, we study the different
upper bounds of LR and BCPNN to discuss the different
region bias with respect to pair support. Given a pairS
with the actual probabilitytp, we havetp ≤ pc ≤ 1 and
tp ≤ pd ≤ 1. Whenpc andpd reach their lower boundtp
and the drug always occur together with the condition,
the expected probabilityep reaches its lower boundtp2.

Lemma 1. Both LR and BCPNN decreases with the
increase of ep when tp remain unchanged.

Proof: (1) Whentp > ep,

LikelihoodRatio(S)

= n · tp · (ln(tp)− ln(ep))

+n · (1− tp) · (ln(1− tp)− ln(1− ep))

= n · tp · ln(tp)− n · tp · ln(ep)

+n · ln(1− tp)− n · ln(1− ep)

−n · tp · ln(1− tp) + n · tp · ln(1− ep)

= n · tp · ln
tp

1− tp
+ n · ln(1− tp)

−n · ln(1− ep) + n · tp · ln
1− ep

ep
.

If we considerLikelihoodRatio(S) as a function of
ep, then

LikelihoodRatio(S)′

=
n

1− ep
−

n · tp

(1− ep) · ep

=
n · (ep− tp)

(1− ep) · ep
.
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Fig. 1. Upper and lower bounds of BCPNN and LR

Since tp > ep, then LikelihoodRatio(S)′ < 0. In
other words, Likelihood Ratio decreases with the in-
crease ofep whentp > ep. Similarly, whentp < ep, we
can prove Likelihood Ratio decreases with the increase
of ep. In all, Likelihood Ratio decreases with the increase
of ep.

(2) When tp is fixed, BCPNN decreases with the
increase ofep according to the formula.

According to Lemma 1, given the actual probability
tp for a pairS, both LR and BCPNN reach their upper
bounds whenep reaches the lower boundtp2. We draw
the upper bound curve of LR and BCPNN with respect
to the change oftp in Figure 1. Though both LR and
BCPNN reach their highest upper bound whentp is
between 0 and 1, pairs on very lowtp region have more
chance to get higher BCPNN while pairs on relatively
high tp region have more chance to get higher LR.

C. Bayesian Network Model

In this section we describe the proposed Bayesian
network model for discovering adverse drug effects.
Bayesain networks [7] are directed graphical models [9]
which are useful in representing complex probability
distributions. In Bayesian networks, random variables are
shown with circles while dependencies are represented
with directed edges. The joint probability over variables
is given by a product over conditional probability of each
variable given its parents:

P (x1, x2, ..., xn) =
∏

i

P (xi|Pa(xi))

wherePa denotes the parents of a random variable.
Figure 2 represents the the Bayesian network in plate

notation. Each plate denotes an enumeration over the
random variables. Here we have four distinct enumer-
ations;NI individuals,ND drugs,NC conditions, and
Ti intervals for individuali. Intervals are defined based

on the change in the status of individuals depending
on the drugs they use. That is, upon each drug use, a
new interval begins. By the end of the time window of
the used drug, another interval starts. Therefore, each
interval is associated with a specific number of drugs.
Note that it is possible that an interval is not associated
with any drugs.

In Figure 2, two different modeling paradigms are
presented with regard to time. In the time-independent
model, we assume that the length of the interval does not
influence the number of occurred conditions. In the time-
dependent model, increasing the length of an interval,
conditions are more likely to happen.

Gray circles denote observed random variables while
white circles represent hidden random variables. Gen-
erally, we observexcit: the number of occurrences of
condition c in interval t for every individual i, and
ydit is 1 if the interval t for individual i is within
the effective drugd’s side-effect time window and0
otherwise. Additionally, for the time-dependent case,
we know δit which is the length of the intervalt for
individual i.

There is a deterministic relation between observed
variable xcit and hidden variableszcit and zdcit as
follows:

xcit = zcit +
∑

d

yditzdcit (1)

where zcit is the number of conditions happened not
because of any drug in intervalt for individual i, and
zdcit is the number of conditions occurred caused by
drug d in interval t for individual i.

The probability distribution of the hidden variablezcit
given its parents follows a Poisson distribution:

P (zcit = k|αc) =
e−αc · (αc)

k

k!
(2)

and the probability ofαc (for each conditionc) given its
parentsρ1 andρ2 follows a gamma distribution:

P (αc|ρ1, ρ2) =
ρρ1

2

Γ(ρ1)
αρ1−1
c e−ρ2αc (3)

For the time-dependent case, Formula 2 can be written
as follows:

P (zcit = k|αc, δcit) =
e−αcδcit · (αcδcit)

k

k!
(4)

The probability distribution of the hidden variable
zdcit given its parents follows a Poisson distribution:

P (zdcit = k|αc, γdc) =
e−γdcαc · (γdcαc)

k

k!
. (5)

More accurately,αc is the background prevalence of
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Fig. 2. The graphical model of the Bayesian network model. Graycircles denote observed variables while white circles represent hidden
variables.

condition c while γdc is the impact of drugd on back-
ground prevalence. Ifγdc > 1, drug may be considered
responsible. The probability ofγdc given its parentτ
follows a gamma distribution with equal parameters:

P (γdc|τ) =
τ τ

Γ(τ)
γτ−1
dc e−τγdc (6)

We considered gamma distribution with equal parameters
(causes the prior mean of one), since we believe that
the mean of drug effects is one apriori. For the time-
dependent case, Formula 5 can be written as follows:

P (zdcit = k|αc, γdc) =
e−δcitγdcαc · (δcitγdcαc)

k

k!
. (7)

Given the description of the Baysian network, we
are interested to infer the value of query variables,γdc
given the observed variables. We assume prior parame-
ters τ , ρ1 and ρ2 are given as algorithmic inputs. The
remained hidden variables arezdcit, zcit, γdc andαc. To
infer the values of query variables, we use expectation-
maximization (EM)) algorithm [2]. EM algorithm is way
to learn parameters when there are some missing data.
Here, we consider hidden variableszdcit and zcit as
missing data, andγdc andαc as distribution parameters.
EM algorithm is an iterative algorithm where in the
expectation step, the expectation of missing values given
the last estimation of parameters is computed. In the
maximization step, the parameters are maximized given
the estimation of missing values.

In the M-step of our algorithm, we maximize the
parameterαc by maximizing the log likelihood function
as follows:

αc =

∑
it zcit + ρ1 − 1∑

i Ti + ρ2
. (8)

Then given the updated value ofαc, the value ofγdc is

updated as follows:

γdc =

∑
it zdcit + τ

αc

∑
it ydit + τ

. (9)

In the E-step of the algorithm, we compute the expec-
tation of hidden variablesz given the parameterα and
γ. For solving this problem we used a lemma regarding
the Poisson distribution. If Poisson distributions with
ratesλ1, λ2, ..., λn created events when only the sum
of the eventsN is observed, then the probability of
the number of events follows a multinomial distribution
with parameter λj∑

i
λi

for the jth Poisson distribution.
Therefore, The expectation value ofzcit is as follows:

zcit =
1

1 +
∑

d′ yd′itγd′c

, (10)

and similarly the the expectation ofzdcit is given by

zdcit =
yditγdc

1 +
∑

d′ yd′itγd′c

. (11)

Deriving the relevant equations for the time-dependent
case is straightforward as we addδit to the related
Poisson distribution in above equations. Finally, since
we do not know that which scenario—time-dependent
or time-independent—holds, we run the algorithm based
on both and average the result:

γdc = ψγ
(dep)
dc + (1− ψ)γ

(ind)
dc (12)

where 0 ≤ ψ ≤ 1 is the mixing weight,γ(dep)dc is
the drug-condition pair for the time-dependent case, and
γ
(ind)
dc is the drug-condition pair for the time-independent

case.
In comparison to LR and BCPNN which work

with contingency table of each drug-condition pair, the
Bayesian network model (BN) aims intervals. This capa-
bility helps resolve the confusion between different drugs
as well as background prevalence. LR and BCPNN only
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consider the confusion between a specific drug and a
condition. Therefore, BN introduces another level of de-
composition and more diversity as a result. This diversity
causes the ensemble of these algorithms perform well.

IV. EXPERIMENT

The average precision (AP), a commonly-used metric
in the field of information retrieval, is used to evaluate
each method. It measures how well a system ranks items,
and emphasizes ranking true positive items higher. Let
ydc is equal to 1 if thedth drug causes thecth condition,
and 0 otherwise. LetM =

∑
d,c ydc denote the number

of causal combinations andN = D × C the total
number of combinations. Letzdc denote the estimated
value for thedth drug causing thecth condition. For a
given set of estimated values−→z = (z11, ..., zDC), we
define “precision-at-K” denotedPK(−→z ) as the fraction
of causal combinations among theK largest predicted
values in−→z . Specifically, letz1 > ... > zN denote the
ordered value of−→z . Then,PK(−→z ) = 1

K

∑K
i=1 yi, where

yi is the true status of combination corresponding tozi.
The AP is calculated as1

M

∑N
K=1(P

K(−→z ) · yK). The
AP is very similar to the area under the precision-recall
curve, which penalizes both type of misclassification:
identifying a correlation when no relationship exists
(false positive) and failing to identify true correlations
(false negative).

For only a small subset of the 20 million possi-
ble drug-condition combinations in the dataset, there
exists a true causal association between the drug and
the condition. However, OMOP does not provide all
the ground truth. Instead, they provides a testing set
with 4000 true associations and 4000 false associations.
Therefore, it is impossible to calculate the true AP score
across the whole dataset as OMOP does. We used the
following bootstrapping method to mimic the AP score
from OMOP. Given a ranking list, we randomly select
3000 true association and 3000 false association from the
testing set to calculate the mimic AP score. Since the true
associations and the false associations are unbalanced
in the whole dataset, but balanced in the test data, we
treat each false association in the ranking list of the
testing data as sixty false associations in that ranking
list, and then calculate the AP score for the transformed
list. We conduct this procedure 100 times and calculate
the mean of the AP scores as the mimic AP score. We
tried different methods during the competition period
and compared the mimic AP score with the true AP
score from OMOP. There is a roughly linear relationship
between these two scores shown in Figure 3.

For the two-by-two contingency table calculation, we
get the best result whenw1 = 1, w2 = 5, w3 = 2, w4 =
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Fig. 3. Mimic AP score vs. the true AP score

1. We also plot the occurrence of top-1000 pairs got from
different methods in Figure 4. For Likelihood Ratio, the
occurrence of pairs need to be large in order to get larger
value. For BCPNN, the occurrence of high ranking pairs
is very small. The shape of Bayesian network method
is similar to that of Likelihood Ratio; however, high
ranking pairs of Bayesian network model has relatively
lower bias to large occurrence than those of Likelihood
Ratio. Since some frequently occurred conditions are
background noise and the Bayesian network model can
remove such noise, frequently occurred pairs might not
get high Poisson score and the tailor part of Bayesian
network model is more dispersed than that of Likelihood
Ratio. Since the three models work on different aspects
of data, we simply add raw values of these three methods
for ranking, and it generates the best AP score. The
mimic AP score of different methods is shown in Table
II. Likelihood Ratio, BCPNN, and the Bayesian network
model achieve the similar AP score. They performance
much better than the traditionalχ2 method. The AP
score of the ensemble method has roughly 5% increase
from three separate models. The true AP score for our
ensemble method is0.2569 which lands us on the third
place on the OMOP competition.

V. CONCLUSION

In the practical environment, there are two advantages
of using our method. First, it helps to propose promis-
ing hypotheses to test. Most existing post-market drug
surveillance methods require statistical analysis of the
voluntarily submitted adverse event reports to filter out
the many false positives. For example, 673,259 records
were submitted to the US FDA Adverse Event Reporting
System in 20101. Although the spontaneous reports have

1Data from http://www.fda.gov/
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Fig. 4. Occurrence of top-1000 pairs

Method Mimic AP % over chi-square
PRR 0.1084 -51.76%

chi-square 0.2247 0%
BCPNN 0.2662 18.43%

LR 0.2649 17.87%
BN 0.2670 18.81%

Ensemble 0.2783 23.83%

TABLE II
M IMIC AP SCORE OF DIFFERENT METHODS. % OVER CHI-SQUARE

DENOTES THE IMPROVEMENT OVER THE STANDARD BASELINE

ALGORIHTM—CHI-SQUARE

provided valuable information for clinical decisions, the
spontaneous adverse event reporting system has a serious
limitation of under-reporting. Therefore, we want to
explore alternative data sources for adverse drug reaction
signal discovery such as electronic medical records. An
objective of the OMOP initiative is to provide simulated
data that resemble electronic medical record for method
development and evaluation. Using the simulated data,
our method was shown to be able to return a reliable
rank list of possible associations. If there are some
high ranking associations that are not confirmed by
pre-market clinical trials, we need to pursue further
randomized control studies on them. Second, our method
helps to identify some regional associations. Associa-
tions introduced in the textbook are general. However,
the association ranking list generated by our method
can be from the regional data we have. Some prevalent
associations in the textbook might not be true for a
specific region, while the other associations might be
true for a specific region but not true in the national
level because of the race or environmental difference.

In order to use our method, we need to make use
of the hospital electronic health records, set up the
algorithm to find the ranking list from the data, and
check the difference between the ranking list and our
existing knowledge. Nowadays, many hospitals have
already digitalized their health records, and have staff to
generate adverse event reports. Therefore, hiring a data
mining technical staff is the overhead cost of deploying
our system, which roughly costs $150,000 each year
according to the salary information from indeed.com. In
the national level, our method can help to identify the
promising unknown adverse drug reactions to allocate
our limited funds to set up the controlled test. The
newly identified adverse drug reactions will change the
guideline for drug prescription. In the regional (hospital)
level, our method can help to identify the suspicious
adverse drug reactions, which can guide doctors to
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use the related drugs in a conservative way. By using
our method, we can reduce the number of unnecessary
treatments and even deaths caused by the related adverse
drug reactions, which is hard to be measured financially.
Apparently, the gain of using our method can easily
surpass the overhead cost of deploying our system.

In this paper, likelihood ratio, BCPNN, and the
Bayesian network model are introduced for drug safety
signal detection. Evaluation on different methods in the
OMOP dataset indicates the ensemble model works bet-
ter than each individual model. Among all the methods
we tried for the OMOP competition, the best ensemble
is from these three models which work well and have
diversity with each other. In the future, we are going
to investigate more sophisticated way to ensemble these
three models.
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