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Toward Vision-Based Intelligent Navigator:
Its Concept and Prototype

Jun Miura Member, IEEEMotokuni Itoh, and Yoshiaki Shirai

Abstract—This paper proposes a novel concept aintelligent target arrival time) under the constraints imposed by the actual
navigatorthat can give the driver timely advice on safe and efficient traffic condition; at the lower level, the selected maneuver is
driving. From both the current traffic condition obtained from — yangjated into actual operations of steering, accelerating, and

visual data and the driver's goal and preference in driving, . .
it autonomously generates advice and gives it to the driver. braking. These levels are calléactical leveland theopera-

Not only operational leveladvice, such as emergency braking tional level,respectively [4], [5].
due to an abrupt deceleration of the front vehicle, but also  Operational level driving can be assisted relatively straight-
tactical-leveladvice, such as lane changing due to the congestedforwardly using various sensing capabilities such as vision for
situation ahead, can be generated. Two main components of the |5ne getection [6] or for detecting other vehicles [7], [8]; if
intelligent nav-'tgator’ tqe advice gerllgratg) nAS¥§teml andl the road some dangerous situation arises, the driver can be warned. Sev-
Zf&ﬁ}feéfﬁfeg?s' Ig%;ngdmfo?rgeiﬁ;mg gdvicereiﬁ S;ﬁaﬁﬁiisgﬂg‘ geral commercial products for local level assistance have recently
uncertain traffic environments. Online experiments using the been reported [9]. However, so far, there has been minimal de-
prototype system show the potential feasibility of the proposed velopment on assistance systems for the tactical level.
concept. Sukthankaet al.[5] pointed out the importance of tactical-
Index Terms—Hierarchical reasoning architecture, intelligent level driving in realizing safe and efficient autonomous driving.
navigator, intelligent transportation systems (ITS), visual recog- This is also true for driver assistance systems. Since the quality
nition of traffic scene. of maneuver selection may have considerable effects on safety
and efficiency, it is important to generate advice on appropriate
|. INTRODUCTION maneuvers (i.etactical-level advicgin a timely fashion.
In this paper, we propose an architecturéndélligent navi-
tor which can generate tactical-level advice as well as local
. . X vel advice. Fig. 1 schematically depicts the proposed archi-
Of.ITS research IS to _reghze a full){ autongmous vehicle [1], [2 ecture of the intelligent navigator system. The driver gives the
It. 1S, hOWeV.‘?“ still difficult to.achleve th'|s goal because Vergystem the goal of driving (e.g., the target arrival time) and
high reliability anq safety will be required for dEzploymemhis/herpreference to specific driving styles (e.g., the driver may
_Thus_, as a p_ractlcal step toyvard the goal, we propose RR}Sm to avoid lane changing as much as possible). The road
mtglllgent navigator.that can, In plat_:e of a hum_an nawg_atogcene recognition subsystem recognizes the current traffic sit-
sitting on the next seat, give the driver appropriate advice P3tion using vision. The advice-generation subsystem gener-

safe an.d efficient dr_lvm_g. . ates appropriate advice and give it to the driver. The driver may
To drive to a destination, we first select a route from th

N RECENT years, there has been growing interest |
intelligent transportation systems (ITS). One ultimate go

fion system. Concerning generation of tactical-level advice
various information such as GPS data, map data, and tr. y 99 '

o . ) . 8wever, there has been research done previously; therefore,
condition information provided by local traffic control center is paper focuses on how to construct such an advice gener-
[3]. On the other hand, the _as_sistar_lce to driving itself is_st ltion system.
an active research area. Th.|s 'S mam}y due to lack of reliab ®n designing an advice generation system, we have to consider
sensory _SVSte_”?S and intelligent as_5|_stanc_e planner. __the following two issues. One is thecertainty(or ambiguity

Tasks in driving can usually be divided info two levels: road scene recognition results based on which advice is
Vgee(herated. The otheris tdgnamic®froad scene;i.e., the traffic
'stuation evolves as time advances. Therefore, the tactical-level
advice should be generated based on the prediction of the

Manuscript received November 13, 1999; revised April 15, 2002. The Asstture traffic condition with consideration of uncertainty. As a
Cia}]te Eﬁg;’ar fg;;hiipaé’;rr;’ivazri ‘\fv"lft*ﬁh'tfr‘]z oo ‘ c coMechanism for such advice generation, we propose a three-level

' ' partment of Gomputer-Con. asoning architecture with probabilistic traffic modeling.

trolled Mechanical Systems, Graduate School of Engineering, osd& ) ; ;
University, Osaka 565-0871, Japan (e-mail: jun.miura@ieee.org; We have developed an intelligent navigator prototype by

navigation systems have already been deployed which LE%
aff)

taking are determined to meet the objective of driving (e.g.

shirai@mech.eng.osaka-u.ac.jp). , combining the advice generation system, which is based on the
M. Itoh is with the Graduate School of Science and Technology, Kobe UI’]I— . . : ..

versity, Kobe 657-8501, Japan. ayered reasoning architecture, W|th a vision system to detect
Publisher Item Identifier 10.1109/TITS.2002.801421. lanes and vehicles. The prototype is for driving on a highway
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Fig. 2. Three-level architecture of advice-generation subsystem.

Fig. 1. Overview of intelligent navigator system. for the tactical-level planning. Independently operating plan-
ning modules with different algorithms vote for the desirable

without branches and is implemented as a stand-alone systgtion, and the high-scored action is selected and executed. The

such that it is easily installed in a normal, unmodified vehiclgarameters and the relative weight of each planning module are

To the authors’ knowledge, the prototype is the fiosline tuned through an evolutionary learning method. The proposed

system for tactical-level advice generation. scheme seems fitted to the tactical-level planning that requires

Itis very costly to always use a real prototype for verifying tha relatively short-term prediction.
advice-generation algorithm and the traffic models, therefore,To make a plan with a long look-ahead tends to be compu-
we developed a highway traffic simulator. Before online expetationally expensive if all alternatives are considered in every
iments, we ran numerous simulated experiments to improve sitiation. Moreover, it may be inefficient to always carry out
algorithms and the models. The simulator can generate varigugh a planning. Therefore, we propose to introduce a knowl-
traffic conditions by setting the road configuration, the numb&dge-based metalevel planning (calledrtietatactical levglto
of vehicles, and the driving strategy of each vehicle. control the tactical level, i.e., to adaptively limit the search space

The rest of the paper is organized as follows. Section df the tactical level and to activate the tactical level only when
describes the proposed three-level reasoning architecture \ilitis necessary, according to both the history of maneuvers and
comparison with previous works. Section Il explains how tthe currenttraffic condition. The resultant control architecture is
generate tactical-level advice; that is, how the driver gives tkemposed of three levelmetatactical level, tactical levend
system the goal of driving and his/her preferences in drivingperational level.
how the uncertain and dynamic traffic situation is modeled Fig. 2 illustrates the internal architecture of the advice-gen-
probabilistically, and how tactical-level advice is generategration subsystem, which is based on the above three-level
from such information. The metatactical-level reasoning is al§8asoning architecture. The metatactical level continuously
explained in this section. Section IV describes our simple bwgiches designated events on traffic and, on occurrence of an
robust traffic scene recognition subsystem. Section V descrit®€nt, activates an appropriate tactical-level maneuver selection
pre”minary experimenta| results. Section VI summarizes tmijocedure. Then the tactical level determines the best maneuver
paper and discusses future works. to suggest and give it to the driver. The operational level mainly
checks immediate dangers, such as an abrupt deceleration of
the front vehicle, by watching near surrounding areas of the
vehicle.

This section describes our three-level reasoning architecturén robotics, several layered architectures have been pro-
suitable for advice generation in uncertain and dynamic enyiesed. Gat [12] proposed a three-level control architecture for
ronments. autonomous robots. In his architecture, called ATLANTIS,

There have been several works on decision-making cahe controller is responsible for controlling primitive activi-
sidering the uncertainty and the dynamics of environmentges, which are usually reactive sensorimotor processes; the
Niehaus and Stengel [10] modeled the movement of a neadliberator controls time-consuming computational activities
vehicle using a probabilistic distribution, which is continuouslguch as planning and world model maintenance; the sequencer
updated using the Kalman filtering, and generated a safe plasordinates such various activities by initiating and terminating
considering the probable worst-case scenarios. Only a local ahem according to the current goal and situation. elal.
short-time prediction is performed in planning. Forletsal. [13] proposed a similar architecture for autonomous spacecraft.
[11] proposed to model all levels of planning for an automatesiich works mainly discuss how to integrate deliberative and
vehicle using a fixed probabilistic network. Although theyeactive activities, which correspond to the tactical- and oper-
proposed an efficient computation method for the networkfional levels of our architecture, respectively. Therefore, our
extending the approach to more complicated scenarios nmagproach of putting a knowledge-based metalevel is different
still be difficult because of increasing computational costtom those of the previous works; the metalevel can also be
Sukthankaet al. [5] proposed a distributed reasoning schemapplied to their architectures.

Il. THREELEVEL REASONING ARCHITECTURE
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Fig. 3. Examples oL(¢): (a) loose requirement on the arrival time, (b) tight requirement on the arrival time, (c) both late and early arrivals are undesirable.
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I1l. GENERATING TACTICAL LEVEL ADVICE ~
— [l — 1 T
A. Information from the Driver TR — ——"7{———7‘—-—7/— —————
The intelligent navigator receives the driver’s goal and pref- @)

erence in driving which are to be used for advice generaticn

We represent such information in the formdads functiorand

cost assignmenbecause a statistical decision theory is used fim =

advice generation.

Loss functionL(t) is used to represent drivers’ requirements (b)

on the time of arrival at the destination (the target exi}t) Fig. 4. Estimated traffic situations and overtaking scenario. (a) Vehicles are

is defined using théargetarrival timet;..q; and theestimated almost equally placed in the lane. (b) Only a few (slow) vehicles are in the lane.

arrival timet. Fig. 3 shows some examplesioft). A tighter re-

quirement Orty..e¢ iS represented by a larger gradient/dt). the driver’s recognition ability, when it is useful. An example is

The loss function could be changed during driving according stown below.

the change of the goal. Consider the scenario shown in Figt Zhe vehicle with the

CostC is used to represent the driver's degree of preferenigdelligent navigator (calledyVehicle drawn as a painted rec-

to each maneuver. For exampl&,..g. iS the cost related to tangle in the figure) on the left laheis approaching its exit.

the lane-changing maneuver; if the driver puts the largest iffince the speed in the current lane is becoming a little bit slow,

portance on safety and very much wants to avoid possible rigke intelligent navigator starts thinking of advising the driver

related to lane changing, a highuanee iS given to the system to overtake vehicles ahead. The overtaking maneuver is gener-

so that the lane-changing maneuver is least likely selected e}ty faster, but there may be risks of lane changing itself and of

cept in a truly emergency situation. missing the exit. We will evaluate two maneuvéwsep-laneand
overtake Suppose only vehicles just before and beHihgve-

B. Tactical-Level Reasoning Considering Uncertainty and hicle are visible. There are two possible cases for the occluded

Ambiguity of Road Scene Recognition area.

The tactlcgl—level reasoning basically runs as _follows. First, , congestetvehicles are almost equally placed in the lane
the expectation of the arrival time at the destination when each [see Fig. 4(a)];

maneuver is adopted is estimated from the probabilistic model , not congestedust a few (slow) vehicles are blocking our

of the current traffic situation. Using the estimated arrival time, lane [see Fig. 4(b)].

we calculate the loss of each candidate maneuver using the 8

function and the cost attached to the maneuver. Finally the bgg;

Maneuveris sel_ected Whlc.h MINIMIZES the_ I_OSS' candidate maneuvers for the identified situation, otherwise, the
We also consider thembiguityof a recognition result. When evaluation is caried out for both situations.

the road is moderately occupied by vehicles, the visual recogni-

i bsvst ttached to th hicl tobtaininf i Let £4 be the estimated arrival time olvertakemaneuver
Ion subsystem attached to the vehicle cannot obtain informatigny, congested situatiohg be that of the same maneuver in

for the whole surroundings due to occlusion and, thus, may MRE other situation, antk be that ofkeep-lanemaneuver (the

be able to determlng the traffic S|'tuat|(.)n ur'llqu.ely'. Insucha Ca¥&sult of this maneuver is supposed to be equal in both situation).
the best maneuver in each possible situation is first selected, AN yqition. the cost? = C is considered foovertake
then, if a maneuver is selectedamerysituation, that one is se- o o ’ change

lected for advice. Otherwise, any advice is not generated. Usmg].he result of comparison and given advice are as follows:
information from the driver, however, a useful advice could be . '
o if L(ta)+C > L(tp)+C > L(ts), keep-lanenaneuver

generated. That is, since the recognition ability of the driver is | . S

usually better than that of the recognition system, the driver may IS al\’/,vays be_tter than the other; the given advice is “keep
have more information (e.g., the driver can see the vehicles far lane” [see Fig. 5(a)J;
ahead through the windows of the front vehicle). Therefore, thelThis was originally presented by Sukthankar [5].
system providesonditionaladvice which complimentarily uses 2Note that the slower lane is the left one in Japan.

system tries to identify the situation using the method de-
ibed in Section l1I-C. If the situation is identified, we evaluate
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Fig. 5. Maneuver evaluation and given advice. (a) “Keep lane.” (b) “Change lane.” (c) “Change lane” if not congested.
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Fig. 7. Example of the velocity map.
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Fig. 6. Result of simulation experiment for the velocity map. v, AN i 2
o if L(ts) > L(t4)+C > L(tp)+C, overtakenmaneuver is >

always _bett_er; the advice is “change lane” [See Fig. 5(b)llig. 8. Overtaking with consideration of approaching exit.
* Otherwise (i.e.L(ta)+C > L(ts) > L(tg)+ C), over-
take maneuver is better only inot congestedituation;
thus, the conditional advice “change lane if not congesteg@lower and the fast lanes, respectively. The result shows that
is generated [see Fig. 5(c)]. the congestedsituation occurs when the velocity difference

is smaller (the area in the dotted line) and tiw congested
situation occurs when the velocity difference is large (the area
C. Traffic Situation Estimation Using Velocity Map in the solid line). Using the result, we constructed tedocity
In some cases, it is possible to estimate the situation rgraphke the one shown in Fig. 7 that supports the estimation of

occluded areas by the velocity difference of the two lanes. F%?CIUdEd areas.

example, normally the velocity difference can be supposed to

be small at the position far from any entrance or exit. If thB- Example of Probabilistic Traffic Modeling: Overtaking

velocity of our lane is slower than the other, it is likely to/Mith Consideration of Approaching Exit

be that just a few slow vehicles are blocking our lane and This subsection describes an example of probabilistic traffic

it is not congested. modeling. The situation for modeling is the one shown in
We verified the validity of the state estimation using th&ig. 4(a). Using the model, we calculate the expectation of the

highway-traffic simulator. We performed numerous simulatioresrival time at the target exit when takirayertakemaneuver

assigning various parameters to the vehicles; in each situat{oe., overtaking front vehicles and returning to the left lane

that occurred, we recorded the average velocity of both lanasfore the exit).

and, at the same time, manually classified the situation intoLet us consider Fig. 8. Let; andwv, be the average speed on

congeste@ndnot congestedrig. 6 shows the compiled resultthe left and the right lanes, respectively, attuk the distance be-

for the case that the distance to the next exit is medium. tween vehicles in the occluded areas. We model the uncertainty

the figure, v; and v, represent the average velocity in thef d by a normal distribution. Let ando? be the mean and the
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Fig. 9. Conditions for overtaking. (a) Condition for successful cut-in. (b) Condition for successful exiting.

variance of the normal distribution, respectively. These parar ~ disiance io exit x, fm]
eters are related to the lane speed, and have been empiric 4.0
obtained [14]. Given. and o2, the distribution of the current
positionxz; (0) of the kth car ¢ > 2) ahead at timg¢ = 0 is 2000.0
specified by the following meam; and variancer;:

3000.0

e =dy + (k= Dp (1)
2 _ 2 2
op =01 +(k—-1)o (2) 20000 distance
hetween

whered; ando? are the mean and the variance of the distanc om0 — vehicles
to the front vehicle, respectively, obtained by vision OB 0200022502300y

’ - . : overtake overtake . overtake

Let us cal_culate the pro_bablllty thMyVeh_checan safe!y O mancaver is maneuver is maneaver is

takes the exit after overtakingcars ahead. First, we considel faster slower impossible

the condition thaMyVehiclecan cut in the space between the (14 <1g) (tg>15)
kth andk + 1th vehicles [see Fig. 9(a)]. The probabilify;,

that this condition holds is given by Fig. 10. Comparison of expected arrival times fiwertakeand keep-lane

maneuvers. Gray area indicates the case whegakemaneuver is impossible
because the distance to the target exit is too small compared with that to the
P, = P(2s < d) (3) front vehicle.

where s is the safety margin for entering. Next, consider the ysing the above equations, the expectation of the arrival time
condition thatMyVehicledoes not miss the exit. This condition; , (see Section 11I-B) is given by

is restated as the condition that the positiotMgiVehiclewhen
it finishes overtaking théth vehicle is sufficiently before the te =T,
exit [see Fig. 9(b)]. The probability that this condition holds is Ty =Pite, + 1= POT., ., (k=1,....n)
calculated as
To =ty 9)

Pe, = Plan(te) +5 < e — tevy) 4 wheren is the index of the farthest vehicle thettyVehiclepos-

sibly overtakes (i.e.f;, > 0andP;_ ,, = 0); t; is the expec-

tation of the arrival time in case thityVehiclecannot overtake

any vehicles ahead, and can be calculated similarly to the case

of ta.

) On the other hand, the estimated time of the keep-lane
maneuver (see Section llI-B) is given by /v;. To verify

the feasibility of the above model, by using the simulator, we

wheret,. is the time for lane changing,. is the position of the
exit; ¢; is the time for overtaking: vehicles. Since,, satisfies
the following equation:

a:k(tk) = a:k(()) + vt = vl — s

tx is given by o
calculated and compareg, and¢s for several combinations
2r(0) + 5 of us (the mean of distance between vehicles) apd (the
b = Uy — v ®) distance to the target exit) in the case where= 80 [km/h]
) and v = 100 [km/h]. The result is summarized in Fig. 10.
From (4)—(6), we obtain From the figure, we see that the largeris, or the larger

(ke —tevr) (v —v1)
U2

result seems reasonable compared with our intuition.

z. IS, the moreovertakemaneuver has an advantage. This
P, =P <a:k(0) +s5< ) @)

Assuming that the above two conditions are mutually indg—' Other Probabilistic Models
pendent, the probability’, of overtakingk vehicles and then ~ We classified possible situations which may occur in highway
successfully taking the exit i8}, = P, P.,. In addition, the driving and, for each situation, we constructed similar proba-
elapsed time,, until MyVehiclereaches the exit after over-bilistic models to calculate the expected arrival time of each ma-
taking k vehicles is given by neuver [15]. In addition to the situation described above, models
are constructed for the following situations: overtaking near the
te, = (e — pg — 5)/v1. (8) targetexit without congestion [see Fig. 4(b)], overtaking near an
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Fig. 11. State-transition graph for metatactical level.
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Fig. 12. Highway configuration for simulation.

entrance or an exit whicMyVehicledoes not take, overtaking TABLE |
without consideration of any entrance or exit, and lane changing NUVBER OF LANE C“AN%iig-NEDFSTz;lng?CTUAL ARRIVAL TIME IN
for exiting. An appropriate model for the current situation is se-
lected online using the metalevel reasoning described below. ; C
target change
100 400 900 1600
F. Metatactical Level-Reasoning 160 | 2.7/ 1789 | 2.1 [181.3 | 1.7]182.5 | 1.5| 188.5
170 | 2.4/ 180.3| 1.9 |181.9 | 1.8 186.7 | 1.5] 188.5

The metatactical level (see Fig. 2) continuously watches im- 180 | 1.91180.5) 1.31183.5 | 0.91187.1 || 1.0| 192.9

tant events on traffic. Examples of possible events are: the 190 1 171 183.50 0.9 187.1 ) 1011929 4 0.7/ 197.3
portant eve . p p : 200 | 09]187.1] t.1[193.0 | 0.7]197.3 | 0.5] 198.6

average speed of the current lane slows down; the exit is ap-
proaching. It also periodically updates the estimate of the arrival
time. G. Simulation Results

Itis inefficient to aIways check all events._lt is also annoying \we tested the tactical-level reasoning using the highway
for the driver to be given the same advice such as “ke@Ryfic simulator. Fig. 12 shows the highway configuration used

lane” again and again. Therefore, we need to make the sysiginsimuylation.MyVehicleenters aEntrance land exits from
monitor only selected events which are considered to B§it 2 The loss function used is

important in the current state. To realize such an adaptive focus

of attention, we construct a state transition graph shown in 0, t < trarget
Fig. 11. For each state, possible events and their corresponding (t) = { (t — trarget)? > trarget
tactical-level reasoning procedures are retrieved from the

graph. For example, at statgxit: Medium, Lane: Other vehicles are set to have their own target speed and distance
Left] (which means that the distance to the exit is mediuto the front vehicle, and to overtake whenever a slower vehicle
and the vehicle is on the left lane), possible events are: 1) tiseahead.

speed becomes sloweBfeed: Slower ); 2) the estimate of We examined the variation of driving ddyVehiclewhich is

the arrival time is updatedEgtimate arrival time ); assumed to always follow the generated tactical-level advice, for
3) the exit becomes neaEXit: Near ); and 4) the driver various target arrival time,... and the cost of lane changing
changed the lane without advic€lange lane by the Cenange. FOr €ach parameter set, we ran the simulation 15 times
driver ). For the first two events, the tactical-level planningvith setting the parameters for other vehicles randomly, and cal-
overtaking with approaching exit is executed. culated the average number of lane changes and the average ar-
For the last two events, only the state update is performed. Tl time. Table | summarizes the result. The earlier the target
current transition graph is based on the following assumptiorerival time is, or the smaller the cost of lane changing is, the
there are only two lanes and no branches; the right lanenmreMyVehicleperforms lane changing. Since this result coin-
always faster than the left. It is, however, not difficult to extendide with our intuition, we think our tactical-level reasoning is
the graph to remove such assumptions. effective.

(10)
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(d) (e)

Fig. 13. Lane and vehicle detection. (a) Input image. (b) Extracted white regions. (c) Detected boundaries. (d) Extracted shadow regioned(e¢elext
and their relative position and velocity.

IV. ROAD SCENE RECOGNITION selected threshold . . mean
A »
40 T T T T

This section describes the road scene recognition subsyste

(see Fig. 1) which detects lanes and vehicles. Although man 35} chadow C
L. . white region

works uses stereo vision (e.g., [16] and [17]), that requires mor | region (lane boundary)
cameras and more computing power than using a single came!
We, therefore, use a single camera for each direction (front ar
rear). The rear-directed camera is used for recognizing the w §
hicles passing from the rear in order to check the safety o‘é{ 20k
lane-changing maneuver. The effective use of the rear cameg
will be shown in Section V-B. We use shadows under vehicle:
as the cue for vehicle detection [18].

For the purpose of driver assistance, the recognition systel
has to process images almost in real-time. On the other han s}
we have to consider the uncertainty in visual information for re-

liable recognition. Therefore, we have decided to adopt a sim %5 oo e 200 250
pler image processing for each frame with an explicit uncer. Brightness

tainty modeling, and to statistically integrate information from

an image sequence to reduce the uncertainty. Fig. 14. Example of histogram of the lane region and threshold.

The recognition process is composed of the following steps:
1) Detectlane boundaries and estimate the positibfyde- rent lane. Using the width of the lane, the image regions of other

hicle; lanes can be extracted. Fig. 13(a)—(c) show an input image, the

2) Detect other vehicles and estimates their relative positiafetected white regions, and the detected lane boundaries. From
relative velocity, and their uncertainties; the detected boundaries, the lateral positioMgk/ehicle(i.e.,

3) Make correspondence between frames and integrate datalane on whiciMyVehicles) is determined. The longitudinal
using Kalman filter; position ofMyVehicles estimated by observing tldashedane

4) Track vehicles based on template matching. boundaries between lanes. The size and the relative position of

] ) » .. such lane boundaries are determined by traffic regulations. By
A. Lane Boundary Detection and Vehicle Position ESt'mat'orbounting how many such boundaries pllsd/ehiclethe system
First, the system extracts white regions corresponding to tban roughly estimate the longitudinal position from the starting
two white boundaries of the current lane by thresholding thmint. From the map of the road and this longitudinal position,
image and labeling. Then, a line is fitted to each set of white réte system estimates the distance to an entrance or an exit, and if
gions. The region between the two lines is considered as the dhe distance becomes less than a certain threskiyldehicleis
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Fig. 15. Projected vehicle position.

considered to reach the entrance or the exit. The empirical ac
racy of the longitudinal position was a few hundred meters fi
a driving of about 12 km. This accuracy will easily be increase
by using GPS systems.

B. Vehicle Detection

Once the lane regions are extracted, the system searchest :
for vehicles. Since there is a shadow area under a vehicle, wc
extract a dark region whose brightness is less than a thresheld,16. caiculation of vehicle position and uncertainty.
which is adaptively determined by the mean and variance of

<

the histogram derived from brightness on the lane region (see TABLE I

Fig. 14). Fig. 13(d) shows the extracted shadows for the image PROCESSINGTIME

shown in Fig. 13(a), which are the candidates of the vehicle -

position. process time (msec)
Fig. 15 is the projection of shadows and the detected vehicles lane boundary detection 4

(dotted rectangle) on the road surface. Since the approximate ;’ﬁ:‘;rci'ne detection 2‘:)

size of vehicles is known, the shadows of different sizes are trackini 7

determined not to be vehicles. ol 25

For each vehicle, we calculate the longitudinal positipand
its uncertaintyai_ (see Fig. 16) by

5 =1t
Yi ) I
o2 = (ﬁ) O ) 1) rescuiion |
7 Y; (fh)? ¢ T {PC
advice - !
wherey; is the averaged vertical position of a dark region and Lgenerafion 1}

o2 is its variance; the uncertainty of the image position is mainly
y L
due to the quantization error. v v

C. Mak|ng Correspondence Over Frames Fig. 17. Configuration of prototype system.

We make correspondence of extracted vehicles over fram Sow the results of template matching (each white rectangle in-
for reliable recognition. A newly obtained vehicles is matchef‘g?' P 9 9

: : e icates a template). The relative position and velocity of each
with a previously detected vehicle if: . o
vehicle are also indicated below the template.
1) both are on the same larand;

2) difference of positions is within a certain range computed, Processing Time

from the previous unc_e rtalr_lty_esumate_ , . Table Il shows the computation time for each step of recog-
The data of a matched vehicles is integrated with the previogs ) "\ve used a Pentiumii-400 MHz PC with Hitachi IP-5000
data using Kalman filter [19]. image processor and measured the time for the case where three

D. Tracking Using Template Matching vehicles are being tracked.

When a vehicle is detected, the corresponding image region V. EXPERIMENTAL RESULTS
of a certain size is registered as a template. Then the vehicle is )
tracked by template matching based on the normalized correfa- Prototype System and Experiments
tion, and the result of the tracking is used for the check of laneFig. 17 shows the overview of the prototype system. Two
changing motion of other vehicles. The rectangles in Fig. 13(eameras are used to see the forward and the backward directions.
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Fig. 18. Driver is advised to change lane later.
Another camera will be used for observing the driver’'s behavior TABLE I

(e.g., response to the advice); at present, the system detects just ~ MEASUREDVALUES AND ESTIMATED TIMES AND LOSSES

the _d|rect|on of the face, and the mformanon is not used fo_r the triggered time 7 1265 (scc.)
assistance. Two subsystems are working on one PC (Pentium-I distance from the entrance | 2783 (m)
400 MHz), and the processing ability reaches 10 frames/s. average speed | left 21.9 (m/sec.)
We show the result of an on-road experiment. The vehicle right 25.3 (m/sec.)
ran from Toyonaka entrance to the Ibaraki exit of the Meishin estimated keep lane | 421.0 (sec.)
expressway; the travel distance is about 12 km. We gave the arrival time | change lane | 364.3 (sec.)
system the loss function indicated by (10), target arrival time estimated loss | keep lane | 7638.8
change lane | 3448.6

tiarger = 460 S, and the cost of lane changiffuange = 2500.

This cost means that 50 s delay is allowed in exchange for lane

changing. The actual arrival time was 527 s; during the travghe goal and their losses. The maneuver “change lane” was se-

the system generated the tactical level and the local level adviggieq at the tactical reasoning module, but on the faster lane

five times and ten times, respectively. there was a passing vehicle. The vehicle, which had been de-

tected by the backward camera [see Fig. 18(a)], was tracked by

filtering although it was not detected by two cameras at the mo-

ment [see Fig. 18(b)]. Thus, the system advised the driver to
Fig. 18 shows the situation where tactical-level adviciehange to right later” [see Fig. 18(b)] (note that the advice in

“change to right later” was generated due to a reduction of thee parentheses means that the action should be executed later).

speed of the current lane. The upper-left and the upper-rigfallowing the advice, the driver checked the faster lane [see

part of each image are, respectively, the forward and tkég. 18(c)], and changed to the lane after the vehicle had passed

backward view. The lower-left part is the observation of thisee Fig. 18(d)].

driver, and the advice is displayed on the lower-right part. The

corresponding 2-D map of vehicle placement (i.e., relatife.- Operational-Level Advice

position and velocity) is also shown at the side of each image.Fig. 19 shows the situation where a local level advice “brake”

In the map, dotted rectangles indicate vehicles which afigys generated due to the deceleration of the front vehicle. At

invisible but are being tracked by the Kalman filter. present, this advice is generated if the following condition is
In this case, by referring to the velocity map, only the situagtisfied:

tion congestedvas selected. Table Ill summarizes the measured

values of the road scene and the estimated times of arrival at deurr + Veurr T'r < dihresh (12)

B. Tactical-Level Advice
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o (1]
(b)t=50.2
Fig. 19. Driver is advised (warned) to brake. [2]
[3]
whered.u: (vewrr) is the current relative position (velocity) of 0
the front vehicle with respect thlyVehicle 7’ is a constant
time duration [currently 3 S]di.esn iS @ threshold [currently
20 (m)]. In the case of Fig. 19.,,, andv.,,, were estimated 3]
as 24.5 (m) and-2.0 (m/s); thus, the relative position aft&f
(s) was estimated as 18.5 (m), which is less tag.sy,. [6]
VI. CONCLUSION AND DISCUSSION 7]

This paper has proposed the concept of intelligent navigator
that can give the driver timely advice on driving in a dynamic [g]
and uncertain traffic environment. The intelligent navigator
system is composed of the advice generation and the roa
scene recognition subsystems. We have proposed a three-level
reasoning architecture for tactical-level advance generation. W0l
also constructed a prototype system and conducted experiments
on the actual highway. The experimental results show that thg1]
intelligent navigator can provide reasonable advice online.

Experimental evaluation of the system like the intelligent navyyg)
igator is, however, difficult because traffic situations that we
would like for evaluation do not necessarily occur at the time of
experiments. So we tested and improved our advice-generatié}ﬂg']
strategy by performing simulation repeatedly for various sim-
ulated traffic situations, and then, implemented it on the proto-
type system. We conducted several on-road experiments; durirglg‘”
the experiments, one of the authors actually drove the vehicl¢is]
and followed the advice when it was generated. His subjective
impression is that most of advice were generated in appropriaf%]
timings.

It is not an easy task for the driver to give the loss function
and the cost assignment, which are used in the tactical-level reEal—7 ]
soning. We are planning to employ a learning-based approach
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in which the parameters are continuously refined through the in-
teraction with the driver.

To deploy the intelligent navigator, the following two issues
should be solved. One is the reliability of road-scene recog-
nition. The current vision algorithm works well under good
lighting conditions but is not robust against drastic weather
changes. We are working on developing more reliable image
processing algorithms. Using other kinds of sensors such as
millimeter-wave radar [20] may be a practical way. The other
issue is the use of (more) global information for increasing
the reliability of advice. From the on-vehicle sensors, only the
information in the local area can be obtained and more global
information is estimated from such local information. For
example, we currently estimate the situation of occluded areas
indirectly using the speed difference between lanes. It is useful
to use roadside cameras [21], if available. In addition, more
global information such as the congestion status on a far away
location, which will come from various traffic information
systems [3], would also enhance the reliability of advice.
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