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Technical Correspondences__________________________________________________

Pseudoreal-Time Activity Detection for
Railroad Grade-Crossing Safety

ZuWhan Kim and Theodore E. Cohn

Abstract—It is important to understand the factors underlying grade-
crossing crashes and to examine potential solutions. We have installed a
camera in front of a locomotive to examine grade-crossing accidents (or
near accidents). We present a computer vision system that automatically
extracts possible near-accident scenes by detecting the activity of vehicles
crossing in front of the train after signals are ignited. We present a fast al-
gorithm to detect moving objects recorded by a moving camera with min-
imal computation. The moving object is detected by: 1) estimating the ego
motion of the camera and 2) detecting and tracking feature points whose
motion is inconsistent with the camera motion. We introduce a pseudo-
real-time ego-motion (camera-motion) estimationmethod with a robust op-
timization algorithm. We present experiments on ego-motion estimation
and moving-object detection. Our algorithm works in pseudoreal-time and
we expect that our algorithm can be applied to real-time applications such
as collision warning in the near future, with the development of hardware
technology.

Index Terms—Computer vision, ego-motion estimation, motion detec-
tion, railroad grade-crossing safety.

I. INTRODUCTION

According to the U.S. Department of Transportation, in 2000, a total
of 2895 accidents occurred at railroad crossings, causing 306 deaths
[1]. The property damage in such events is large, as is personal in-
jury. Therefore, it is important to understand the factors underlying
grade-crossing crashes and to examine potential solutions. While there
are databases that record collisions and the prevailing conditions, little
systematic attention has been paid to the activity that is antecedent to
a collision, persons or vehicles crossing the tracks in front of an on-
coming train.

Video data is an important source of examining the grade-crossing
accidents (or near accidents). We have worked with the California De-
partment of Transportation to install three video cameras (one facing
forward and the others facing the sides) in front of a locomotive that
is operated along the San Joaquin Rail Corridor (about 280 mi from
Bakersfield, CA, to Emeryville, CA). There are about 700 crossings on
this route. The video data is recorded in real time in an MPEG format
(320� 240 resolution, 30 frames/s) in the data-collection device in-
stalled on the locomotive. The-data collectionmachine also is equipped
with a global positioning system (GPS). GPS information is collected
every second. When the train arrives at the Oakland, CA, AMTRAK
facility, the recorded video data (about 4–8 h) and GPS information are
transferred to the server computer via wireless communication.
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Fig. 1. Example video frame. The vehicle inside of the rectangle is moving to
the left.

While more than 6 h of video data are obtained daily, the number of
useful video scenes is small. First, the average number of crossing ac-
cidents/incidents is only about five per million train miles. The number
of activities that we are interested in may be larger, but the ratio of
the useful information is still too small for manual examination. Next,
much of the gathered data contain images obtained between images.
One easy way of removing useless scenes is to use the GPS coordi-
nates. We have a database that contains the GPS coordinates of most of
the crossings; thus, we can retain only those scenes near the crossings.
About 75%of the data can be removed in this way, but the volume of the
data remains too large to manually examine. In this paper, we present
research on the automated detection of the activity near the crossings.

An example of a video frame is shown in Fig. 1. Our purpose is to
develop a moving-object detection algorithm in which the camera is
also in motion (mostly moving forward). The algorithm needs to be
fast enough to process a large volume of data daily (does not need to
be in real time) and robust enough to detect most of the (near) accident
events with a small number of false alarms. There has been no fast
enough (pseudoreal-time) algorithm for detecting moving objects from
a moving camera because of the following difficulties.

• It is hard to estimate the camera motion (ego motion) robustly,
except to use an accurate optical flow that requires a large amount
of computation.

• The three-dimensional (3-D) structure of the background is also
unknown. To robustly estimate both camera motion and the back-
ground structure, a large amount of computation involving a large
number of frames is required. (Otherwise, it will result in noisy
camera parameter estimation for some of the frames.)

We present a pseudoreal-time algorithm that addresses these difficul-
ties. Our algorithm uses a relatively small number (100–200) of corner
features and their matches. The egomotion is estimated from the corner
matches from a small number of frames (two, in our example) and the
corner points that move inconsistently to the camera motion are de-
tected. Both the corner matching and the camera-motion estimation
(from a small number of frames) may introduce noise. To handle such
noise, we use a robust technique to estimate the camera motion and use
temporal information to find only corners that move in a consistently
inconsistent manner to the camera motion. This removes the corners
detected by false matches or wrong camera-motion estimation.

1524-9050/04$20.00 © 2004 IEEE
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In Section II, an introduction on the ego-motion estimation is pre-
sented. We present our algorithm in Section III and show experiments
in Section IV. Finally, the conclusion and the future work are given in
Section V.

II. BACKGROUND

The goal of the ego-motion estimation is to recover the motion of
the camera by using image measurements of fixed points in the scene.
When the 3-D coordinates (or constraints among them, such as pla-
narity) of the feature points are known (for example, [2] or camera
calibration problems), another coordinate system (world coordinate)
is often introduced and the rotations and the translations of each and
every frames are estimated according to the world coordinate. How-
ever, in this application, we do not have any information on the 3-D
coordinates of the feature points. Therefore, we only estimate the rela-
tive configuration (rotation and translation) of the camera with respect
to the previous one. For each frame, we recover the rotation and the
translation of the camera with respect to the previous frame.

When the number of frames is small enough, it is tractable to esti-
mate camera configurations of all the frames as well as the 3-D coor-
dinates of the feature points at the same time, [3], [4]. However, such
a calculation deals with a matrix of substantial dimensions, including
all the camera parameters and the image and world coordinates of the
feature points. Therefore, it is not efficient to process hours of video
data with this approach. Hence, we limit the scope of this paper to the
two-frame case described earlier.

In this section, we introduce a brief survey on the ego-motion esti-
mation from two image frames. Most of the contents in this section are
also found in the photogrammetry literature (e.g., [5]).

A. Projective Geometry

In the basic pinhole camera model, a 3-D pointX = (X Y Z)> on
camera coordinates is mapped to the point on the image plane (image
coordinates) u = (u v)>, where u = fX=Z; v = fY=Z and f is the
focal length. In a matrix form

wu

wv

w

=

f 0 0

0 f 0

0 0 1

X

Y

Z

= K

X

Y

Z

:

For simplicity, we redefineu � (wu wv w)>. For a finite projective
camera, the internal camera parameters

K =

�u 0 u0
0 �v v0
0 0 1

where �u and �v represent the focal length of the camera in terms of
pixel dimensions in the u and v direction, respectively, and (u0 v0)

>

is the coordinate of the image center.
Usually, a separate coordinate system, world coordinates, which is

different from the camera coordinates, is introduced. In this case, the
Euclidean transformation (rotation R and translation T) between the
world and camera coordinates is introduced as u = K(RX+T).

Using this equation,K;R, and T can be estimated when we know
the correspondences between points in theworld and image coordinates
(see [5] for details).

B. Two-View Camera Geometry

Consider two cameras (or two camera configurations)C andC0. The
baseline is defined as the line segment joining two camera centers. For
each camera, the epipole is defined as the point of intersection of the

baseline and the image plane. Consider a 3-D pointX and its projection
u on C. X;u, and the baseline lie on the same plane, which is the
epipolar plane. This is defined as the intersection of the epipolar plane
with the image plane. For any image point u ofC, its correspondence
of C0;u0 also lies on the same epipolar plane (and the corresponding
epipolar line) regardless of the 3-D position ofX. Furthermore, for any
corresponding points u and u0

u
0>
Fu = 0 (1)

where F is the fundamental matrix. With the fundamental matrix, we
can get epipolar lines. For any point u, the corresponding epipolar line
is

l
0 = Fu: (2)

In our application, C and C0 are the same camera with different
position and orientation. Regard C is the camera configuration of the
previous frame and C0 of the current frame. For simplicity, we let the
camera coordinate of C be the world coordinate. Then, the configu-
ration of C0 is represented by a rotation R and a translation T =
(TX TY TZ)

>.
We introduce a new coordinate system called normalized co-

ordinates. A normalized coordinate is obtained from the corre-
sponding image coordinate given the internal camera parameters
K : x = (x y 1)> = K

�1(u v 1)>.
For C, a point X = (X Y Z)> on the world coordinate can be

easily transformed to a point x = (x y 1)> on the normalized coor-
dinate

x = X=Z; and y = Y=Z: (3)

For C0, the transformed point

x
0 = (x0 y0 1)> = (X 0=Z 0 Y 0=Z 01)> (4)

where X0 = (X 0 Y 0 Z 0)> = RX + T.
As the counterpart of (1), for any two corresponding points x and x0

x
0>
Ex = 0 (5)

where E is the essential matrix. In fact,

E = [T]�R (6)

where [T]� is the skew-symmetric matrix of T (see [5] for details).

C. Ego-Motion Estimation

Assume that the internal parametersK are known (they can be ob-
tained from a separate calibration procedure). The ego-motion estima-
tion is to recoverR andT from a set of point correspondences, where
their relationship is nonlinear.

One approach is to first estimate the essential matrixE and to calcu-
late R̂ and T̂ (the estimates ofR and T) from it. From a point corre-
spondence, we get two linear equations (with respect to the parameters
of E) by applying it to (5). Given a number of point correspondences,
we can easily get Ê by, for example, using the least-square estimation.
Once Ê is obtained, we get R̂ and T̂ by applying the singular value
decomposition (see [5] for details).

However, this method does not provide accurate estimation [6], be-
cause the parameters ofE are not directly related to the physical proper-
ties and minimizing their errors assuming, for example, Gaussian error
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Fig. 2. Flowchart of the moving-object detection algorithm.

distributions (the least-square estimation) is not meaningful. We want
to minimize meaningful errors; for example, the reprojection error

Errrprj(x;x
0

; X̂) =
i

d(xi; x̂i)
2 + d(x0

i; x̂
0

i)
2 (7)

where (xi;x0

i) is the measured position of the ith correspondence (x =
x1;...;n and x0 = x1;...;n, where n is the number of points), x̂ is the
estimate of the “true” 3-D positions of the points, x̂i and x̂0

i are the
projection of x̂i on C and C0 and d() is the Euclidean distance. We
can estimate R and T by solving nonlinear equations of (3), (4), and
(7) on the parameters of R̂; T̂, and x̂i, respectively. We can use any
iterative method and the result of the first approach (which uses the
least-square estimate of the essential matrix) is usually used as a initial
guess. The initial values of x̂i can be obtained from the initial values
of R̂ and T̂. From (4), we get

x0

iẐ
0

i

y0

iẐ
0

i

Ẑ 0

i

= R̂

xiẐi

yiẐi

Ẑi

+ T̂:

We get two linear equations on Ẑ 0

i from this equation and can estimate
xi from it.

Note thatR is a 3� 3 matrix, but has only three degrees of freedom
(DoF). Therefore, we have six more constraints to makeR a valid ro-
tation matrix. Reference [6] uses a unit quaternion to represent the ro-
tation to effectively enforce these constraints.

III. MOVING-OBJECT DETECTION

The flowchart of the moving-object detection algorithm is shown in
Fig. 2. For each frame, we apply an eigen-value-based corner detector
[7]. When a corner is detected, a small 9� 9 template of the gray-level
image is extracted. Then, we search for the matches of the extracted
templates in the next frame. The match score is based on the correlation
and the search is performed on a 9� 9 search window.

Fig. 3 shows detected corner features and their matches (shown as
optical flows). Note that there are many line features. The matching
process can suffer from the aperture problem and we may have some
false matches. Now, our goal is to find the corners of which the move-
ments are not consistent with others. This is done by estimating the
ego motion of the camera and checking the consistency of the move-
ment. Finally, we track detected moving corner features for several
more frames to remove the noise (falsely detected motion).

An effort on a similar problem is found in [8]. It introduces themulti-
body fundamental matrix (a set of fundamental matrices) to segment
motions into several groups. In fact, many of themoving objects (corner
features) can be detected without fully recovering the ego motion, but
only by recovering the fundamental matrix (or the essential matrix).
When we know the fundamental matrix, we can calculate the corre-
sponding epipolar line of a point (2) and can detect a moving object
as long as its motion does not accidentally lie on the corresponding

Fig. 3. Detected corner features (square boxes) and their optical flows. Note
that the line features can cause false matches (aperture problem). The optical
flows were exaggerated 3 times for visibility.

Fig. 4. We need to recover the ego motion fully because the “accidental
alignment” of the object motion and the corresponding epipolar line occurs
frequently.

epipolar line. However, this “accidental alignment” of the motion often
occurs in our application. An example is shown in Fig. 4. Most of the
object motions in which we are interested occur in a horizontal direc-
tion in the middle of the image, while the epipolar lines in the middle
of the images also are mostly horizontal.

In fact, this is an intrinsic ambiguity that cannot be removed unless
we know the 3-D coordinate (or depth) of the point. However, this am-
biguity can be addressed if we constrain the 3-D coordinates of the
objects. For example, no visible object can have a negative Z-coordi-
nate, nor (usually) stays in front of a moving train closer than a certain
distance (say, 10 m). To apply these constraints, we need to recover the
3-D coordinates of the points. Therefore, we recover the full camera
parameters R and T.

A. Ego-Motion Estimation for Railroad-Crossing Imagery

In our application, the ego motion is mostly a forward translation
(TZ)with a very small amount of other translation (TX andTY ) and ro-
tation. However, the ego motion along the Z axis is difficult to recover
robustly [9]. For example, the pitch (rotation about the Y axis) and TX
causes similar optical flows (bas-relief ambiguity). Therefore, standard
ego-motion estimation methods (Section II-C) do not give good esti-
mation; they result in many false alarms in motion detection. In this
section, we introduce an augmentation for the present application.
1) Error Model: The reprojection error (7) was introduced based

on the assumption of a Gaussian error distribution of the reprojected
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points. This assumption is valid when the scene is static and all the
matches (correspondences) are correct. However, in our application,
we also need to consider the errors caused by false matches and by ob-
ject motion. If we consider these outliers, the error distribution is no
longer Gaussian, but close to a binomial or multinomial distribution.
This error can be handled in the optimization procedure by applying
robust estimation techniques, such as least-trimmed square. To simu-
late robust estimation techniques efficiently, we change the objective
function such that it minimizes the number of matches that do not fit to
the current camera model

Errsigmoid =
i

e(xi;x
0

i; x̂i) (8)

where

e(xi;x
0

i; x̂i)

=
1; if Ẑ < 0 orx̂ is right in front of the camera or
sigmoid (d(xi; x̂i)2 + d(x0

i; x̂
0

i)
2;�); otherwise

and � is the mean of the sigmoid function. We allow maximum 1.0
reprojection error. Therefore, � = 1:0.

In many cases, optimizing only with Errsigmoid does not give good
result because numerically sigmoid(x) = sigmoid(y) = 1:0 for any
large numbers of x and y. For many point correspondences, the re-
projection errors of the initial estimate are large enough to cause this
numerical error. Therefore, we propose a two-step optimization. For
the first, say, 15, iterations, we apply the reprojection error, then apply
Errsigmoid for the rest of the iterations.
2) Optimization: We use an iterative optimizationmethod (e.g., the

gradient-descent method) to minimize the objective function. Usually,
the initial estimates of the camera parameters are obtained from the
least-square estimate of the essential matrix Ê (see Section II-C). How-
ever, in our case, involving forward ego motion and outliers, the esti-
mates of the rotation parameters R̂ are highly unstable when obtained
in that way. Therefore, we assume pure translation at the initial esti-
mation when there is no rotation E = [T]� from (6). In this instance,
we can use the initial estimates of T̂X = (Ê3;2 � Ê2;3)=2; T̂Y =
(Ê1;3 � Ê3;1)=2, and T̂Z = (Ê2;1 � Ê1;2)=2.

The next step is to apply the iterative optimization on R̂; T̂, and
x̂i. We apply a gradient-based optimization algorithm. However, the
optimization process can be extremely time consuming, because the
number of parameters to optimize is 3n+6, where n is the number of
the point matches. Also, the initial estimation error of x̂i can be very
large because its estimation is very sensitive to R̂ and T̂. For example,
if we do not have a correct estimate on the point of expansion, we will
get many Ẑis with negative values.

Therefore, we optimize x̂i and the camera parameters (R̂ and T̂)
separately. For each iteration step, we can first optimize (update) R̂
and T̂ given the point matches (xi and x0i) and x̂is, then optimize x̂is
given R̂ and T̂ (triangulation). In fact, the parameters of x̂i (X̂i; Ŷi,
and Ẑi) are highly correlated among each other since X̂i = x̂iẐi, and
Ŷi = ŷiẐi (note that we need to estimate X̂i; Ŷi, and Ẑi separately,
mainly because xi and yi are not the real values, but just observations
that contain sampling errors). However, when we assume that Ẑi is
the only independent variable and X̂i = xiẐi and Ŷi = yiẐi (i.e.,
when we assume xi is correct), we get a closed-form solution of Ẑi
optimizing the square sum of the distance error, given R̂ and T̂.

argẐ minf(x̂i � x0i)
2 + (ŷi � y0i)

2g

=
(rx T̂Z � T̂X)(x0iT̂Z � T̂X) + (ry T̂Z � T̂Y )(y

0

iT̂Z � T̂Y )

(rx T̂Z � T̂X)(rx � x0i) + (ry T̂Z � T̂Y )(ry � y0i)

(9)

where rx = R̂1;1xi + R̂1;2yi + R̂1;3, and ry = R̂2;1xi + R̂2;2yi +
R̂2;3 (see the Appendix for the proof). In fact, the objective function
that we minimize for x̂ (9) is different from the objective function (8).
However, this approximation is good enough since our goal is not to ac-
curately estimatex, but just to find inconsistent motion. In [10], Hartley
and Sturm introduced an optimal triangulation method minimizing the
reprojection error. However, we did not apply this method because the
optimization process is complex and time consuming.

In this application, we separate the iterative update procedure of R̂
and T̂ because the convergence characteristics for R̂ and T̂ are very
different from each other. Assume thatErr() is the objective function to
be minimized. For each iteration, we apply the following optimization
steps.

Step 1) Estimate (@Err)=(@R̂); R̂ R̂� �(@Err)=(@R̂).
Step 2) Optimize x̂i’s given R̂ and T̂.
Step 3) Eestimate (@Err)=(@T̂); T̂ T̂� �(@Err)=(@T̂).
Step 4) Optimize x̂i’s given R̂ and T̂.

� and � controls the convergence speeds as in the Levenberg–Mar-
quardt iteration. Step 2) is necessary because, when we update T̂ in
Step 3), we use the newly updated R̂ of Step 1). However, when we
skip Step 2), R̂ and x̂i will be inconsistent in Step 3). See Section IV
for the comparison between with and without separating the update of
R̂ and T̂.

B. Motion Detection

Once the egomotion is estimated, we detect object motion by finding
inconsistent corner motions. We use x̂i (obtained from the ego-mo-
tion estimation) to detect inconsistent motion. The ith point match
is inconsistent with the estimated ego motion when e(xi;x

0

i; x̂i) >
sigmoid(1:0;�) [cf., (8)].

The inconsistency of a point motion can come from three possible
reasons: 1) object motion; 2) matching error; or 3) ego-motion estima-
tion error. Note that the inconsistency caused by the object motion is
distinguished from the others because it is consistent over the frames.
Therefore, we applied a simple tracking algorithm to check this “con-
sistent inconsistency.” Once a corner is determined to be inconsistent,
its matches are found for the next seven or more frames and we report
it as a moving object when its motion is consistently inconsistent to the
ego motion.

IV. EXPERIMENTS

Currently, only a small volume of video data is available for a pre-
liminary test. We focus our experiment on the ego-motion estimation.

We first compare the proposed optimization method and the repro-
jection error method. Fig. 5 shows the convergence properties of two
example pairs of frames. When there was a small number of false
matches [for example, no visible false match was found in the frame
pair for Fig. 5(a)], the difference between two methods was small.
However, when there were false matches [for example, at least three
visible false matches were found in the frame pair of Fig. 5(b)], the pro-
posed method showed much better performance (6.58 versus 11.98).

The comparison is based on the objective function of (8). However,
even when we compared the reprojection error in (7), the proposed
methods showed superior performance when there were false matches
[for example, 5.90 versus 21.27 for Fig. 5(b), both resulted in two out-
liers]. At the same time, the differences were not significant when there
was no false match [for example, 7.34 versus 7.31 for Fig. 5(a)]. In
fact, the proposed method showed even better performances on many
examples with no false matches. From this result, we find that applying
a robust estimation method reduces the risk of falling into a local min-
imum caused by false matches.
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Fig. 5. Comparison between the proposed optimization method and the reprojection error method, when (a) there is no visible false match and (b) several false
matches were found.

Fig. 6. We get better estimation when we update ^R and ^T separately (see Section III-A).

Fig. 7. Example video sequence (first frame) and train trajectory reconstructed
from the suggested ego-motion estimation.

We also performed an experiment to justify the separate update of
^R and ^T. The comparison result is shown in Fig. 6. We find that the
simultaneous update of ^R and ^T caused poor performance because of
the different convergence characteristics of ^R and ^T.

A motion-reconstruction example is shown in Fig. 7. We observe
that the train trajectory is nicely reconstructed. We also tested random
sample consensus (RANSAC), a popular pseudoreal-time (or real time
with a pre-emptive scoring function, [11]) motion-estimation algorithm
for the same video. We applied a seven-point algorithm in which hun-
dreds of essential matrix hypotheses are generated from random sets
of seven points and evaluated by the epipolar constraint. The essential
matrix with the best score is chosen, which determines the rotation and
translation. However, scoring essential matrix does not give an accu-
rate result. An example is shown in Fig. 8. While RANSAC’s scoring
function says that 52 out of 68 correspondences are consistent with the
resulting essential matrix, the reprojection error tells that only 29 of
them are consistent.

Finally, the moving-object detection result is shown in Fig. 9. Five
corners of the moving object were detected without any false alarm.
The amount of computation depended on the number of the corners
processed and the convergence characteristics on the motion. The ex-
periment was performed on Pentium III (1-GHz) personal computer

Fig. 8. RANSAC with a seven-point algorithm does not work well.
RANSAC’s scoring fuction says that 52 out of 68 correspondences are
consistent with the resulting essential matrix, but the reprojection error tells
that only 29 are consistent (white boxes).

Fig. 9. Detected moving object with the trajectories of its corner features.
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and, formost cases, approximately 50–150mswere spent for the corner
detection andmatching and 20–500ms (but mostly under 150ms) were
spent for the optimization.

V. CONCLUSION AND FUTURE WORK

We presented a moving-object detection algorithm for railroad-
crossing safety. We proposed a fast triangulation method and a robust
optimization algorithm to meet our application’s need. We presented
preliminary experiments that showed that the proposed approach is
promising. A more thorough evaluation will be performed when a
large volume of video data is collected. We will generate a learning
data set by showing video clips to human and compare the detection
result with our algorithm.

Our algorithmworks at pseudoreal time (about three to four frames/s
on a Pentium III personal computer). We expect that, in the near future
(with the development of computer hardware), it can be applied to real-
time applications such as an in-vehicle collision warning system.

APPENDIX

PROOF OF (9)

We define the object function

Err(x0

; y
0

; x; y; Ẑ) = f(x̂0(x; y; Ẑ)� x
0)2 + (ŷ0(x; y; Ẑ)� y

0)2g

to be minimized with regard to Ẑ . From (3) and (4)

x̂0(x; y; Ẑ) =
X̂ 0(x; y; Ẑ)

Ẑ 0(x; y; Ẑ)
=

Ẑrx + T̂X

Ẑrz + T̂Z

and

ŷ0(x; y; Ẑ) =
Ŷ 0(x; y; Ẑ)

Ẑ 0(x; y; Ẑ)
=

Ẑry + T̂Y

Ẑrz + T̂Z

where rx = R̂1;1x+ R̂1;2y+ R̂1;3; ry = R̂2;1x+ R̂2;2y+ R̂2;3, and
rz = R̂3;1x + R̂3;2y + R̂3;3.

We get Ẑ that minimizes Err() by taking its partial derivative with
regard to Ẑ

@Err

@Ẑ
=

�2

(Ẑrz + T̂Z)3
[(rxT̂Z � T̂X)f(x0 � rx)Ẑ + (x0

T̂Z � T̂X)g

+ (ryT̂Z � T̂Y )f(y
0 � ry)Ẑ + (y0

T̂Z � T̂Y )g] = 0:

Ẑ =
(rxT̂Z � T̂X)(x0T̂Z � T̂X) + (ryT̂Z � T̂Y )(y

0T̂Z � T̂Y )

(rxT̂Z � T̂X)(rx � x0) + (ryT̂Z � T̂Y )(ry � y0)
:

This is the only extremumofErr()with regard to Ẑ , which is the global
minimum.
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Stochastic Car Tracking With Line- and
Color-Based Features

Tao Xiong and Christian Debrunner

Abstract—Color- and edge-based trackers can often be “distracted,”
causing them to track the wrong object. Many researchers have dealt
with this problem by using multiple features, as it is unlikely that all
will be distracted at the same time. It is also important for the tracker
to maintain multiple hypotheses for the state; sequential Monte Carlo
filters have been shown to be a convenient and straightforward means of
maintaining multiple hypotheses. In this paper, we improve the accuracy
and robustness of real-time tracking by combining a color histogram
feature with an edge-gradient-based shape feature under a sequential
Monte Carlo framework.

Index Terms—Color-based tracking, condensation, edge-based tracking,
feature integration, Monte Carlo filter, multiple hypotheses, particle filter.

I. INTRODUCTION

In recent years, researchers have developed the concept of driver-
assistance systems as a means of reducing the number of traffic acci-
dents and increasing driver comfort. Different types of sensors, such as
radar, laser, and acoustic, have been considered for sensing in this ap-
plication. Thanks to the increasingly powerful computer systems and
the less-expensive high-performance video cameras that have become
available in the past few years, the use of computer vision technology
as a sensor in driver-assistance systems has become more common and
has led to increased performance. Vision sensors can provide rich in-
formation about the vehicle’s surroundings and also have the advantage
over active sensors (such as laser rangers or radars) of not causing in-
tervehicle interference.
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