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Abstract—This paper deals with the problem of dynamic model-
ing and identification of passenger cars. It presents a new method
that is based on robotics techniques for modeling and description
of tree-structured multibody systems. This method enables us to
systematically obtain the dynamic identification model, which is
linear with respect to the dynamic parameters. The estimation
of the parameters is carried out using a weighted least squares
method. The identification is tested using vehicle dynamics simula-
tion software used by the car manufacturer PSA Peugeot-Citroën
in order to define a set of trajectories with good excitation prop-
erties and to determine the number of degrees of freedom of the
model. The method has then been used to estimate the dynamic
parameters of an experimental Peugeot 406, which is equipped
with different position, velocity, and force sensors.

Index Terms—Identification, mobile robot dynamics, modeling,
passenger car.

I. INTRODUCTION

CAR manufacturers have to design and build their cars
faster than ever to meet the customers needs. Meanwhile,

safety considerations are becoming more numerous and tests
very strict. To fulfill these constraints, they have to make use
of simulations and calculations as well as experiments. During
the design of a car, simulation is used but not for the tuning
of the prototype. In order to build tools that allow computing
while tuning, it is necessary to have good knowledge of the
prototype parameters for the different configurations of the
car. Classical nonlinear identification techniques to estimate
the dynamic parameters are very difficult to apply on the
car model due to the complexity of its state space model.
For instance, Schmitt et al. [1] use an output error method
that is very time consuming because of the integration of the
direct dynamic model (state space model) at each step of the
optimization algorithm. Besides, this technique is very sensitive
to nonlinear optimization issues such as initial values and local
minima. We suggest identifying the dynamic parameters using
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robotics techniques and tools that are based on an identification
model that is linear with respect to the dynamic parameters.
This dynamic identification model is obtained using the inverse
dynamic model that can be obtained systematically using a
recursive Newton–Euler algorithm [2]. The proposed method is
tested by simulation and on an experimental Peugeot 406. The
simulation is carried out using the dynamic vehicle simulation
software ARHMM [3]. The influence of the car trajectory, the
number of degrees of freedom (DOFs) of the model, as well
as the cutoff frequency (cof) of filters on the results of the
estimation is studied.

II. VEHICLE DYNAMICS

Vehicle dynamics is the study of vehicle behavior while
driving. Only some elements of the vehicle are needed to de-
scribe and model this behavior; they constitute the DOFs of the
car with respect to the ground and between the car components
that link the chassis to the ground [4]. The car is composed
of the following parts:

— the chassis;
— the steering system;
— the four suspensions and the two antiroll bars;
— the four unsprung bodies;
— the four wheels with their tires.

There are eight DOFs for each wheel [5], which are listed
as follows:

— the track width (Fig. 1);
— the wheelbase (Fig. 1);
— the suspension clearance;
— the toe angle of the rear wheel and the steering angle of

the front wheel;
— the camber angle (Fig. 1);
— the kingpin angle;
— the rotation of the wheel around its axis;
— the tire deflection.

Some of these DOFs are actuated, such as the steering angle or
the rotation of the front wheels, but some others are elastic and
elastokinematic deformations, such as suspension clearance.
Car motion with respect to the ground is described by six DOFs
(Fig. 2)—three translational and three rotational—which are
listed as follows:

— longitudinal translation;
— lateral translation;
— vertical translation;
— roll: rotation around the longitudinal axis;
— pitch: rotation around the transversal axis;
— yaw: rotation around the vertical axis.

1524-9050/$20.00 © 2006 IEEE
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Fig. 1. Characteristic geometric parameters of the car dynamics. (Color
version available online at http://ieeexplore.ieee.org.)

Fig. 2. Movements of the car body.

The external forces applied to the car, which have the most
significant impact on vehicle dynamics, are the contact forces
between the ground and the tires. These external forces are
difficult to model [6], [7], or to estimate [8], [9], but they can
be measured at the center of the wheels using dynamometric
wheels. Aerodynamic forces also have an effect on the vehicle
behavior, particularly at high speed (> 90 km/h) [4].

III. COMPUTATION OF THE CAR DYNAMICS

A. Structure Description and Geometric Modeling

To describe a passenger car, we will use the modified Denavit
and Hartenberg (MDH) notations [2], [10] that are commonly
used in robotics. This description allows us to obtain, sys-

Fig. 3. Geometric parameters.

tematically, the identification dynamic model of the system,
whatever the number of DOFs. The car is considered to be
a tree-structured multibody system with n bodies, where the
wheels represent the terminal links. Each body Bj is linked to
its antecedent with a joint that represents an elementary DOF
either translational or rotational, and the joint can be rigid or
elastic. A body (or a link) can be real or virtual; the virtual
bodies are introduced to describe joints with multiple DOFs
or intermediate fixed frames. We define a reference frame Ri

(Oi, xi, yi, zi) attached to each body Bi. The zi-axis is
defined along the axis of joint i. The uj-axis is defined along
the common normal between zi and zj , where link i is the
antecedent of link j, which is denoted by i = a(j). The xi-axis
is defined arbitrarily along one of the axes uj , with a(j) = i.
The 4 × 4 homogenous transformation matrix iT j between two
consecutive framesRi andRj is defined using the following six
parameters [10] (Fig. 3):

— γj : angle between xi and uj around the zi-axis;
— bj : distance between xi and uj along zi;
— αj : angle between zi and zj around the uj-axis;
— dj : distance from zi to zj along uj ;
— θj : angle between uj and xj around the zj-axis;
— rj : distance from uj to xj along zj .

In Fig. 3, since xi is taken along uk, the parameters γk and bk
are equal to zero. The transformation matrix between frames i
and j is represented by the following 4 × 4 matrix:

iT j =
[

iAj
iP j

03×1 0

]
(1)

where iAj is the 3×3 rotation matrix of frame j with respect to
frame i, and iP j is the 3×1 vector defining the origin of frame
j with respect to frame i.

The generalized coordinate of joint j is denoted by qj , and
it is equal to rj if j is translational and θj if j is rotational.
We define the parameter σj = 1 if joint j is translational and
σj = 0 if joint j is rotational; σj = 1 − σj . If there is no DOF
between two frames that are fixed with respect to each other, we
take σj = 2. This means that the time derivative of qj is zero.
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B. Dynamic Modeling

1) Dynamic Parameters: A set of ten inertial parameters is
associated with each real body Bj . It consists of

— the mass Mj ;
— the six independent components of the inertia matrix J j

given in frame Rj , which are denoted by XXj , XYj ,
XZj , Y Yj , Y Zj , and ZZj ;

— the components MXj , MYj , and MZj of the first mo-
ments vectors MSj with respect to frame Rj .

When joint j is elastic, we define the following parameters:

— the stiffness kj of the joint;
— the damping coefficient hj ;
— the Coulomb coefficient fsj .

The vector of standard dynamic parameters of the system,
which is denoted by XS , is composed of the previous parame-
ters for all the links.
2) Lagrange Dynamic Model of the Car: The Lagrange

formalism expresses the movement of each body in terms
of the joint coordinates q = [q1, . . . , qn], its first and second
derivatives q̇ and q̈, the external moments and forces applied
on the system F e, and the vector of dynamic parameters XS .
It is expressed as

f(q, q̇, q̈,F e,XS) = 0. (2)

To use the Lagrange method, the movement of the car body
with respect to the ground is defined with a six-DOFs chain,
where the first three are translational, and the last three are
rotational [11], [12]. This chain is represented by five virtual
bodies (B1 to B5) with zero inertial parameters; the sixth body
B6 is the chassis. The reference body B0 is the ground. In this
case, the inverse dynamic model, which gives the joint torques,
is obtained using the following general equation:

Γ + Q = Γe + Γf + H(q, q̇, q̈,XS) (3)

where Γ is the vector of joint forces or torques, and Q is the
vector of generalized efforts representing the projection of the
external forces and torques on the joint axes. It is calculated
using the following equation:

Q = −
∑

Gj(q)T F ej (4)

where
Gj(q) Jacobian matrix of frame Rj ;
F ej vector of external forces fej and moments mej

applied by body Bj on the environment;
H vector of inertial, Coriolis, centrifugal, and gravity

forces;
Γe joint elastic force. The jth element of Γe is written

as follows:

If j is an elastic joint, then

Γe
j = kjqj + offj (5)

with qj the joint coordinate j with respect to the
original position, kj the stiffness of joint j, and
offj an offset.
if j is not an elastic joint, then Γe

j = 0;

Γf friction force. Friction is modeled using a viscous
parameter hj and a Coulomb parameter fsj given
as follows:

Γf
j = hj q̇j + fsjsign(q̇j). (6)

In the following, we note that L = Γ + Q.
3) Practical Calculation of the Lagrange Dynamic Model:

The Lagrange model is typically calculated using the Lagrange
equation, which calculates the kinetic and potential energies
of all the elements of the mechanical system. The generalized
forces Q are calculated using (4) or by applying the virtual
work principle [4], [7]. The Lagrange model can be calculated
more easily using a recursive algorithm based on the Newton–
Euler equation after expressing the link velocities and acceler-
ations in terms of joint positions, velocities, and accelerations
[10], [13]. This algorithm consists of two recursive calculations.
The forward one calculates the total forces and moments on
each body, whereas the backward one leads to calculation of
the joint torques.

The forward recursive calculation can be summarized as
follows: for j = 1 to n, we calculate successively

jωi = jAi
iωi (7)

jωj = jωi + σ̄j q̇j
jaj (8)

jω̇j = jAi
iω̇i + σ̄j

(
q̈j

jaj + jωi × q̇j jaj

)
(9)

jV̇ j = jAi

[
iV̇ i +

(
i ˜̇ωi + iω̃i

iω̃i

)
iP j

]
+ σj

(
q̈j

jaj + 2 jωi × q̇j jaj

)
(10)

jF j =Mj
jV̇ j +

(
j ˜̇ωj + jω̃j

jω̃j

)
jMSj (11)

jM j = jJ j
jω̇j + jωj ×

(
jJ j

jωj

)
+ jMSj × jV̇ j (12)

where the upper left exponent denotes the projection frame, ×
denotes the outer vector product i = a(j), and

ω̇j angular acceleration of body j;
ωj angular velocity of body j;
ω̃ skew-symmetric matrix associated to the

vector product, which is defined from
the components of the 3 × 1 vector by the
following equation:

ω̃ =


 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 (13)

V̇ j acceleration of Oj , which is the origin of
frame j;

F j total forces applied on body j;
M j total moments applied on body j with

respect to Oj ;
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Fig. 4. Forces and moments acting on a link of a tree structure.

jAi 3 × 3 orientation matrix of frameRi inRj ;
aj unit vector along zj , thus, jaj = [0 0 1]T ;
Mj , MSj , J j defined in Section III-B-1.

The forward calculation is initialized with 0ω0 = 0 and 0ω̇0 =
0, whereas the translational acceleration of frame 0 will be set
equal to gravity g with the opposite sign; thus, 0V̇ 0 = −g in
order to automatically take into account the effect of the gravity
forces.

The backward recursive equations, for j = n, . . . , 1 calculate
the forces jf j and moments jmj exerted on body Bj by its
antecedent body Bi (Fig. 4) as follows:

jf j = jF j + jfej +
∑
s(j)

jfs(j) (14)

if j = iAj
jf j (15)

jmj = jM j + jmej +
∑
s(j)

jAs(j)
s(j)ms(j)

+ jP̃ s(j)
jfs(j) (16)

where s(j) indicates the bodies whose antecedent is body Bj ,
and jfej , jmej are the external forces and moments applied by
body Bj on the environment. The joint forces (or torques) are
obtained by projecting if j (or imj) on the joint axis zj and
by taking into account the effects of friction and elasticity as
follows:

Γj =
(
σj

jf j + σ̄j
jmj

)T jaj + Γf
j + Γe

j . (17)

This backward calculation is initialized by putting jf j and
jmj equal to zero for the terminal links. We can note that
the contact forces between the tire and the road will be taken
into account through fej and mej of the terminal links (the
wheels). The projection of these forces on the joint axes will be
obtained systematically without application of (4), as would be
the case if the Lagrange equation was used. It is to be noted that
this algorithm can be programmed numerically or symbolically.
To optimize the number of its operations, we use customized
symbolic techniques to implement it [10]. It can be proven

that the dynamic model is linear with respect to the standard
dynamic parameters, thus, (3) can be rewritten as

L = DS(q, q̇, q̈)XS (18)

where matrix DS is a function of (q, q̇, q̈).
The inertial parameters of the chassis appear explicitly in the

first six equations giving L1 to L6.
4) Mixed Newton–Lagrange Model: The Newton–Euler

formalism expresses the movement of a body in terms of its
rotational speed, rotational acceleration, translational accelera-
tion, and its current position [ω, ω̇, V̇ , Φ].

We will suggest another form of the dynamic model that
combines both Newton–Euler and Lagrange approaches in
order to obtain a more efficient model of the car. In this case,
the body of the car is represented by one body denoted by
B1 whose dynamic equations are expressed in terms of the
Euler variables [V̇ 1, ω1, ω̇1], whereas the rest of the system
dynamics (i.e., bodies B2 to Bn) is expressed in terms of
Lagrange variables (q, q̇, q̈). The main advantages of this
method are that the Euler variables of the chassis correspond
to the measured variables in an experimental system and that
the transformation matrices between the first six frames of the
Lagrange model no longer exist. This enables us to obtain a
more compact dynamic model and to reduce the number of
mathematical operations required. The dynamic equations of
this mixed model can be obtained by the recursive algorithm
presented in Section III-B3 with the following modifications:

— The value of n is reduced by 5.
— In the forward recursive calculations, for j = 1, the total

forces and moments on the chassis F 1 and M1 are
calculated using (11) and (12) as a function of [V̇ 1, ω1,
ω̇1]. For this first iteration, the other equations are not
required.

— The equations of the chassis will be represented by the
total forces and moments 1f1 and 1m1 exerted by link
0 on link 1 using (14)–(16); we note that (17) has no use
in this case. Thus, the first six equations of the Lagrange
model (L1, . . . , L6) will be replaced by the following six
equations:

[06×1] =
[

1f1
1m1

]
. (19)

1f1 and 1m1 are zero because there is no body an-
tecedent to the chassis. The complete model can be
expressed as a linear relation in the following dynamic
parameters:

L = DS(ω1, ω̇1, V̇ 1, q, q̇, q̈)XS . (20)

5) Base Dynamic Parameters: The base dynamic parame-
ters are the minimum number of parameters that can be used to
compute the dynamic model, and they constitute the identifiable
parameters that can be estimated using an identification method
based on the dynamic model [10]. The base parameters are
obtained from the standard dynamic parameters by grouping
some parameters together and by eliminating those that have
no effect on the dynamic model. Two methods are available for
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the computation of the base parameters, namely 1) a symbolical
method [14] and 2) a numerical method based on the QR
decomposition [15]. The numerical method allows considering
the grouping relations due to the poor excitation properties
of the chosen identification trajectory. After determining the
identifiable parameters, the Lagrange dynamic identification
model (18) becomes

L = D(q, q̇, q̈)X (21)

where X is the vector of nB base parameters, and D is the
n× nB matrix deduced from DS by taking into account only
the columns corresponding to the base parameters. A similar
relation for the mixed Newton–Lagrange model can be deduced
from (20).

IV. IDENTIFICATION METHOD

We suggest making use of the fact that the dynamic model is
linear in the dynamic parameters to identify the base parameters
using linear least square optimization techniques [10], [16].

A. Identification Model Sampling

The dynamic model (21) is sampled along a trajectory. All
the ne samples for the n equations are collected in a linear
system of equations as follows:

Y = W (q, q̇, q̈)X + ρ (22)

where
Y (n× ne) × 1 vector of joint torques obtained by

sampling L and sorted by joint using the following
equation:

Y =


 Y 1

...
Y n




Y j ne × 1 vector of joint forces or torques associated
with joint j;

W (n× ne) × nB observation matrix obtained by
sampling D and sorted by joint using the following
equation:

W =


 W 1

...
W n




W j ne × nB observation matrix associated with joint j;
ρ (n× ne) × 1 vector of modeling errors.

B. Resolution and Interpretation of Results

Equation (22) can be solved using the weighted least squares
(WLS), which is implemented in many software packages with
efficient algorithms (Matlab, Scilab). Because the equations are
sorted by joint, the linear system is composed of n subsystems,
each with ne equations. The weighting procedure is defined

in order to ensure the most significant equations [16], [17].
The weighted matrix P is computed using an estimation of the
standard deviation for each joint subsystem j σρj as follows:

P =


S1

. . .
Sn


 (23)

where
Sj = Ine

/σρj ;
Ine

(ne × ne) identity matrix;
σρj calculated by the following equation:

σ2
ρj =

‖Y j − W jX̂
j‖2

ne − nBj
(24)

nBj number of base parameters appearing in the equations
of joint j;

X̂
j

nBj × 1 vector of estimated parameters using joint j
equations.

The weighted system to be solved is then given by

Y P = W P X + ρP (25)

where Y P = PY , W P = PW , and ρP = Pρ.
Standard deviations on the estimated values σX̂j are com-

puted using classical and simple results from statistics, consid-
ering the matrix W to be a deterministic one and ρ to be a
zero mean additive independent noise, with standard deviation
such that

Cρρ = E(ρT ρ) = σ2
ρIne×n

where E is the expectation operator.
An unbiased estimation of σρ defined as follows is used:

σ2
ρ =

‖Y P − W P X̂‖2

n× ne − nB
. (26)

The covariance matrix of the estimation error and standard
deviations can be calculated by

CX̂X̂ =E
(
(X−X̂)(X−X̂)T

)
=σ2

p

(
W T

P W P

)−1
. (27)

σX̂j = (CX̂X̂(j, j))1/2 is the ith diagonal coefficient of
CX̂X̂ . The relative standard deviation σX̂j% is given by

σX̂j% = 100
σX̂j

|X̂j |
. (28)

Assuming that σX̂j is the realization of a Gaussian random
variable, the 95% confidence interval is 2σX̂j , and the relative
confidence interval is 2σX̂j%. Then, we consider that a parame-
ter with a relative confidence interval lower than 10% is well
identified, keeping in mind that this is only an indicator based
on statistical assumptions. The parameters that are not well
identified may not be excited by the identification trajectory or
may have only a small effect on the dynamic model so that they
can be removed from the model [20]. However, it is to be noted
that this criterion is not a deterministic one, particularly for
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parameters with small values, where they may be well identified
although σX̂j% is more than 10.

C. Filtering

Some joint variables must be estimated by the differentia-
tion or the integration of the measurements. Derivatives are
estimated with digital zero-phase passband filters calculated
as the product of a low-pass Butterworth filter and a central
derivative algorithm (29). The Butterworth filter is implemented
as a Matlab function filtfilt, which is a zero-phase forward and
reverse digital filtering. Integrations are zero-phase-estimated
as the product of a high-pass Butterworth filter and a trapezoidal
algorithm (30) such that

fd(tk) =
f(tk+1) − f(tk−1)

2Te
(29)

fi(tk) = fi(tk−1) +
Te

2
(f(tk) + f(tk−1)) (30)

where
fd derivative;
fi integral;
Te sampling period.

D. Choosing a Trajectory With Sufficient Excitation

The result of the estimation highly depends on the trajectory
chosen for the identification [19], [20]. The excitation criteria
are based on the calculation of a function of the condition
number of the observation matrix W of the linear system
[18]. Trajectories with sufficient excitation are defined using
the simulation software ARHMM [3]. It has been shown that
one kind of trajectory is enough to estimate the main dynamic
parameters of a car, i.e., the “sinusoidal steering” at different
speeds ranging from 90 to 160 km/h.

V. EXPERIMENTAL CAR

A. Available Sensors

Experiments are carried out on a Peugeot 406 car equipped
with the following sensors:

— one SAGEM inertial unit giving the chassis angular ve-
locities and translational accelerations with respect to the
ground (cof: 10 Hz);

— four position sensors giving the clearance of the four
suspension (cof: 20 Hz);

— one Correvit speed sensor giving lateral and longitudinal
velocities of the chassis (cof: 15 Hz);

— four Zimmer laser sensors giving the four steering angles
(cof: 10 Hz);

— four Eagle dynamometric wheels giving the four effort
torques applied to the four wheel centers and the wheel
angular position (cof: 100 Hz);

— four Zimmer laser sensors giving the vertical position
of four points of the chassis with respect to the ground
(cof: 20 Hz).

Fig. 5. Geometric modeling of the left rear branch (branch 3).

B. Computation of the Missing Data

Some joint variables required in the computation of the dy-
namic model cannot be measured by given sensors, particularly
half track width, wheelbase, and kingpin variations. To access
these variables, car manufacturers work with tabulation models.
These are characterized on test benches and return geometric
and elastokinematic deformations of the axle systems as a func-
tion of the suspension clearance and the position of the steering
wheel. Half track width, wheelbase, and kingpin variations can
be obtained in this way. The aerodynamic forces can also be
obtained from tables as a function of the vehicle speed or must
be identified (see Section V-D).

C. Geometric Modeling

The first modeling approach of the car dynamics is to con-
sider the six DOFs between the ground and the chassis and all
the DOFs between the chassis and the wheels. The correspond-
ing system has 38 DOFs. The model is calculated using a mixed
Newton–Lagrange, as presented in Section III-B4. The chassis
dynamics is calculated using the Euler variables, whereas the
branches are modeled using the Lagrange variables. This ap-
proach is more convenient with regard to the sensors available
with our car, particularly with the use of an inertial unit. This
model limits the projections of the measured variables on the
car axes; thus, measurement noises are minimized. Moreover,
there are about 30% less mathematical operations (additions
and multiplications) than with the Lagrange model.

For the left rear branch (Fig. 5), the DOFs are listed as
follows:

— the half track width l3;
— the wheelbase L;
— the suspension clearance z3 (elastic joint);
— the toe angle β3;
— the camber angle γ3;
— the kingpin angle ζ3;
— the angular position of the wheel θ9;
— the vertical tire deflection zt3 (elastic joint).
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TABLE I
GEOMETRIC PARAMETERS OF THE LEFT REAR BRANCH

(BRANCH 3) OF THE 38-DOF MODEL

The geometric parameters of the left rear branch (branch 3) are
presented in Table I. The chassis constitutes the first link, and
its fixed frameR1 is denoted byRc. The fixed frameR8 is used
to define the dynamometer measuring frame.

The vertical tire deflection is represented by an elastic
prismatic joint. The right rear branch (branch 4) is similar to
the left rear branch but with j = 11 to 19. For the front, there
is the same number of DOFs where the toe angle βj is replaced
by the steering angle; thus, j = 20 to 28 for the left front
branch (branch 1) and j = 29 to 37 for the right front branch
(branch 2).

D. Dynamic Identification Model

The dynamic identification model (20) is obtained using
the symbolic software package SYMORO+ [21], in which the
algorithms given in Section III-B are implemented. Knowing
the geometric parameters, this software automatically gives the
identification model that is linear in the dynamic parameters.

Since the contact forces are measured at the center of the
wheel by the dynamometric wheels, the inertial parameters
of the wheels are not identified. Only chassis and unsprung
body inertial parameters represent the inertial parameters to be
identified. All the other bodies are virtual, and their inertial
parameters are equal to 0. The suspension parameters to be
estimated are composed of stiffness and friction parameters and
an offset as defined in (5) and (6). Antiroll bars are added at the
front and rear to introduce a coupling between right and left
suspension clearances. They are modeled by

Fari = kar(qi − qopi) (31)

where

Fari force due to the antiroll bar on suspension i;
kar antiroll bar stiffness (in newtons per meter);
qi suspensions’ clearance of the considered branch (in

meters);
qopi suspensions’ clearance of the opposite branch (in me-

ters).

Thus, two more parameters are needed, namely 1) karr for
the rear bar and 2) karf for the front bar.

The aerodynamic forces and moments that are applied to the
chassis are denoted by

cτa =



Fxa

Cxa

Fya
Cya

Fza
Cza




=




1
2ρairSzV

2
a

1
2ρairLSnV

2
a

− 1
2ρairSyV

2
a − 1

2ρairLSmV
2
a + zC 1

2ρairSxV
2
a

− 1
2ρairSxV

2
a − 1

2ρairLSlV
2
a + zC 1

2ρairSyV
2
a




where
cτa aerodynamic forces and torques given in the

frame fixed to the chassis Rc whose xc, yc,
and zc axes are along the longitudinal, lat-
eral, and vertical axes (Fig. 2) of the chassis,
respectively;

ρair density of the air;
L wheelbase;
zC vertical position of the origin of the frame Rc

with respect to the front axle;
Sx, Sy , Sz drag coefficients of the vehicle in the air

along the longitudinal, transversal, and vertical
directions;

Sl, Sm, Sn drag coefficients of the vehicle in the air around
the longitudinal, transversal, and vertical
directions;

Va norm of the vector V a of aerodynamic velocity
computed as V a = V air − V 1;

V air speed of the air given in Rc, and because it is
not measured, it is supposed to be null;

V 1 speed of the vehicle given in Rc.
These forces are identified via the following model:

cτa =



CxV

2
a ClV

2
a

CyV
2
a CmV

2
a

CzV
2
a CnV

2
a


 (32)

where the Ci parameters are added to the parameters to be
identified.

VI. SIMULATION OF THE CAR IDENTIFICATION

The car model is composed of 38 DOFs and five physical
inertial bodies with ten inertial parameters for each. Further-
more, each of the suspensions needs four parameters, each
of the antiroll bars and aerodynamic forces or torques also
need one parameter. Thus, this model is quite complex and
certainly needs to be simplified in order to be correlated with
the accuracy of the measurements and the available trajectories.
This section presents a study of the robustness of the dynamic
model generated in the previous step with respect to trajectories
and perturbations. The software package ARHMM [3] is used
to generate trajectories without perturbation using a set of
known parameters. This software uses a dynamic algorithm
that represents the maximum phenomena that exist in a real
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car so that it can describe the whole range of uses of the car,
and it is run with a real time core. It takes into account the
driver’s inputs through the transfer line and the steering wheel,
as well as elastokinematic deformations, aerodynamics, and
nonlinearity of the suspensions and antiroll bars. Contact forces
with the ground are given by the Pacejka’s magic formula [6],
[7]. It gives a more precise model of a real car than the 38-
DOF model. The trajectory available is sinusoidal steering at
different speeds. At first, the model with 38 DOFs is used to de-
termine whether all the standard parameters are excited. Then,
the model is modified consequently by deleting or grouping
together some parameters.

A. Aerodynamic Effect

With the sinusoidal steering trajectory, it appears that aerody-
namic contribution is constant. Indeed, it is proportional to the
vehicle speed, which is constant in the tests used. Aerodynamic
forces are therefore estimated from tabulations. Only the coeffi-
cient Cx of the aerodynamic force along the x-axis is identified
because it is the most important component. The value of the
other coefficients are too small to be identified.

B. Robust Practical Model

The following conclusions and simplifications have been
deduced through different simulations using ARMMH and
analyzing experimental data and results.

1) The results are sensitive to measurement cofs: To explain
this sensitivity, a fast Fourier transform is applied to the
measurements to determine the modes of each one. It
appears that
— the data from the inertial unit are perturbed by the

driveline (modes at 3.9–4.3–5.5 Hz);
— camber and steering angle measurements are per-

turbed by the driveline (modes at 3.9–4.3–5.5 Hz);
— only suspension clearances have “rebound of the

wheel” mode information (mode at 12.7 Hz).
To remove driveline perturbation, all the measurements
are filtered with a low-pass filter having a cof of 3.125 Hz
except the suspension clearance, which is not filtered to
preserve the “rebound of the wheel” mode. The 3.125-Hz
value is chosen because it preserves mechanical modes of
the chassis, which are between 0.4 and 3 Hz.

2) Most of the unsprung body inertial parameters are not
excited. Only their masses are to be considered, the
other nine inertial parameters are removed from the
identification.

3) Moreover, the track width, the wheelbase, the steering,
the camber, or the kingpin has negligible influence in
dynamic identification and can be removed from the
model. This will be shown by applying the experimental
tests to the complete model of 38 DOFs and a reduced
model of 20 DOFs.

4) The dynamic equations to be used for the identification
are restricted to the six components of the chassis and the
four related to suspension clearances.

TABLE II
RESULTS WITH THE 38-DOF MODEL

VII. PRACTICAL IDENTIFICATION RESULTS

The identification method has been applied to an experimen-
tal Peugeot 406 car. Only sinusoidal steering trajectories are
available. The 38-DOF and the reduced 20-DOF model are
tested. The a priori parameters of the car, which were provided
by Peugeot-Citroën are shown in Table II. They do not take into
account the driver nor the equipment so they give only an idea
about their values. It is to be noted that no a priori values are
provided by the manufacturer for the Coulomb parameters.

A. Identification With a 38-DOF Model

Results of the identification on the model having 38 DOFs
are given in Table II. As pointed out in Section IV-B, the
identification relative standard deviation σX̂j% is used to give
the following interpretation to the results: If σX̂j% < 10%, the
parameter is considered as well identified. Nevertheless, this
interpretation is not an absolute criterion; it could be even
wrong if the parameter value is low. Applied to the obtained
results, the following parameters are considered as being well
identified, and the identification values are close to the a priori
values: Mc, MXc, XXc, Y Yc, ZZc, XZc, M1, M2, M3,
M4, karr, karf , k1, h1, off1, k2, fs2, h2, off2, k3, h3, off3,
k4, h4, off4, and Cx. The following parameters appear not
to be well identified: MYc, MZc, XYc, Y Zc, fs1, fs3, and
fs4. However, because these parameters have low values, it is
difficult to conclude. For instance, compared to the a priori
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Fig. 6. Cross validation for the roll torque (in newton meters).

Fig. 7. Cross validation for the pitch torque (in newton meters).

values, MYc and MZc are good (taking into account that a
variation of 10 kg · m on the value of a first moment component
of the chassis is equivalent to a variation of 7 mm on the
gravity center position since the chassis mass is about 1500 kg).
Parameters XYc and Y Zc do not correspond to the a priori
values, but because of their low value with respect to the
diagonal elements XXc, Y Yc, and ZZc, they are physically
hard to excite. Finally, concerning the parameters fs1, fs3, and
fs4, they have no a priori values, but their values are negligible
with respect to the offset forces of the suspension, and thus,
these parameters can be eliminated.

To validate the obtained values, the computed joint torques
of the main joints, which are denoted by Y j , are compared
with the reconstructed joint torques W jX , where X is the
vector of estimated parameters. Figs. 6–12 show cross valida-
tion results (the validation trajectory is a different sinusoidal
steering trajectory than the one used for identification). Each
figure shows the computed joint torque Y j , which is indicated
by solid lines, and the corresponding error W jX − Y j , which
is indicated by broken lines. For suspension, only one branch is

Fig. 8. Cross validation for the yaw torque (in newton meters).

Fig. 9. Cross validation for the longitudinal force (in newtons).

Fig. 10. Cross validation for the lateral force (in newtons).

given; the other branch results are similar. These curves show
that the error signals are small with respect to the total force or
moment signals.
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Fig. 11. Cross validation for the vertical force (in newtons).

Fig. 12. Cross validation for the front left suspension force (in newtons).

Fig. 13. 20-DOF model.

B. Identification With a 20-DOF Model

The 38-DOF model used for the previous identification is
quite complex. Indeed, it takes into account half track width,
wheelbase, toe, camber, and kingpin angle variations. The same
identification procedure is applied using the reduced 20-DOF

TABLE III
GEOMETRIC PARAMETERS OF THE REDUCED 20-DOF MODEL

TABLE IV
RESULTS WITH THE 20-DOF MODEL

model shown in Fig. 13, whose geometric parameters are given
in Table III.

Results of the identification on the 20-DOF model are given
in Table IV. They are very similar to those given in Table II,
which were obtained using the 38-DOF model. Thus, we
conclude that the 20-DOF model is sufficient for dynamic
parameter identification.
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VIII. CONCLUSION

This paper presents a new method to estimate the dynamic
parameters of a car. The identification method is based on the
use of robotics formalism in modeling tree-structured multi-
body systems. The model presented takes into account the most
important DOFs of the chassis with respect to the ground and
the wheels (38 DOFs). The use of the Euler variables for the
chassis and the Lagrange variables for the other elements of
the car is more convenient with respect to the car sensors and
reduces model complexity.

With the use of the vehicle dynamic software ARHMM and
real tests, a reduced model with 20 DOFs has been deduced
for the identification of the chassis, the unsprung bodies, and
the suspension dynamic parameters. The sensors required are
composed of an inertial unit, dynamometric wheels, and sus-
pension clearance measurements. The aerodynamic coefficient
force along the longitudinal axis has also been identified.

Future work will be focused on the model extension to the
interaction between the wheels and the ground. This model
extension would enable us to extend the identification to the
contact forces model with the goal of avoiding the use of
dynamometric wheels.
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