
UC Berkeley
UC Berkeley Previously Published Works

Title
Robust lane detection and tracking in challenging scenarios

Permalink
https://escholarship.org/uc/item/50n0c8cg

Journal
IEEE Transactions on Intelligent Transportation Systems, 9(1)

ISSN
1524-9050

Author
Kim, ZuWhan

Publication Date
2008-03-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/50n0c8cg
https://escholarship.org
http://www.cdlib.org/

16 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 1, MARCH 2008

Robust Lane Detection and Tracking
in Challenging Scenarios

ZuWhan Kim, Member, IEEE

Abstract—A lane-detection system is an important component
of many intelligent transportation systems. We present a robust
lane-detection-and-tracking algorithm to deal with challenging
scenarios such as a lane curvature, worn lane markings, lane
changes, and emerging, ending, merging, and splitting lanes. We
first present a comparative study to find a good real-time lane-
marking classifier. Once detection is done, the lane markings are
grouped into lane-boundary hypotheses. We group left and right
lane boundaries separately to effectively handle merging and split-
ting lanes. A fast and robust algorithm, based on random-sample
consensus and particle filtering, is proposed to generate a large
number of hypotheses in real time. The generated hypotheses
are evaluated and grouped based on a probabilistic framework.
The suggested framework effectively combines a likelihood-based
object-recognition algorithm with a Markov-style process (track-
ing) and can also be applied to general-part-based object-tracking
problems. An experimental result on local streets and highways
shows that the suggested algorithm is very reliable.

Index Terms—Collision warning, computer vison, lane detec-
tion, part-based object tracking.

I. INTRODUCTION

D ETECTING and localizing lanes from a road image is an
important component of many intelligent-transportation-

system applications. There has been active research on lane
detection [1]–[9], and a wide variety of algorithms of various
representations (including fixed-width line pairs, spline rib-
bon, and deformable-template model), detection and tracking
techniques (from Hough transform to probabilistic fitting and
Kalman filtering), and modalities (stereo or monocular) have
been proposed.

Due to a real-time constraint and, then, slow processor speed,
the lane markings have been detected based only on simple
gradient changes, and much of the older work has presented
results on straight roads and/or highways with clear lane mark-
ings or with an absence of obstacles on the road.

Many commercial lane-detection systems are available and
show good performance in many challenging road and illumi-
nation conditions. However, they do not provide lane-curvature
information but just lane positions to deliver robust results.
Although lane positions are sufficient for some applications,

Manuscript received December 27, 2006; revised April 19, 2007, July 14,
2007, and July 31, 2007. The Associate Editor for this paper was U. Nunes.

The author is with California Partners for Advanced Transit and Highways,
University of California, Berkeley, Richmond, CA 94804-4698 USA (e-mail:
zuwhan@berkeley.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2007.908582

Fig. 1. False-alarm scenario of a collision-warning system. Without knowing
the lane curvature, the system will generate a false alarm for the postbox.

such as lane-departure warning, there are other applications
which require lane-curvature information.

For example, a collision-warning system can generate false
alarms when the lane curvature is not known. An example sce-
nario is shown in Fig. 1. Without knowing the road curvature,
the system cannot distinguish objects on the sidewalk (e.g., the
postbox) from the objects on the road, and it may generate a
false alarm. As an alternative to a vision-based approach, one
may use a global-positioning system (GPS) with a geographic-
information system (GIS). However, the GPS has a limitation
on the spatial and temporal resolution, and detailed information
is often missing or not updated frequently in GIS. For example,
it is important to detect the road curvature at an off-ramp
because it can generate a false-collision warning, but most
GPS-based systems suffer from even discriminating whether
the vehicle entered an off-ramp or not.

Recent efforts deal with curved roads [5], [7]–[9], and robust
detection results on challenging images, such as distracting
shadows or a leading vehicle, have been reported. Some of them
work in real time, and some do not.

We present a real-time lane-detection-and-tracking system
which is distinguished from the previous ones in the follow-
ing ways.

1) It uses more sophisticated lane-marking-detection algo-
rithm (than gradient- or intensity-bump-based detection)
to deal with challenging situations, such as worn lane
markings and distracting objects/markings, for example,
at an intersection and on a road surface.

2) It detects the left- and right-lane boundaries separately,
whereas most of the previous work uses a fixed-width
lane model. As a result, it can handle challenging sce-
narios such as merging or splitting lanes and on- and off-
ramps effectively.

3) It combines lane detection and tracking into a single
probabilistic framework that can effectively deal with

1524-9050/$25.00 © 2008 IEEE

KIM: ROBUST LANE DETECTION AND TRACKING IN CHALLENGING SCENARIOS 17

Fig. 2. Flow diagram of the algorithm.

Fig. 3. Example image and a rectified image.

lane changes, emerging, ending, merging, or splitting
lanes. Much previous work has focused on lane tracking
and usually uses a time-consuming detection algorithm
to initialize the tracking. We introduce a fast and robust
lane-detection algorithm that can be applied in every
frame in real-time.

Our algorithm follows the “hypothesize and verify” par-
adigm. In the “hypothesize” step, lower level features are
grouped into many higher level feature hypotheses, and they
are filtered in the “verify” step to reduce the complexity of the
higher level grouping. Fig. 2 shows the flow diagram. First, the
image is rectified, assuming that the ground is flat.1 An example
image and the rectified image are shown in Fig. 3. Possible lane-
marking pixels are detected in the rectified image. Then, the
detected lane-marking pixels are grouped into lane-boundary
hypotheses. A lane-boundary hypothesis is represented by a
constrained cubic-spline curve. A combined approach of a
particle-filtering technique (for tracking) and a RANdom SAm-
ple Consensus (RANSAC) algorithm (for detection) is intro-
duced to robustly find lane-boundary hypotheses in real-time.
Finally, a probabilistic-grouping algorithm is applied to group
lane-boundary hypotheses into left- and right-lane boundaries.
Note that we generate left- and right-lane-boundary hypotheses
separately (unlike much of the previous work which has a lane
model of uniform width) to deal with various scenarios such as
on/off-ramps or an emerging lane.

In Section II, a comparative study of both classification
performance and computation time on various lane-marking-

1However, a nonflat case is also addressed at a later stage (lane-boundary
grouping).

Fig. 4. Example road images.

classification methods is presented. In Section III, we present
our approach to hypothesize lane boundaries. The probabilistic-
grouping algorithm is proposed in Section IV. Experimental
results are presented in Section V, and we present the summary
and future work in Section VI.

II. LANE-MARKING DETECTION

Sample road images are shown in Fig. 4. Many of the pre-
vious algorithms simply look for “horizontal intensity bumps”
to detect lane markings, which shows reasonably good perfor-
mance in many cases, but it cannot distinguish false intensity
bumps caused by leading vehicles and road markings/textures
from weak lane markings. For example, worn yellow markings
often have similar grayscale intensity to the road pixels. In
addition, we sometimes need to deal with a poor image quality,
for example, when we need to postprocess an MPEG data.

To deal with such problems, we apply machine learning. We
applied various classifiers to the lane-marking-detection task
and present a comparative analysis. Since the size of the lane
marking changes dramatically with respect to its distance from
the car, we need to normalize them to apply a standard classifier.
Therefore, we first rectify the original image, as shown in Fig. 3.
When we assume that the ground is flat (for this stage only), we
can apply a plane homography to find an image rectification.
A point (x, y) on the rectified image corresponds to the point
(u, v) in the original image, where

 λx

λy
λ

 = H

 u

v
1

and H is a homography matrix. A homography matrix can
easily be obtained by applying a simple external camera cal-
ibration with four reference points. Details on the plane ho-
mography can be found in many computer-vision textbooks, for
example [10].

When a plane homography is given, image rectification is
done in the following manner: For each pixel (x, y) of the
rectified image, its correspondence (u, v) on the original image
is obtained. Since u and v are not integer numbers in most cases,
the pixel value of the rectified image is calculated by linearly

18 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 1, MARCH 2008

Fig. 5. Example image patches of lane markings and nonmarkings.

interpolating the intensity values of the four neighboring pixels
(by flooring and ceiling the u and v) in the original image.

Once we have a rectified image, a lane-marking classifier
is applied on a small image patch around each and every
pixel. A typical width of the lane marking on the rectified
images are about three pixels. Therefore, raw pixel values of
a 9 × 3 window were used as inputs (total 27 features for
a grayscale image and 81 RGB values for a color image).
To find a suitable classification algorithm, we tested various
classifiers.

Applying a stereo algorithm [3], [4] can further improve
the lane-marking-detection performance, but we focus on a
monocular image in this paper.

For learning, we have gathered image patches of 421 lane
markings and 11 124 nonmarkings. Fig. 5 shows example
image patches. We observe a variety in colors, textures, and
width. We compared the classification performances and the
computation requirements of various classifiers on the data set.
The following classifiers were considered.

1) Intensity-Bump Detection: Intensity-bump detection is
the most popular method in the lane-detection litera-
ture. It is the simplest and fastest detection method,
and it can also be applied to nonrectified images. We
use an implementation by Ieng et al. [6]. We applied
various values for the gradient threshold (s0) to control
the tradeoffs between the detection rates and the false-
alarm rates.

2) Artificial Neural Networks (ANNs): We tested two-
layer neural networks with various numbers of hid-
den nodes. Training an ANN (a back-propagation al-
gorithm was applied in our experiment) requires sig-
nificant computation, but the actual classification time
is relatively small. When there are n features (inputs)
and m hidden nodes, it requires nm multiplications,
nm + m additions, and m sigmoid-function calculations
to classify a hypothesis (n = 27 or 81 and m = 7 in our
examples).

3) Naive Bayesian Classifiers (NBC): NBCs show good
classification performances, in spite of their unrealistic
conditional independence assumption. We compare the
discrete and the unimodal Gaussian representations of
the conditional probability. For both representations, the
learning time is linear to the number of the examples
(fastest). A discrete NBC requires very little computa-
tion for classification. The Gaussian representation re-
quires computation of the exponential function n times.
However, we can avoid calling the exponential func-
tion by using a logarithm of the probability instead of
the actual one. In fact, for both representations, it is

Fig. 6. Classification performance of the classifiers.

necessary to use a logarithm to minimize the numeri-
cal errors, particularly when the number of features is
large. For the discrete NBC, we can precalculate the
logarithms of all the probability table entries to save
computation.

4) Support Vector Machine (SVM): During the last
decade, SVMs have rapidly gained popularity. They pro-
vide a good framework for incorporating kernel methods.
We tested the second-order polynomial kernel, which
requires the smallest computation. Learning requires sig-
nificant computation, but it is bounded in polynomial
time. The classification involves a large number of mul-
tiplications: O(mn), where m is the number of support
vectors. The number of support vectors is at least n + 1,
and it can be much greater when the data is not clearly
separable (in the transformed feature space) or when a
small tuning parameter is given. For training, we used the
implementation by Collobert et al. [11] (SVMTorch) with
the tuning parameter of 100.

Details on most of the above classifiers can be found in the
machine-learning literature, for example, in [12].

Fig. 6 shows the classification performances of the presented
classifiers. We followed the evaluation scheme presented in
[13]. We repeated stratified fivefold cross-validation ten times
and showed the receiver operating-characteristic (ROC) curves
with the confidence intervals. For all the classifiers, we obtained
the ROC curves by changing only the threshold values (no
relearning with different parameters).

For all the classifiers, we applied various parameters and
chose the best ones. For ANN, we compared the ones with
seven, 10, and 15 hidden nodes, but we present the result of the
one with seven hidden nodes because it is the fastest, whereas
the performances among them are not significantly different.
For the discrete naive Bayesian network, we used seven-level
discretization. The SVM was learned with the tuning parameter
of 100.0.

We observe that all the classifiers show superior performance
than the intensity-bump detector. In fact, intensity-bump de-
tectors introduce too many false alarms, given an acceptable
detection rate. Therefore, applying any of the above classifiers
will deliver much better lane-detection performance. The SVM

KIM: ROBUST LANE DETECTION AND TRACKING IN CHALLENGING SCENARIOS 19

TABLE I
COMPUTATION TIME OF THE CLASSIFIERS

Fig. 7. Classification performance with neural networks when directly using
color pixels (81 features), gray-level pixels with 5 : 4 : 1 weights, and gray-
level pixels with equal weights. Using a gray image with 5 : 4 : 1 weights gives
competitive performance to that of using a color image.

shows far better performance than any other classifiers, and
then, the ANN follows.

We also compared the classification computation for the
classifiers. We have applied the classifiers on images of a
70 × 250 size and summarized the computing time in Table I.
The algorithms ran on an Intel Core 1.83-GHz processor. For
fair comparison, all the classification algorithms were imple-
mented in C++ inline functions and optimized to bring maxi-
mum performance.

Unfortunately, the SVM was not fast enough for real-time
classification, and we chose to use the ANN. To further reduce
the computation time, we applied a cascade classification: First,
a simple gradient detector and an intensity-bump detector with
loose (low) threshold values are successively applied to quickly
filter out nonlane markings, and then, the ANN classifier is
applied to the remaining samples (much smaller in number).
As shown in Table I, it significantly reduces the classifica-
tion time.

We used gray-level lane-marking images for the above
classification result and the computation-time analysis. The
gray-level images were generated by weighted-summing RGB
values (0.5 for red, 0.4 for green, and 0.1 for blue) to
better detect worn yellow lane markings. Applying such
weights outperformed the equal-weight conversion, as shown
in Fig. 7. We have tested various different weight combi-
nations, and the proposed weights showed the best perfor-
mance. One may apply the classifier directly to the color
pixels (total 81 features), but it introduces too much com-
putation in image-rectification classification, whereas it does
not improve the performance significantly, as also shown in
the Fig. 7.

Fig. 8. (a) Detected lane-marking pixels. (b) Smoothed lane-marking score.
(c) Line-segment grouping. (d) Selected hypotheses from the particle-
filtering/RANSAC algorithm.

III. LANE-BOUNDARY-HYPOTHESES GENERATION WITH

PARTICLE FILTERING AND RANSAC

Once possible lane-marking pixels are detected [an example
is shown in Fig. 8(a)], they are grouped into uniform cubic-
spline curves of two to four control points. Splines are smooth
piecewise polynomial functions, and they are widely used in
representing curves. Various spline representations have been
proposed, and we use a cubic spline among them. In a cubic-
spline representation, a point p on a curve between the ith and
(i + 1)th control point is represented as

p = (xi(t), yi(t))

where

xi(t) = ai + bit + cit
2 + dit

3

yi(t) = ei + fit + git
2 + hit

3

where the parameters ai, . . . , hi are uniquely determined by the
control points so that the curve is smooth. (xi(0), yi(0)) is the
ith control point, (xi(1), yi(1)) is the (i + 1)th control point,
and 0 ≤ t ≤ 1.

A cubic-spline curve enables fast fitting, because the control
points are actually on the curve. We use this property to apply
a RANSAC algorithm [14]. A RANSAC algorithm is a robust

20 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 1, MARCH 2008

fitting algorithm that has successfully been applied to various
computer-vision problems. In [7], Wang et al. used a B-spline
curve to represent a curved road. In a B-spline representation,
control points reside outside of the curve, and its fitting proce-
dure requires a significant number of iterations. On the other
hand, the uniform cubic-spline fitting is much faster, but it
may result in irregular curves when the spacing between the
control points are not even. However, such irregular curves can
be filtered out by applying a RANSAC technique while still
maintaining the computation manageable. We also impose ad-
ditional constraints to the cubic spline to prevent unreasonable
hypotheses from being formed: yi(t) should be monotonic for
all i, and the maximum curvature should be smaller than 0.05.

Our RANSAC fitting procedure is as follows. First, lane-
marking points are grouped into line segments. Since the lane-
marking detection result is noisy [Fig. 8(a)], we apply Gaussian
smoothing [Fig. 8(b)] followed by nonmaxima suppression to
remove noise. Then, we follow a line-grouping approach pro-
posed in [15] to generate line segments, as shown in Fig. 8(c).

The next step is to generate hypotheses. Each hypothesis is
generated from a random set of one, two, or three line segments.
First, for each hypothesis, it is randomly determined whether
to use two, three, or four control points. A spline curve with
two control points represents a line, three for an approximate
arc, and four for a more complex curve. Increasing numbers of
control points increases the representational power, but at the
same time, it decreases the robustness of the fitting. The use
of a RANSAC algorithm makes it easier to handle this tradeoff
because many hypotheses of various numbers of control points
are generated and then evaluated by a single scoring function
(presented in Section IV-B), which can handle this tradeoff.

A straight line of two control points is generated from a
random set of one or two line segments. Whereas a single-line
segment is sufficient to make a straight-line hypothesis, we also
use a pair of line segment for robust fitting. Note that we still
need hypotheses from single line segments, because sometimes,
only one line segment is detected for a lane boundary, for
example, for solid lane markings.

An approximate arc of three control points is generated from
a random set of two line segments, and a more complicated
hypothesis of four control points is generated from a random
set of three line segments.

For robust hypothesis generation, some constraints were
imposed. For example, the first (nearest) line segment should
be close enough, for example, within 15 m, to the vehicle. In
addition, the two nearby line segments should be on a common
arc of a reasonable curvature within a small error bound.

The first (nearest) control point is forced to be on the bottom
of the rectified image. Its position is computed by extrapolating
the fitted arc of the first two line segments. The last control
point is set to the end point of the farthest line segment. It
is important to force the control points in the middle to be
evenly spaced, because uneven spacing of control points makes
the uniform spline fitting unstable. Therefore, the rest of the
control points are chosen from the end/center points of the line
segments, where the spacings are as even as possible: For an
approximate arc with three control points, (x1, y1), (x2, y2),
and (x3, y3), the second control point (x2, y2) is chosen to max-

imize min(d2, d1)/max(d2, d1), where di = yi+1 − yi. For a
complex curve with four control points (x1, y1), . . . , (x4, y4),
the second and the third control points are chosen to maximize
min(d1/d2, d2/d3)/max(d1/d2, d2/d3).

In our implementation, at most 100 random hypotheses are
generated for each frame. Once hypotheses are generated and
validated, an overlap analysis is performed. The hypotheses
are evaluated based on their lane-marking support, and a curve
penalty scores. Details on the above scores are presented in
Section IV-B. As a result, a small number of nonoverlap-
ping (but may partially be overlapping) hypotheses are finally
selected.

Another set of hypotheses are generated by applying a track-
ing algorithm. Our tracking algorithm is based on a particle-
filtering technique [16]. Other tracking techniques, such as
Kalman filtering or active contours (SNAKE), can also be used
within this framework. However, we chose a particle-filtering
algorithm over the Kalman filter to prevent the result from being
biased too much on the predicted vehicle motion but to give
more weight to the image evidence. Due to vehicle’s vibration,
including pitch change, the motion of the lane boundaries in
world (vehicle) coordinates is not smooth enough to be properly
modeled by a Kalman filter. Active contours (such as the one
used in [7]) may provide a good tracking result, but it requires
too much computation as compared to the proposed particle-
filtering algorithm.

For the particle filtering, the vehicle’s motion (rotation and
translation) was modeled by Gaussian distributions for simplic-
ity, but the scoring function is carefully designed to prevent
the result from being dictated by this model. Our particle-
filtering algorithm is as follows: 1) Given a randomly selected
motion, a pair of lane-boundary hypotheses is generated by
moving the previously detected lane boundary’s control points
according to the motion; 2) the position of the last control point
is adjusted to a lane-marking pixel near the extrapolated curve;
3) a number of hypotheses are generated (50 left and right
boundaries, in our implementation) and scored based on the
supporting lane-marking pixels; and 4) finally, the control-point
position of the final boundary hypothesis is set as the weighted
sum over all the hypothesized positions, where the weights are
based on the lane-marking support scores of the corresponding
curve hypotheses. It is very important that the weights be able
to sharply distinguish good hypotheses from relatively bad
hypotheses to prevent the result from being dictated by the
initial motion model. Therefore, the weights were exaggerated
by applying a sharp sigmoid function with the mean being its
curve score in the previous frame.

Due to the vehicle’s forward motion, all the control points
move closer to the vehicle. Therefore, we need to adjust the
position of the first control point so that it does not disappear
from the image. We enforce that the first control point’s position
will always be on the bottom of the image. The adjusted
position is calculated by interpolating the curve. The second
control point is also examined to see if its position is too low,
because if it keeps going down, it will eventually collide with
the first control point. In addition, the uneven spacing of the
control points will make the uniform spline fitting unstable.
Therefore, when the position of the second control point is too

KIM: ROBUST LANE DETECTION AND TRACKING IN CHALLENGING SCENARIOS 21

low, it is removed, and a new control point is inserted before the
last control point.

The selected lane-boundary hypotheses from the RANSAC
algorithm and the particle-filtering process are shown in
Fig. 8(d). The particles are also shown as clouds of yellow/
green dots near the control points, where the color of a dot rep-
resents the weight (the yellower, the higher). In our implemen-
tation, up to five hypotheses per lane boundary (left/right) are
selected, including the ones from the particle-filtering process.

IV. PROBABILISTIC GROUPING OF LANE BOUNDARIES

Our next goal is to choose the best pair from the selected
hypotheses shown in Fig. 8(d). We apply probabilistic rea-
soning for decision making. We use three types of evidence
features: lane-marking support of the boundary hypotheses,
compatibility of the two boundary hypotheses, and the temporal
coherence. In fact, this is a typical object-tracking problem.
Whereas most of the previous work tracked an object as a
whole, our problem requires part-based tracking. In this section,
we introduce a new formulation for object tracking, which fits
particularly well with the “hypothesize and verify” paradigm of
object detection.

A. Probabilistic Grouping for Part-Based Tracking

We use capital letters, such as X , to denote random variables
and lowercase letters, such as x, to denote certain assignments
taken by those variables. We also consider missing parts, and
the statement P (X = φ) is used as a shorthand for P (X =
missing). A set of multiple variables or assignments are denoted
by boldface letters, such as X and x. For example, in the lane-
tracking application, X = {L,R}, where L is for the left and
R is for the right lane-boundary hypotheses.

Typical temporal reasoning models, such as dynamic
Bayesian networks [17], use a posterior probability to select the
best hypothesis from predefined candidates

arg max
xi

P (X = xi|e) (1)

where X is the target random variable, xi represents a specific
candidate, and e is observed evidence (such as lane-marking
scores or how well the tracking result fits to the motion
model—see Section IV-B for more details). Note that

∑
xi

P (X = xi|e) = 1. (2)

However, many of the object-recognition approaches use the
maximum-likelihood estimate [18], [19]. Their goal is to find

arg max
Xi

P (Xi = true|e) (3)

where Xi is a random variable for a specific hypothesis. In this
case, the summation of the posterior probabilities (2) does not
have any meaning, but

P (Xi = true|e) + P (Xi = false|e) = 1. (4)

There are various reasons to use the maximum-likelihood es-
timates. First of all, many object-recognition algorithms use the
“hypothesize and verify” paradigm, and the goal is to choose
the best one from a large (and not predetermined) number of
overlapping hypotheses. In fact, it makes more sense to use the
likelihood estimates because the generated hypotheses are not
really disjoint. Many of them are overlapping or share common
parts, and selecting one does not exactly mean rejecting another.
In addition, it is much easier to model a binary-classification
problem than a multiclass one particularly for learning.

We introduce a combination of the two approaches. Our ap-
proach uses the likelihood estimates, but its temporal reasoning
is based on dynamic Bayesian network’s formulation. For each
hypothesis, Xi, our goal is to estimate P (xi|e). Xi consists
of n parts X1

i , . . . , Xn
i . We use likelihood estimates here, and

xj
i stands for either Xj

i = true or Xj
i = false. In addition, we

consider a part being misdetected or missing, and we use the
notation xj

i to also denote Xj
i = φ.2 For example, we estimate

P (L2 = true, R1 = true|e), as well as P (L2 = true, R = φ|e),
for lane tracking.

When we assume that the evidence variable e is a set of
three types of independent evidence variables, e = (ec, et, ep),
where ec is a set of evidence collected in the current frame,
ep is a set of evidence collected in the past, and et is a set
of transitional evidence (such as temporal correlation). Then,
we want to know P (xi|ec, et, ep) for each and every possible
combinations of the part hypotheses. Applying Bayes’ rule

P (xi|ec, et, ep) = αP (ec|xi) P (xi|et, ep) (5)

where α = 1/P (ec) is a normalizing constant.
Estimating P (ec|xi), given an image frame, is well-studied

in the object-recognition field. The challenge is to estimate
P (xi|et, ep). To reduce complexity, we apply the Markov
assumption that the history is conditionally independent given
a previous state

P (xi|et, ep) =
∑
hk

P (xi|H = hk, et) P (H = hk|ep) (6)

where H is a random variable for the previous object, and hk

represents individual hypotheses or missing parts:
∑

hk
P (H =

hk) = 1.
Note that we not only use the previously detected object

but also use many of the previously rejected hypotheses. There
are two reasons for this. First, there are cases in which some
hypotheses are generated, but none of them are strong enough
to be accepted. It could be a false alarm, (noise) or an object
of a relatively weak evidence support. We want to choose an
object, which might have relatively weaker image support (et)
but is consistently observed over time, rather than a false alarm,
which might have stronger et at one frame but came out of
nowhere (weak temporal support). Using the information on
the rejected hypotheses can deal with this problem. Second,
when an object is in a transitional stage (for example, a lane

2Note that it is still a binary, not ternary, classification problem in its nature.
The expression Xj

i = φ is used for a notational convenience, but it does not
mean that its value is φ.

22 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 1, MARCH 2008

boundary is split into two lines at the off-ramp), two or more
strong hypotheses might be competing. The original hypotheses
will eventually get weaker and weaker image support but will
still have strong temporal support. The emerging one will
get stronger image support but no temporal support unless
the rejected hypotheses of previous frames are taken into an
account.

The problem we face is that what we estimate from the
previous frame are likelihood estimates of the hypotheses, not
P (H = hk|ep), except when hk = φ. To deal with this, we es-
timate P (H = hk|ep) from the previous likelihood estimates.
Some members of hk may represent missing parts, and we
separate missing parts from the detected parts H = (D,M),
where D represents the detected parts, and M represents the
missing parts. We use the following approximation:

P (H=hk|ep)= P (D=dk,M=φ|ep)

≈P (D �=φ,M=φ|ep)
P (Dk = true|ep)∑
i P (Di = true|ep)

(7)

where Di is all the selected hypotheses in the previous frame
(cf. Section III). P (D �= φ,M = φ|ep) can be obtained from
the previous likelihood estimates. For example

P (L �= φ,R = φ|e) = P (R = φ|e) − P (L = φ,R = φ|e)
(8)

where P (R = φ|e) = P (Lk = true, R = φ|e) + P (Lk = false,
R = φ|e) for any Lk.

For P (xi|H = hk, et), we assume that the individual parts’
tracking histories are independent from each other

P (xi|H = hk, et) =
∏
j

P
(
xj

i |Hj = hj
k, et

)
. (9)

When hj
k �= φ

P
(
xj

i |Hj = hj
k, et

)

= P
(
xj

I |H
j
k = true, et

)

= βP
(
et|xj

i ,H
j
k = true

)
P

(
xj

i |H
j
k = true

)
(10)

where β is a normalizing constant, P (et|xj
i , h

j
k) can be learned

by examples, and P (xj
i |H

j
k = true) is assumed to be a constant

(for all i). When hj
k = φ, P (xj

i |H
j
k = φ, et) is assumed to be a

constant for all i.
Since xj

i can also be missing, we have four constants for
each part, which works as system parameters: P (xj |Hj �= φ),
P (Xj = φ|Hj �= φ), P (xj |Hj = φ), and P (Xj = φ|Hj = φ).
Since P (xj |Xj = φ) = 0, P (xj |Hj �= φ) = P (xj |Xj �= φ)
P (Xj �= φ|Hj �= φ) and P (xj |Hj = φ) = P (xj |Xj �= φ)
P (Xj �= φ|Hj = φ). Therefore, we only have three inde-
pendent parameters.

1) P (xj |Xj �= φ): A prior probability of a part hypothesis
given that the part is detected (or exists). It roughly

determines the overall detection rate. In our lane-tracking
system, it was set to 0.999 for all parts.

2) P (Xj �= φ|Hj = φ): The probability of an emerging
part. The larger the parameter is, the more sponta-
neously the system reacts to emerging hypotheses and
noises. However, when the detection performance is good
enough, it is good to give a reasonably large weight to
this because redundant detection compensates tracking
failures. In our lane-tracking system, it was set to 0.1 for
all parts.

3) P (Xj = φ|Hj �= φ): The probability of a disappearing
part. The smaller the parameter is, the more the system
depends on the tracking. However, making it zero can
cause a false detection or localization error when the
part is disappearing. In our lane-tracking system, a very
low number (1e−8) was assigned for all parts, because
tracking is much more robust than detection in most
cases.

B. Application to Lane-Boundary Grouping

In the lane-boundary-grouping case, X = {L,R}. To get
P (ec|l, r), we separate the evidence variable ec into the ones
that are independent to each other (el for the left hypotheses
and er for the right ones) and the dependent ones (elr). Then,
P (ec|l, r) = P (el|l)P (er|r)P (elr|l, r).

For el and er, we use lane-marking support scores and curve
penalties. The lane-marking support score is obtained from the
smoothed lane-marking-score image [Fig. 8(b)]

LaneMarkingSupport =
∑

p

I(p)

where p is a pixel on the lane-boundary hypothesis, and I(p)
is the smoothed lane-marking score (the intensity of the pixel).
In addition to the lane-marking-support score, a curve-penalty
score is used to prevent overfitting. A penalty is imposed when
the direction of the curve is changed without lane-marking
support

CurvePenalty =
∑
p1,p2

∣∣∣∣[y(p2) − y(p1)]
[
dx

dy
(p2) −

dx

dy
(p1)

]∣∣∣∣
for all points pair p1 and p2 where there is no lane-marking
support in between them.

When P (el|l) or P (er|r) is estimated from the lane-marking
support and curve-penalty scores, we can also calculate the
posterior probability of a lane-boundary hypothesis given these
scores P (l|el) or P (r|er) by applying Bayes’ rule. These
posterior probabilities are used in the hypotheses-generation
stage for hypotheses selection (Section III).

For elr, we examine the average lane width, the change of
the lane width, and a lane-incompatibility penalty. Note that
the lane width can slightly be increasing or decreasing (within
an image) due to the pitch movement of the vehicle, presence
of up/down-hills and/or changing road width. We assume that
the lane width can linearly be increasing or decreasing at
a small ratio. Given a lane-boundary pair, the lane width is
sampled at various distance and fit into a linear equation to

KIM: ROBUST LANE DETECTION AND TRACKING IN CHALLENGING SCENARIOS 23

Fig. 9. Analyzing grouping parameters. For the lane-marking-support score,
gamma distributions fit well with both positive and negative examples. When
fitting parametric distributions, we need to also examine the likelihood (black
curves) to see if it is reasonable. For example, it is supposed to be monotonically
increasing for this variable.

obtain the average lane width and the change of the lane width.
The lane-incompatibility penalty is the maximum residual
distance.

For P (et|l, lprev) and P (et|r, rprev), we examine the angle
change, the lateral movement, the shape difference (obtained in
a similar manner to the lane-incompatibility penalty), and the
difference in length (to impose a penalty for a short hypothesis).

There is no hidden variable. Therefore, all the probabil-
ity distributions [including the background models, such as
P (el|Li = false)] can directly be learned from positive and
negative examples. It is very tedious to manually give a
large number of positive and negative examples. Therefore, a
semisupervised-learning approach was applied to estimate the
parameters. The procedures are as follows.

1) The probability-distribution parameters are given man-
ually to generate a reasonable result. This is not very
difficult because all the probability distributions are very
intuitive.

2) Automatic-detection results are used as a ground truth
to estimate the parameter. It is not easy to collect the
negative hypotheses because many of the rejected hy-
potheses are not really negative hypotheses but just ones
with lower likelihood. To deal with this problem, we can
first apply a loose threshold at the hypotheses-selection
stage that “bad” hypotheses can also be generated. Then,
the hypothesis of the lowest likelihood is chosen as
a negative example. The negative hypothesis should
have a significantly lower likelihood than that of the
misdetection.

3) The lane-detection algorithm is once again applied with
the new parameters. Go to the step 2), if necessary.

We applied various parametric distributions on the col-
lected examples, such as Gaussian, half-Gaussian, gamma, and
discrete distributions, by examining the positive- and negative-
learning data collected in step 2). An example for the lane-
marking-support score is shown in Fig. 9. Gamma distributions
fit well to both positive and negative examples. We also need
to carefully examine that the likelihood is reasonable. For
example, using a pair of Gaussian distributions with different

Fig. 10. Horizon detection of the CHEVP algorithm [7] can easily be dis-
tracted by ground markings and leading vehicles. In our implementation (for
the comparison purpose), we did not use the horizon voting but estimated it
from the calibration parameters to get better results.

means and variances will result in nonmonotonic likelihood.
Since most of the evidence variables are scores or penalties,
using a nonmonotonic-likelihood function for such variables
will generate classification outliers.

V. EXPERIMENTAL RESULTS

We first present an experimental result on the detection
algorithm only (without tracking). For comparison, we im-
plemented the Canny/Hough Estimation of Vanishing Points
(CHEVP) algorithm. In [7], Wang et al. introduced the CHEVP
algorithm to initialize their B-spline SNAKE tracking algo-
rithm. The CHEVP algorithm performs the following: 1) It
detects the line segments using the Hough transformation on a
vertically segmented image; 2) performs voting to find the hori-
zon; 3) finds the lane-boundary candidates in each segment of
the image based on the detected horizon; and 4) fits them into a
spline curve. The algorithm was implemented such that it shows
similar results on all the images presented in the algorithm web-
site (http://www.ntu.edu.sg/home5/ps2633175g/chevp.htm).

Some minor modifications were made to the original CHEVP
algorithm to improve the result on our test video clip. For
example, the horizon detection is sensitive to noise by leading
vehicles and/or nonlane markings on the road (Fig. 10). Instead
of detecting the position of the horizon in each frame, we
derived it from the calibration parameters. Although the actual
horizon positions slightly vary according to the vehicle’s pitch
movement, it is still much more accurate and robust to use a
fixed one than to detect them in every frame.

For our algorithm, we only used the RANSAC-based lane-
boundary detection and the probabilistic grouping based only
on the evidence of the current frame. Both algorithms were
tested on a short video clip of 352 × 240 image resolu-
tion (total of 923 frames). Our detection algorithm showed
correct detection in over 80% of the frames. Misalignments
(mostly minor) occurred in less than 4% of the image frames,
and in the rest of them (14%), detection failed. For CHEVP,
we applied a more liberal measure for the misalignment be-
cause, in the work of Wang et al. [7], the final result was
refined using a SNAKE fitting. Even ignoring the minor mis-
alignments, the result was still not comparable to our results.
The detection was roughly okay only in 52% of the image
frames, where there were significant misalignments in 11%
of them and misdetections in 37%. The Hough transformation
failed to grab many of the dashed lane markings [Fig. 11(a)],
whereas picking up false lines resulted in misalignments

24 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 1, MARCH 2008

Fig. 11. (Upper) Misdetection and false detections by the CHEVP algorithm.
(Lower) Our RANSAC algorithm correctly found the lane boundaries from the
same images. For the CHEVP algorithm, the orange line is the detected lane
center, and the yellow lines are the boundaries. For the RANSAC algorithm,
the orange line is the left boundary, and the yellow line is the right boundary.

[Fig. 11(b) and (c)]. The resulting video clips can be down-
loaded at http://path.berkeley.edu/~zuwhan/lanedetection/.

We now present the experimental result on the complete al-
gorithm (both detection and tracking). We tested the algorithm
on a 3-min video clip taken from a normal bus route. The video
clip is in an MPEG format of 176 × 120 image resolution.
The video quality and the resolution is much worse than that
of the previous one and those used in most of the previous
works. In addition, it contains all the difficult scenarios, in-
cluding lane changing, merging/emerging/splitting lanes, and
ending lanes (at intersections). In addition, the overall lane-
marking condition is much poorer. For example, the contrast
between some of the worn lane markings and the worn road is
very low.

The proposed algorithm was run at 10 frames/s with a
total of 1951 frames. An average computation time (including
the operating-system overhead, such as virtual-memory us-
age but not including video-reading/decoding time) was under
60 ms/frame on an Intel Pentium 4 3-GHz processor. The
program was implemented in C++ on Microsoft Windows
using the OpenCV library. The computation time did not in-
crease significantly (still under 60 ms) on a higher resolution
video (352 × 240), because most of the computation was
done on the rectified images of fixed size. Therefore, whenever
available, we can use a higher resolution video to increase the
performance—better performance is expected with a higher
resolution video because we can obtain a rectified image of
better quality. Note that some of the previous lane-detection
algorithms do not work in real-time. For example, Wang
et al. [7] require up to 4 s for detection and 2 frames/s for
tracking on Intel Pentium III.

Example results are shown in Figs. 12 (good detection re-
sults) and 13 (bad detection results). Since there is no absolute
ground truth and it is difficult to quantize the result, we cat-
egorized the bad detections into four categories: misdetecting
both sides of the lane boundaries, misdetecting one of two lane
boundaries, false alarms or major misalignments, and minor
misalignments.

It is difficult to determine good detections from minor mis-
alignments from major misalignments, but the results in Fig. 13
show our guidelines. Fig. 13(k) is a minor misalignment, and
Fig. 13(l)–(o) are major misalignments.

Fig. 12. Example detection results.

There was only one false-alarm case, which was caused by
another valid lane boundary [Fig. 13(p)]. However, it was even-
tually taken over by the correct one due to our probabilistic-
tracking framework that combines redundant detection with
tracking. Another example of correcting false detection is
shown in Fig. 14. A misalignment was corrected in the next
frame. In fact, these correction abilities distinguish our method
from most of the previous algorithms, which are heavily depen-
dent on temporal filtering.

Most of the major misalignment was caused by the low
image quality. For example, MPEG compression side ef-
fects sometimes cause false alarms in lane-marking detec-
tion, and they can easily cause misalignments at the end of
the curve. Most of the misdetection was caused by lane-
marking-detection failure or lack of actual lane markings.
Many of the lane-marking-detection failures occurred because
of steep curves and/or because of nonflat ground. Further
research is required to improve the lane-marking detection in
such cases.

Some misdetection was caused by strong shadows by over-
passes, as shown in Fig. 13 (first row). Such a failure is
due to the limitation of low-end autoiris cameras. Due to the
high contrast between the shadow and nonshadow areas, lane
markings inside the shadow have a very low contrast. Note
that the suggested algorithm can fairly handle other challenging
illumination conditions (Fig. 15).

Another major case of spontaneous misdetection is due to
fast lane changes (first two of the third row). Since the lane-
boundary movement is unusual in such cases, some of the
correct lane-boundary hypotheses with weak lane-marking sup-
ports were rejected.

The quantitative result is summarized in Table II. The re-
sulting video clips can be downloaded at the same website
(http://path.berkeley.edu/~zuwhan/lanedetection/). In the video

KIM: ROBUST LANE DETECTION AND TRACKING IN CHALLENGING SCENARIOS 25

Fig. 13. (a)–(j) Example misdetections, (k)–(o) misalignments, and (p) a false
alarm.

Fig. 14. Misalignment corrected by redundant detections in the following
frames.

clip, thin red curves on the left are the selected hypotheses,
and the thick orange and yellow curves are the detected
left- and right-lane boundaries. The unprocessed video clip is
also provided for future comparative studies.

Additional results on other challenging video clips (includ-
ing the one used in the detection experiment) are shown
in Fig. 15. It shows that the proposed algorithm works
robustly on various distractions (competing nonlane-marking
lines or leading vehicles) and on low illumination. Note
that the right-lane boundaries of the low-illumination im-
ages are not lane markings but curbs. Whether curbs can
be detected or not depends on the application—detecting a
single lane boundary is sufficient in many applications, in-
cluding the ones for collision warning. The result on these
additional video clips can also be downloaded at the same
website.

Fig. 15. Results on additional video clips. The proposed algorithm works
robustly on challenging situations. Distraction by (a) a competing nonlane-
marking line and (b) a leading vehicle and (c) and (d) low illumination.

TABLE II
MIS- OR FALSE-DETECTION COUNTS FROM 1951 FRAMES

Fig. 16. Preliminary sensor-fusion result of vision-based lane-and-obstacle-
detection results, LIDAR, and vehicle navigation information. The obstacles’
relative positions with respect to the lane are estimated. The thick red line is a
projected vehicle path.

VI. SUMMARY AND FUTURE WORK

We introduced a robust real-time lane-detection-and-tracking
algorithm for local roads and freeways of various challenging
scenarios. We first presented a comparative study on the lane-
marking-classification performance and the computing cost. We
introduced a robust real-time lane-detection algorithm based on
RANSAC, and it was combined with a particle-filtering-based
tracking algorithm by a probabilistic grouping framework. The
suggested grouping framework can generally be applied to
other part-based object detection and tracking problems.

The result was promising. Future work will integrate it
with a vision-based obstacle-detection algorithm, for example
[20], for a collision-warning system. A preliminary result is
shown in Fig. 16. By applying a sensor-fusion algorithm to
combine vision-based lane and obstacle detection results with
other sensor information, the collision-warning performance
can significantly be increased.

REFERENCES

[1] D. Pomerleau, “RALPH: Rapidly adapting lateral position handler,” in
Proc. Intell. Veh. Symp., 1995, pp. 506–511.

[2] M. Bertozzi and A. Broggi, “Real-time lane and obstacle detection on the
GOLD system,” in Proc. IEEE Intell. Veh., 1996, pp. 213–218.

26 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 1, MARCH 2008

[3] C. J. Taylor, J. Malik, and J. Weber, “A real-time approach to stereopsis
and lane-finding,” in Proc. IEEE Intell. Veh., 1996, pp. 207–212.

[4] H. Hattori, “Stereo for 2D visual navigation,” in Proc. IEEE Intell. Veh.
Symp., 2000, pp. 31–38.

[5] M. Beauvais and S. Lakshmanan, “Clark: A heterogeneous sensor fusion
method for finding lanes and obstacles,” Image Vis. Comput., vol. 18,
no. 5, pp. 397–413, Apr. 2000.

[6] S.-S. Ieng, J.-P. Tarel, and R. Labayrade, “On the design of
a single lane-markings detectors regardless the on-board camera’s
position,” in Proc. IEEE Intell. Veh. Symp., 2003, pp. 564–569. [Online].
Available: http://www-rocq.inria.fr/ tarel/iv03.html

[7] Y. Wang, E. K. Teoh, and D. Shen, “Lane detection and tracking using
B-snake,” Image Vis. Comput., vol. 22, no. 4, pp. 269–280, Apr. 2004.

[8] Y. Zhou, R. Xu, X. Hu, and Q. Ye, “A robust lane detection and tracking
method based on computer vision,” Meas. Sci. Technol., vol. 17, no. 4,
pp. 736–745, Apr. 2006.

[9] R. Labayrade, J. Douret, and D. Aubert, “A multi-model lane detector
that handles road singularities,” in Proc. IEEE Intell. Transp. Syst. Conf.,
2006, pp. 1143–1148.

[10] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[11] R. Collobert, S. Bengio, and J. Mariethoz, “Torch: A modular ma-
chine learning software library,” Institut Dalle Molle d’Intelligence Artifi-
cielle Perceptive, Tech. Rep. IDIAP-RR 02-46 2002. [Online]. Available:
http://www.torch.ch/

[12] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. New York: Springer-Verlag, 2001.

[13] Z. Kim and R. Nevatia, “Expandable Bayesian networks for 3D object
description from multiple views and multiple mode inputs,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 25, no. 6, pp. 769–774, Jun. 2003.

[14] M. A. Fischler and R. C. Bolles, “Random sample consensus: A para-
digm for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981.

[15] Z. Kim, “Geometry of vanishing points and its application to external
calibration and realtime pose estimation,” Inst. Transp. Stud., Res. Rep.
UCB-ITS-RR-2006-5, Univ. Calif, Berkeley, CA, 2006.

[16] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo
Methods in Practice. New York: Springer-Verlag, 2001.

[17] T. Dean and K. Kanazawa, “A model for reasoning about persistence and
causation,” Comput. Intell., vol. 5, no. 3, pp. 142–150, Aug. 1989.

[18] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by
unsupervised scale-invariant learning,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2003, vol. 2, pp. 264–271.

[19] Z. Kim and J. Malik, “Fast vehicle detection with probabilistic feature
grouping and its application to vehicle tracking,” in Proc. IEEE Int. Conf.
Comput. Vis., 2003, vol. 1, pp. 524–531.

[20] Z. Kim, “Realtime obstacle detection and tracking based on constrained
Delaunay triangulation,” in Proc. IEEE Intell. Transp. Syst. Conf., 2006,
pp. 548–553.

ZuWhan Kim (S’00–M’01) received the B.S. and
M.S. degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea, and the Ph.D. degree from
the University of Southern California, Los Angeles.

He is currently a Research Engineer with
California Partners for Advanced Transit and High-
ways (California PATH), University of California,
Berkeley. His primary research areas are in computer
vision and pattern recognition. He has multidisci-
plinary research experience with a wide variety of

academic fields, including intelligent transportation systems, geographic infor-
mation systems, and cognitive science and robotics. He authored the vehicle
detection and tracking algorithm for the Next Generation Simulation (NGSIM)
program of the Federal Highway Administration.

Dr. Kim is a member of the IEEE Computer Society and Association for
Computing Machinery.

