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Abstract—Classically, fundamental diagrams are estimated
from aggregated data at a specific location. Such a measurement
method may lead to inconsistency which mainly explain the
current controversy about their shape.

This paper proposes a new estimation method based on passing
rate measurements along moving observer paths. Under specific
assumptions, it can be proved that in congestion passing rate is
independent of the traffic flow states.

This property allows (i) to prove that a linear fundamental
diagram is suitable to represent traffic flow behavior involved in
the Next Generation Simulation Model (NGSim) dataset; (ii) to
fit its two parameters: the congested wave speed and the jam
density.

Index Terms—Passing rate, macroscopic, NGSIM, fundamen-
tal diagram, equilibrium traffic state, traffic flow theory.

I. INTRODUCTION

THE fundamental diagram (FD), i.e. the relationship
between flow q and density k, encompasses both

equilibrium traffic states definition [6] and traffic wave
structure, i.e. how two separate equilibrium states propagate
[14], [19]. Data used to estimate this relationship are usually
obtained from loop detectors at a specific location and are
aggregated over time intervals ranging from 30 second to 1
minute [1], [7], [9], [12]. The aggregation can trigger three
potential drawbacks: (i) various traffic states are mixed in
measurements, (ii) data corresponding to equilibrium states
are difficult to identify, (iii) the wave structure cannot be
captured at a single location. These points are explained
hereafter.

(i) Free flow and congested traffic states might be averaged
over arbitrary time intervals. Thus, different or transient states
are mixed into a unique value (k,q). Moreover, data from
several lanes are often gathered without checking that all lanes
behave similarly [11]. Even single lane data can be corrupted
by lane changing effects. Mixing different traffic states may
explain the various shapes of FDs, Q(k), reported by a lot of
papers since the early 80’s [7], [8], [10].

(ii) At a specific location, equilibrium and transient phases
are difficult to distinguish. Cassidy proposed in [1] an em-
pirical method to determine nearly-stationary situations from
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observed cumulative curves. However, this method is ineffi-
cient to detect these nearly-stationary situations in the vicinity
of shockwaves. Thus, a high frequency of transitions prevents
equilibrium states to be identified with this method. Further-
more, the inspection of the cumulative curves is complicated
to implement.

(iii) In traffic flow models, the FD defines how traffic
states propagate. It is then appealing to base FD estimation
on spatial measurements. Note that such an approach is
consistent with EDIE’s definition of equilibrium [5]. To the
authors’ knowledge, only cross correlation technique on
cumulative curves at two successive locations [2], [20] fall
in this category. These studies estimated that the maximum
velocity for backward moving waves range from 15 km/h
to 20 km/h. However, this method can only determine wave
speeds in congestion and does not reflect what happens
between the measurement locations.

This paper proposes a new method to estimate the
fundamental diagram (FD) in congestion. This method is
based on theoretical properties of passing rates, i.e. flows
that cross a moving observer. It overcomes the three above-
mentioned drawbacks. (i) Individual trajectories coming from
the NGSim dataset [17] are used. Such data permit lane by
lane analysis ruling out effects of lane-changing. (ii) Relevant
paths for the moving observer, only run into equilibrium
states. (iii) Passing rate measurements are continuous in
time and in space by definition. Furthermore, the proposed
method will reinforce the assumption that the FD is linear in
congestion. Consequently, only two parameters, the congested
wave speed w and the jam density kx, have to be estimated.

This method attempts to determine lane specific FD in
congestion for the NGSim experimental site. Towards this end,
section 2 identifies congested stable platoons in traffic flow.
Section 3 formulates the framework of the proposed method
and section 4 presents the results for on-field data.

II. NGSIM DATASET ON THE HIGHWAY I-80

In this paper, data are coming from the American project
Next Generation Simulation (NGSim). Vehicle trajectories
of the I-80 freeway near Berkeley, California, have been
selected to support the study. Fig. 1 provides a sketch of the
experimental site.

Video recording of vehicle trajectories was performed dur-
ing 5 hours, on April 13, 2005. Ten frames per second were
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Fig. 1. NGSim Dataset. (a) Site description (b) Total number of stable platoons, total number of congested stable platoons for each lane

available. A sample of 45 minutes was processed and used for
this study.

To estimate the FD on the experimental site, one should
focus on stable platoons. A bunch of vehicles is said to form
a stable platoon when more than 4 vehicles stay in the same
lane without any overtaking process. This condition ensures
that only stationary situations are considered. Thus, 244 stable
platoons can be identified in the dataset on lanes 2 to 6.

This paper focuses on congested states. Then, a subset S1
is created among stable platoons where the leader speed is
below 45 km/h. Note that lane 1 is an HOV lane which is
less congested. We decided to exclude lane 1 from our study.
Thus, S1 contains 71 congested stable platoons. Notice that the
distribution of the platoons is strongly correlated to the lane
number. Lane-changing are frequent on lanes in the vicinity
of the weaving section (lane 6). Consequently, these lanes (4,
5 and 6) do not present enough congested stable platoons to
estimate the FD accurately. They have been excluded from our
dataset. The final sample only contains 368 vehicles which
form 63 congested stable platoons on lane 2 and 3 (Fig. 1).
Such a size is too low to estimate a FD with classical methods
found in literature but will be sufficient for the proposed new
method.

III. ESTIMATING THE FUNDAMENTAL RELATIONSHIP BY
PASSING RATES MEASUREMENTS

This section shows that evaluating discrepancy in passing
rate measurements for various moving observer speeds can
provide an accurate method to estimate FD.

A. Definition and properties of the passing rate

We consider the trajectory C from point A to point B
(Fig. 2) of an observer moving backwards at constant speed
v > 0. Therefore, the associated passing rate at which vehicles
cross the trajectory C is:

r(CA→B) =
∆n
∆t

, (1)

where ∆n is the number of vehicles that pass the observer and
∆t is the time required by the observer to reach B from A (see
Fig. 2).
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Fig. 2. Passing rate of a moving observer of trajectory C

Let Q denote the FD that holds in the considered t-x plane.
Within the framework of kinematic wave models, if traffic
conditions are stationary along the path C , the density is
constant and equal to k and the flow is equal to q = Q(k).
Note that the definition of k supposes that the traffic flow is
continuously approximated. For more details see [4].

Consequently, the passing rate on C can also be expressed
as in [15]:

r(CA→B) = Q(k)+ kv. (2)

The above-mentioned passing rate formulation is indepen-
dent of the FD shape. However, provided that Q(k) is linear
in congestion and that the traffic is congested, equation (2)
yields to [15]:

r(CA→B) = wkx− k(w− v). (3)

where w (wave speed) and kx (maximal density) are the two
parameters of Q.

Furthermore, the passing rate can also be expressed with
respect to the platoon leader speed u. Indeed, the speed u is
equal to the flow speed q/k in this case [16].

r(u,v) = wkx−
wkx

w+u
(w− v). (4)

It appears that, when the observer travels at speed v equal to
w, the passing rate is constant and equal to wkx independently
of u. To illustrate this property, Fig. 3 shows a theoretical
platoon of 5 vehicles where the leader changes its speed from
u1 to u2. On the left side (Fig. 3a), the observer moves at
speed w. Thus the time required to reach the last vehicle is
the same in the two regions (u1 and u2). Passing rate is then
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Fig. 3. Discrete calculus of the passing rate for an observer moving at speed (i) v = w and at speed (ii) v 6= w

uniform along the trajectory and equal to wkx regardless of
the leader speed. On the right side (Fig. 3b), the observer
moves at a speed v 6= w. Then time required to reach the last
vehicle is no longer the same for the two states u1 and u2.
In this case, time period ∆t(v1) increases with the flow speed
whereas ∆t(v2) decreases with u.

It is worth noting that the reciprocal statement of (2) is
also true. Indeed, if the passing rate along the trajectory of an
observer moving at v is constant and equal to C regardless of
vehicles speed, then equation (2) reduces to:

Q(k) = C− kv, (5)

Consequently, the FD is linear in congestion.
This yields to the following theorem. A FD is linear in

congestion, if and only if, it exists a moving observer speed
v∗ thereby the associated passing rate is uniform among the
observed traffic states. Furthermore v∗ is then equal to w.

The paper will now propose a method to determine v∗

on on-field data. Passing rate measurements, r(u,v) will be
computed along the selected platoons trajectories with respects
to u and v. For any point of the leader trajectory, one can
determine the time period ∆t required by the observer to
reach the last trajectory (Fig. 3). Then r(u,v) is calculated
as ∆n/∆t where (∆n + 1) is the number of vehicles involved
in the platoon. Let [r(u,v)] denote the dataset of passing
rate measurements obtained along the leader trajectory for v,
[r(u,v)] = {r(u,v),∀u observed }. Then, various values of v
will be tested. Finally, v∗ will be equal to the v-value providing
the less discrepancy in [r(u,v)].

B. Passing rate measurements for various observer speeds

It is appealing to formally assess the variations in [r(u,v)].
To this end, one should study how the passing rate vary
along the platoon’s trajectory. For any speed v 6= w, r(u,v)
is modified when u changes. If the leader decelerates from
speed u1 (state 1 on the diagram) to speed u2 (state 2 on the
diagram), the absolute change in passing rate measurements
is equal to:

I(v) =
wkx

(w+u1)(w+u2)
|u1−u2| |v−w| . (6)

Value of I depends on v but also on the leader’s speed
variation, |u1−u2|. As an illustration, Fig. 4 shows I for two

different observer speeds v1 and v2 in the case of a leader
reducing its velocity from u1 to u2. For any point i, one can
draw a line of slope −v. This line intercepts the q-axis at the
level of r(ui,v). Notice that I is null when v = w regardless
of u.
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Fig. 4. Change in passing rate measurements for two observer’s speeds v1
and v2 when the leader decelerates from u1 to u2

Evolution of I with respect to v can be drawn for various val-
ues of |u1−u2| (Fig. 5). It appears that the greater the leader
speed variation, the sharper the objective function (relative
standard deviation of passing rate values). This sharp shape
prevents from drawbacks of existing methods like flat objective
functions that may lead to multiple optimal parameters [18].

5 10 15 20 25 30
0

20

40

60

80

100

v (km/h)

V
ar

ia
bi

lit
y 

(%
)

 

 
I(v) for u

1
−u

2
=80 km/h

I(v) for u
1
−u

2
=50 km/h

I(v) for u
1
−u

2
=20 km/h

Fig. 5. Evolution of the change in passing rate measurements for leader
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If u is uniform along the test bed, passing rate remains
constant regardless of v. Hence, changes in u, i.e. shockwaves,
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have a major influence on variation of r(u,v). They generate
discrepancies in passing rate measurements when v 6= w. Thus,
to magnify the effect of shockwaves, mean values of r(u,w)
by range of speed centered in u have been calculated. We will
denote these mean values R(u,w).

Note that the averaging process has also the asset to smooth
the errors due to the data. Indeed, let us consider a uniform
measurement error ε of about 10% between the recorded value
r and the real value r̂ of the passing rate:

r(u,v) = r̂(u,v)± ε ≈ r̂±10%, (7)

Now, mean values of r are calculated by range of u. To
guaranty that each subset contains enough measurements, the
width of the range is fixed at 5 km/h. Thus, more than n >=
200 values of r(u,v) have been recorded by speed interval for
any value of v. According to the Central Limit Theorem the
estimated mean point is:

R(ū,v) = µ±1.96
σ√

n
≈ µ±2.8%, (8)

where µ is the real value of the passing rate for the mean
range speed R(ū,v) and σ is the standard deviation of ε .

Thereby doing, averaging passing rate values by range of
speed reduces the dispersion caused by the measurements error
in dataset.

Finally, discrepancies in passing rate measurements will be
evaluated by the relative standard deviation s of [R(u,v)] =
{R(u,v),∀ū observed }. The wave speed w corresponds to v∗

such as:
v∗ = arg

[
min

v
[s([R(u,v)])]

]
. (9)

C. Verifying the theory on simulated data

The proposed method relies on the assumption that the
FD holds on stable platoons. This is equivalent to assume
that vehicles inside the platoon follows as specific CF rule:
Newell’s CF model [16], [3], [13]. To check that the proposed
method does not introduce a bias on data that perfectly match
this assumption, we are going to test it on simulated congested
trajectories generated with Newell’s CF model.

For a platoon formed of n + 1 vehicles, parameters of the
FD are randomly selected. Trajectories are then computed
according to the values of w and kx. Note that the leader
of the platoon changes its speed at least one time to induce
shockwaves. Passing rate are measured for any leader speed
as in Fig. 3. Value of v that minimizes s([R(u,v)]) can be
determined.

Fig. 6 illustrates this process when w = 15 km/h and
kx = 150 veh/km. The method determines v∗ as equal to the
initial value of w. Evolution of s([R(u,v)]) with respect to v is
depicted in Fig. 6. It confirms that the shape of the objective
function is very sharp. Note that v∗ corresponds to a criterion
equal to 0%.

The study was performed for various platoons sizes and
values of w and kx. In any case, v∗ is equal to w and leads to
a null relative standard deviation. This is not surprising since
the proposed method aims to determine the shift leading to the
best fit between the leader’s trajectory and the last trajectory.

This exactly corresponds to Newell’s model where vehicles
trajectories in congestion are calculated by shifting the leader’s
trajectory in time and space [16]. Consequently, the proposed
method does not introduce any bias.
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Fig. 6. Evolution of the criterion versus the observer speed when w = 15
km/h

IV. ESTIMATION OF THE CONGESTED PART OF THE
DIAGRAM AND ANALYSIS OF THE RESULTS

In this section the method is performed on platoon trajec-
tories selected in section II. Then, measurement are gathered
to estimate lane specific FD.

A. Filtering and measurements
Passing rate measurements are performed along each pla-

toon leader trajectories of the dataset every 1 second (Fig. 7).
A value of 1 second is a reasonable value to ensure a sufficient
number of measurements but also a fast computing time. Then,
r(u,v) are calculated along the leader trajectory. We obtain at
least 3795 measurements in [r(u,v)] on lanes 2 and 3 for each
tested v-value.
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Fig. 7. Measurement process of passing rates

These measurements are then averaged by range of u
leading to [R(ū,v)]. Ranges of 5 kilometers seem to be a
good compromise to ensure a sufficient number of values
in [R(ū,v)]. The maximal leader speed is close to 45 km/h.
Thus, 9 mean values of R(ū,v) are calculated for each lane.
Then, the relative standard deviation of these measurements is
calculated:

s(v) =
∑

9
i=1

(
R(ūi,v)−R(ū,v)

)2

R(ū,v)
(10)
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Fig. 8. (a) Confidence intervals on lane 2 for an optimal v = 18.9 km/h (b) Confidence intervals on lane 2 for a non optimal v = 15 km/h

where R(ūi,v) is the mean passing rate for a leader speed
comprised into (i−1)∗5 km/h and i∗5 km/h, and R(ū,v) is
the mean passing rate for the observed leader speed set.

The process is performed for v varying in [5 km/h;20 km/h]
with a step of 0.1 km/h. Finally v∗ is equal to the value of v
which minimizes s(v).

B. Results

The FD has been estimated separately for lane 2 and 3.
Interestingly, we cannot conclude to a common wave speed
for both lanes.

1) Lane number 2: The previous method is illustrated by
a detailed analysis of the results on lane 2. First of all,
the number of measurements are not strongly dependent on
the speed v of the moving observer. Indeed, for every value
of v tested in the set [5 km/h;20 km/h], more than 2500
measurements have been obtained. It ensures a sufficient
sample to analyze the global behavior of traffic flow.

Fig. 8a depicts the mean values of the passing rate by range
of leader speed for v∗. Fig. 8a presents also the confidence
intervals (with a certainty of α = 0.95) of R(ū,v). The differ-
ence among values of R(ū,v) are not statistically significant. A
common value can be assessed. On the contrary, Fig. 8b shows
that for a non-optimal speed v, R(ū,v) cannot be considered
as uniform among leader speed in congestion. Note that the
associated value of s(v∗) is equal to 3.5% which is very small.
Thus, Newell’s model accurately represents observed traffic
flow dynamics at a macroscopic scale.

We can thus conclude that the FD is linear in congestion.
The wave speed w is equal to v = 18.9 km/h. Furthermore, the
jam density can be assessed from the mean value of the passing
rate. Indeed, w.kx = 2460 veh/h, then kx is equal to 130 veh/km.
The congested part of the FD is completely estimated.

2) Lane number 3: The same method has been followed for
lane 3. With only 1225 measurements, we can conclude that
the FD is also linear in congestion with w equal to 14.5 km/h.
Fig. 9 shows the confidence interval analysis and confirms that
passing rate values are not different from on range of speed
to another. The value of s(v∗) is equal to 8.7%. As previously,
the jam density kx can be estimated from passing rate value
and assessed at 138 veh/km.
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Fig. 9. Confidence intervals on lane 3 for the optimal value of v

Fig. 10 depicts the estimated congested part of the FD for
lane 2 and lane 3 using the values of w and kx previously
found. Numbers of measurements are reminded. The confi-
dence intervals of the passing rate (with a level of certainty
α = 0.95) have been calculated. With respectively a confidence
interval of 58 veh/h for lane 2 and 122 veh/h for lane 3, it
turns out that the lanes are statistically different. The closeness
of an HOV lane (lane 1) may induce the variation of w from
lane 2 to lane 3. Further investigation on an additional dataset
are required to corroborate or disprove this result.

Finally, the free flow part of the relationship has to be
determined to obtain the whole diagram. This has not been
carried out here but accurate methods can be found in literature
(see for example [1]).

kx2
= 130 veh.km

kx3
= 138 veh.km

Density (veh/km)

F
lo

w
(v

eh
/
s)

w
2 =

18.9
km

.h
w
3 =

14.5 km.h

Lane 2: 2570 measures

Lane 3: 1225 measures

Fig. 10. Congested part of the fundamental diagram for lanes 2 and 3

V. CONCLUSION

This paper has introduced a new method to determine
the congested part of the fundamental diagram. This method



6

overcomes the main lacks of existing estimation processes: (i)
a lane by lane analysis ruling out lane changing effects has
been carried out; (ii) by measuring passing rate along a moving
observer path, whose slope corresponds to wave speed, the
same traffic state is encountered. Thus, no specific procedure
is needed to identify equilibrium data. (iii) Passing rates are
intrinsically suitable for capturing traffic wave effects.

The main insight of this paper is that the FD can be con-
sidered as linear in congestion. This has been experimentally
proved from passing rate properties. Furthermore, the proposed
method requires fewer observations than classical ones to
estimate w and kx. Moreover, the findings seem to shed light
on lane specific diagram with different values of w. This points
out the importance of a lane by lane data analysis.

It should be noted that the process is free of error and is
simple to implement if trajectories data are available. However,
such data may be difficult and costly to collect. The authors are
investigating how loop detector data from successive locations
may permit to estimate passing rates. The proposed method
could then be generalized to commonly available data.
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Travaux Publics de l’État (ENTPE) which belongs to
the University of Lyon. He is currently finishing its
Ph.D. degree with the LICIT, Laboratoire Ingenierie
Circulation Transport (ENTPE / INRETS). His re-
search is mainly focused on traffic flow theory.
He has been recognized with the best paper award
of the Young Researchers Seminar 2007 (ECTRI /
FEHRL / FERSI) in Brno, Czech Republic.

Christine Buisson received her PhD degree in 1991
as a physicist. Since fifteen years, she is full time
researcher in traffic flow theory with INRETS. She
is also responsible of the traffic modeling and trans-
portation engineering courses at the École Nationale
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