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Scale-Adaptive Spatial Appearance Feature Density
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Abstract—Object tracking is an essential task in visual traffic surveil-
lance. Ideally, a tracker should be able to accurately capture an object’s
natural motion such as translation, rotation, and scaling. However, it
is well known that object appearance varies due to changes in viewing
angle, scale, and illumination. They introduce ambiguity to the image cue
on which a visual tracker usually relies and which affects the tracking
performance. Thus, a robust image appearance cue is required. This paper
proposes scale-adaptive spatial appearance feature density approximation
to represent objects and construct the image cue. It is found that the
appearance representation improves the sensitivity on both the object’s ro-
tation and scale. The image cue is then constructed by both the appearance
representation of the object and its surrounding background such that dis-
tinguishable parts of an object can be tracked under poor imaging condi-
tions. Moreover, tracking dynamics is integrated with the image cue so that
objects are efficiently localized in a gradient-based process. Comparative
experiments show that the proposed method is effective in capturing the
natural motion of objects and generating better tracking accuracy under
different image conditions.

Index Terms—Gaussian mixture model (GMM), image cue, object ap-
pearance representation, tracking, traffic surveillance.

I. INTRODUCTION

The growing demand on safety and efficiency in transportation
systems requires improvements in traffic management and control. As
such, it increases the reliance on traffic surveillance, of which vehicle
tracking is one of its fundamental components. By tracking vehicles in
a scene, detailed traffic parameters can be derived. Such information
helps determine traffic abnormalities, which are a prerequisite for
incident detection and management. For instance, in [1] and [2],
tracking was used for event detection. In [3] and [4], tracking was
applied to accident prediction. In [5] and [6], object tracks were used
to learn vehicle activities. In [7] and [8], tracking was used for vehicle
path prediction and driver assistance, respectively.

In a nutshell, visual-tracking methods track visual objects by their
image appearance cues. These image cues could be either image fea-
tures directly extracted from the image or an appearance model learned
from a training image set. However, it is common knowledge that
object appearance varies subject to object’s translation, self-rotation,
and scale (as seen by the camera) or even a change in ambient illumina-
tion or partial occlusion. Self-rotation modifies the visible parts of the
object, change in object scale alters the scale of its image features, and
uneven or changing illumination abruptly or gradually affects the im-
age color/intensity as well as the saturation. Furthermore, images may
be captured under poor imaging conditions (e.g., less favorable
weather) or with a background of similar color. These decrease the
distinctness of the object features and introduce ambiguity to the
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image cue. As a result, tracking under such conditions may become
unreliable.

Among the tracking system in transportation surveillance, several
of them rely on background subtraction, as background/foreground
difference is a direct image cue of moving objects. Examples of such
a tracking system can be found in [9]-[13]. However, background
subtraction is susceptible to illumination variation due to shadowing
or day/night changes. Shadow removal is often required in such an
approach. In addition, it is scene specific, i.e., the background model
must be retrained when applied to a different environment. Moreover,
nearby-object merging is common; thus, in [13], foreground feature
points are used as an attempt to alleviate this problem.

In addition to foreground/background difference, the object’s image
cue for tracking can be obtained by the appearance of the object itself.
For instance, in a traffic surveillance system, the popular wire-frame
methods (e.g., [14] and [15]) represent objects by a predefined 3-D
edge frame and fit image edges to the model. Region-based methods
(e.g., [16] and [17]) track an object by matching the candidate region
to a template. Those methods assume the consistency and reliability
of low-level feature detection, but the assumption is always violated
by the changes in illumination, object scale, and rotation and the
consequent appearance variation. To alleviate the effect of appearance
variations, in [18] and [19], principle component and independent
component analyses are trained to represent the image object and pro-
vide cues for detection and tracking. However, for each type of object,
such methods require an image set to do offline training, and they are
most applicable for texture-rich objects. This limits transferability on
different types of traffic objects.

Meanwhile, in visual surveillance for a transportation system, recent
developments on visual tracking improve its performance by imposing
richer object information in the image cue. This could be done by
either fusing different types of features or imposing prior knowledge
by an object detector. For instance, in the feature-integration-based
method [20], color and edge tracking are fused in a particle filter
framework to improve robustness. In [21], shape, texture, and depth
are integrated for tracking. However, without any notion of the ob-
ject’s surrounding background, these trackers have a tendency to be
distracted if the object and its surrounding background contain similar
color, edge, or texture features. In detection-based methods [22]-[25],
either pretrained detectors or color and shape assumptions are used
as image cues for tracking. Such image cues usually contain reliable
knowledge of object appearance, but offline training and prior assump-
tions limit it in online tracking initialization and objects of different
types and views.

On the other hand, feature density approximation (FDA)-based ob-
ject representations have emerged as an effective method for tracking.
They can be trained by densely sampled features, of which one frame
can provide enough training features for online initialization. As the
dense features naturally cover the range of feature variation, FDA
methods can potentially accommodate object appearance variations.
This is illustrated by the following FDA methods. In parametric
FDA [26], object feature density is approximated by a Gaussian
mixture model (GMM), which can handle the object’s multimode
feature distribution and appearance variations. The number of GMM
components is determined by the minimum description length, and
the mixture parameters are trained by expectation maximization (EM)
[27]. However, their tracking dynamics is computationally complex.
For nonparametric approaches [28], they approximate object feature
density by the sum of kernel functions. They are efficient in learning
but not efficient in prediction, as it needs to recall the learning feature
set. Another example is the tracker [29] that uses a kernel weighted
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Fig. 1. Scale selection and feature extraction.

histogram to represent object appearance and efficiently locates objects
by mean shift [30]. However, it fails to extract object scale and rotation.
As an improvement [31], a 3-D kernel spreading on both spatial and
scale domains is constructed. It tracks object and extracts its scale by
performing mean shift both spatially and across scale. However, it does
not work with object rotation. To extract both scale and rotation [32],
an object is represented as an ellipsoidal region, whose location, scale,
and rotation are determined by the mean vector and covariance matrix
of the pixels in the ellipse. This histogram similarity cue is not always
reliable when there is a change in illumination.

In summary, FDA methods track objects by online initialization and
cope with appearance variations. There is an underlying assumption
that the feature density similarity is a reliable cue. However, with poor
imaging conditions, the similarity cue becomes less distinguishable.
Furthermore, commonly, objects substantially change scale in wide-
area surveillance, and feature scale also varies with the object’s scale.
The image features in fixed scale used by current FDA methods
become less precise, which could be propagated to subsequent density
estimation, making the appearance cue inconsistent. For the preceding
reasons, this paper proposes a robust tracker that can be initialized
online; work with the object’s translation, rotation, and scaling; and
cope with similar object/background color or poor imaging conditions.

This paper is organized as follows: Section II describes an overview
of the proposed method, the advantages of the method, and a detailed
description of it. Section III covers the model verification and tracking
evaluation. This paper is concluded in Section IV.

II. PROPOSED METHOD

A. Overview

To improve the performance of FDA methods for object tracking,
the proposed method is able to capture object translation, scale, and
rotation under poor imaging conditions and generate a stable track.
The scale-adaptive spatial appearance (SASA)-FDA uses a GMM to
approximate object feature density. It represents object appearance
with its spatial layout. Scale-adaptive feature extraction and consistent
GMM estimation are proposed to solve the effect of changing scale.
To handle the adverse imaging conditions, the cue for tracking is
constructed by the GMM appearance representation of both the target
object and its surrounding background. Based on this cue, this paper
also presents the integrated tracking dynamics, which can lock the
object in just a few iterations.

B. Scale-Adaptive Feature Extraction

The features that represent the local structural pattern are bounded
by its inner and outer scales [33], which are the scale space where they
appear and the local support window where they spread, respectively.
Clearly, the variation in object image scale across different frames
alters the scale where the local feature pattern exists. To overcome
this, we use scale-adaptive features for both inner and outer scales. In
addition, as the feature’s outer scale is proportional to the spatial com-
position of the object, we define the effective probability according its
outer scale to control the contribution of the features in building the

Fig. 2. Model visualization.

appearance model. Therefore, the appearance model is constructed
the same way as the features spatially composing the object.

In scale-adaptive feature extraction, the method maps the image to
its multiscale space and then selects the scale locally adapting to the
image local feature. Linear scale theory [33] is chosen for multiscale
image mapping, and the minimum entropy principle [34] is used for
scale selection.

As shown in Fig. 1, one image is partitioned into patches with
different inner and outer scales, and then, scale-adaptive features are
extracted from the patches. The frame partition and scale selection
procedure is given as follows.

1) Map the image into its multiscale space.

2) Initialize the partition into the largest patches and coarsest scale.

3) Split each patch, and compare the entropy of each split patch in
the finer scale to its original scale.

4) Select the patch across scale by the minimum entropy principle.

After scale selection, features are extracted from these patches.
They are average color, entropy of the difference of Gaussian (DOG)
coefficients, average gradient orientation, and spatial coordinates of
the patch center. The effective probability PP of each feature x; is
defined as

Pioreb — Sizei/sizemax (1)

where Size; is the spatial size of patch i, and Sizey, . is the largest
patch size in one frame. Thus, the features from a larger patch play a
larger role in estimating the GMM.

C. GMM-Based Appearance Representation and Its Visualization

Given a set of scale-adaptive features X = {x;}, i =1,..., N,
GMM as defined here is used to approximate its feature density

P(x;) = g(xil0;)p(w;) 6)

where p(w;) is the mixture coefficient of Gaussian component
9(x;|0;). The spatial layout of the GMM representation is shown in
Fig. 2.

As shown in Fig. 2, when the spatial coordinates are included in
the features, each Gaussian component can be indicated as an ellipse
(subimages a—e), which corresponds to an image region with a certain
spatial layout on the object (subimages f—j). When the number of GMM
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components is chosen as 2, 3, 4, 5, and 20, the object representation
has a different degree of detail.

D. Consistent GMM-Based FDA With Feature Effective Probability

To improve the FDA accuracy, we equal the contribution of the
features in FDA to the proportions in which their patch composes the
object. To achieve this, the log likelihood function is defined by both
the feature set {x;} and the effective probability { PF*<P} as

N
L(O) = lOgH P(xi7 zi; O)Hcreb
i=1
N M
- lOgHH [P(xz|z” =1,0)P(z; = 1)Picreb] Zij 3)
i=1j=1

where z; = [2;1,..., 2], and z;; = {1,0} indicates that x; is
generated by which Gaussian components. The EM algorithm for
GMM estimate with the effective probability P is

E — step :
M

hij = Elzilw:, 08 = p(w;)g(xil0;)/ Y plw;)g(xilfr) )
=1

M — step :

N N
creb creb
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N
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D= 7 )
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where g(x;|0;) is one Gaussian component in (2).

Fig. 3 provides an illustration of the role of P**® in GMM estima-
tion. Subimage (a) is the test image, and its intensity is used for GMM
estimation. Subimage (b) shows the result of scale-adaptive feature
extraction where the test image is partitioned into image patches of
different sizes (outer scale), the patch mean intensity is used as its
feature, and the effective probability is defined by its size. The GMM
estimation based on the patch mean intensity should be similar to the
image histogram [as shown in (c)]. In (d), the GMM estimation without
the effective probability is shown, whereas (e) is the GMM estimation
with effective probability. Clearly, without effective probability [in
(d)], the estimate is driven to the brighter ones, as they have a larger
patch number, in spite of composing a small part in the image. In (e),
the features contribute according to their effective probability, and the
estimate is closer to the histogram.

E. WLR Cue for Tracking and the Tracking Dynamics

When the object and its surrounding are similar in appearance,
the object image feature contains overlapping distribution with its
surrounding. It makes the tracking result oscillatory. To solve the
problem, a notion of the surrounding background is necessary. Based
on this idea, we construct the tracking image cue as a weighted log
likelihood ratio (WLR) by both the object GMM and its surrounding
GMM. The object is located by searching the maximum WLR region.

To associate the object appearance model with its location, a spatial
kernel is used to weigh the feature’s likelihood ratio, and the object
bounding window can be driven from an initial location my to the
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Fig. 3. Model estimation with feature effective probability.

WLR location p in a gradient-based search. As such, the tracking
problem can be formulated as the optimization problem

Z log [Lobj(xﬂms)}

L .
x; € X, bc(Xz|ms)

mg

Qg = arg max {Cms =

-K(|sims|)} ©)

where Cl,, is the cost function defined by the WLR, p is the
optimum bounding window location to be determined, X, is the
feature set from the current bounding window centered in my, and s;
is the spatial coordinates of each feature vector x;. Lopb;(+) and Ly (+)
are the log likelihoods of a feature evaluated on the object GMM and
its surrounding GMM, respectively, and K (|s; — m]) is the spatial
kernel defined as

K (|s; —mg|) = b, — (s; —my) "7 (s; — my,) ©)

where b; is the normalizing constant to make the kernel nonnegative,
and 3, is a positive-definite matrix estimated from the size of the
current bounding window. The derivative of the kernel is linear to
object motion. The optimization problem can be solved by setting the
derivative of Cyy,, to zero w.r.t. to mg, which is

> {log [Lob;(xim,)] — log [Le (xi[m,)]}

X; €X' my

VCin, =

. [Es_l(si — ms)] . ®
Setting VCyy,, to zeros, the current optimum location o is

> si-{log[Lobj(xi|m.)] —log [Lye(xi[ms)]}

X; €X'mg

E {IOg [Lobj (x2|m8)] —log [LbC(xi|m5)]}

X; €X' mg

By = )

In (9), the log likelihood is evaluated on (3).

In summary, given a GMM density appearance model and a current
starting location of the bounding window, we can estimate the next
best location from the features within the current bounding window
according to (9).

Fig. 4 shows the tracking dynamics and WLR in the bounding
window per iteration from an initial location to the maximum WLR
location. al—a4 are the locations of the bounding window at each
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Fig. 4. Tracking dynamics.

iteration, bl-b4 show the WLR, and the total WLR in the bounding
window is shown in blue. As shown in al, the initial location of the
bounding window is away from the object. In subsequent evaluations,
the object features have larger WLR value than the background;
thus, the bounding window is driven toward the object. After four
iterations, the bounding window locked the object, and the WLR
reaches the maximum.

Fig. 5 compares the effectiveness of the proposed WLR cue with the
Histogram Bhattacharyya Coefficient Distance (HBCD) w.r.t. trans-
lation, rotation, and scaling. The learning and testing are conducted
on frames with 20 intervals. As indicated by sub-Fig. 1, both the
histogram and the object/surrounding GMM are learned in the red
ellipse region. Testing is conducted on the frame in sub-Fig. 2, and
the ground truth is also marked by the red ellipse. In sub-Figs. 3 and
4, the performance of the tracking cue w.r.t. translation is compared.
The surface is generated by sliding the bounding window in the range
[—30:30, —50:50] along the z- and y-directions, respectively. The
matching at each bounding window location to the target is measured
by both the HBCD cue and the total WLR. As such, matching surfaces
are generated in sub-Fig. 3 for the HBCD cue and in sub-Fig. 4 for the
total WLR cue. When surfaces peak at the ground truth location(0,0),
the WLR cue is unimodal with one global maximum, which indicates
a stronger discrimination. In sub-Figs. 5 and 6, the performance of the
tracking cue w.r.t. rotation is compared. The surface is generated by
rotating the bounding window in the range [—50°, 50°]. As shown, the
WLR cue also has a smaller rotational deviation and sharper matching
curve. Moreover, it has fewer local minimum points. In sub-Figs. 7
and 8, the performance of the tracking cue w.r.t. scale is compared.
The surface is generated by scaling the bounding window in the range
[70%, 130%] to the scale of ground truth. They demonstrated the
same property. For the histogram Bhattacharyya coefficient cue, when
the scale is smaller than the ground truth, the curve is flatter, which
indicates that the smaller scale with no background included tends to
be selected. Table I summarizes the deviation in the preceding three
comparisons.

F. Rotation and Scale Adaptation

To capture the object heading angle (rotation) and scaling, rotation
and scaling adaptation are applied to the object bounding window after
it has been localized. Then, the rotation and scale factor [¢, §] with the
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Fig. 5. Performance of tracking cue.
TABLE 1
COMPARISON FOR TRACKING CUES
Deviation translation rotation scaling
Image cue WLR 0 -2° 98%
HBCD 0 8° 90%

largest total WLR is selected for the bounding window. For vehicles
captured in the 25-frames/s video, the empirical range ¢ € [—5°, 5°]
and § € [0.95, 1.05] are large enough to cover all possible values.

III. EXPERIMENTS AND DISCUSSION

A. Choice of Color Space

In the experiment, the L*a*b color space is chosen. The common
choices include RGB and HSV space as well. However, RGB is prone
to be affected by illumination. HSV and L*a*b both decouple illumi-
nation from chromatic information and, thus, offer higher consistency.
Although HSV outperforms L*a*b in [35], it is unreliable for low-
saturation colors. Moreover, HSV colors outside certain V and S
ranges are normally discarded for stability. On comparison, L*a*b
offers more stability across illumination and saturation ranges.
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Fig. 7. Changing scale.

B. Experiments on Tracking

In this part, we test the proposed WLR cue and the integrated
tracking dynamics under different conditions and compare the results
with mean shift tracking. For mean shift tracking, the scale and
orientation of the bounding window are also adapted. For the tracking
accuracy evaluation, the mean M, and standard deviation M, of the
tracking error between the manually specified ground truth locations
and the tracking results are used for quantitive evaluation.

The videos were taken outdoor at 25 frames/s and a resolution of
320 x 240. Multiple-object tracking is implemented by the apply
tracker on each individual object in parallel. The proposed method
individually locates the object. As such, the tracker uses the corre-
sponding object’s features for tracking, and separate data association
is not necessary.

In Fig. 6, the proposed method is tested to capture objects with self-
rotation and decreasing scale. In the video, the truck steers anti-
clockwise and decreases in size when traveling along the road. Both
methods capture the truck’s motion and its scale and rotation. How-
ever, in frames 22 and 37, mean shift gives a larger scale to the object.
For the proposed method, it captures the object exactly all the way.

In Fig. 7, the proposed method is tested for both increasing and
decreasing scales. In the right lane, the car approaches the camera
in increasing scale and is steered to the right. Both methods track
motion and capture scale and rotation reasonably well. On the left
lane, the car departs from the camera in a decreasing scale. Due to
the shadow and the decreasing scale, its color became less saturated.
In this case, the similarity cue becomes ambiguous for mean shift, and
it exhibits a problem in capturing its motion (frame 21) and adapting
to its scale from frame 40 onward. For the proposed method, the WLR
cue captures the most distinguishable part on the object. It tracks the
target and adapts to its scale very well.

In Fig. 8, the proposed method is tested using a rainy-day video.
It should be noted that the water on the road and the roof of the blue
car introduces reflections and causes overexposure and that the green
minibus moves under the tree, which is also green. Both methods track
the blue car reasonably well, although the scale is slightly larger for
mean shift in frames 24, as the background has a similar color as its
roof. For the proposed method, the scale is smaller. As it seeks the
distinguishable part for tracking, this turns out to be most reliable.
For the green minibus, mean shift tracks it before it goes under the
tree. When part of it is occluded by the tree, mean shift is attracted
by the rest of the minibus (as in frames 14-24). When it was mostly

Proposed method

- b

Fig. 9. Changing illumination

Mean siﬁ

>

Proposed m

Fig. 10. Multiple vehicle.

occluded by the tree, mean shift lost the target. However, the proposed
method tracks the target all the way; even when visibility is quite low
(frames 35-43), it still finds the distinguishable part for tracking.

In Fig. 9, the proposed method was tested under changing illumina-
tion. The car starts from a shadowed area in frame 3 and then travels to
a bright area and reaches the peak of illumination in frame 21. It moves
to a darker area afterward. As color is affected by illumination, mean
shift begins to deviate at frame 15 when the scene became brighter and
lost the target from frame 21. However, the proposed method tracks
the car reasonably accurately throughout.

In Fig. 10, the proposed method is tested on multiple vehicles,
and there is a shadowed area in the upper part of the video where
illumination is poorer than the other regions of the image. As
illustrated, both methods track the cars reasonably before they travel
under the shadow. However, mean shift loses the sedan (frame 33) and
the taxi (frame 15) and has an obvious deviation (frame 57). On the
other hand, the proposed method tracks every vehicle in the sequence.
The problematic case is the dark sedan on the second lane from left,
whose color is unsaturated, making it difficult to track by the proposed
method, as demonstrated in frame 33 with a large deviation. However,
the proposed method tracks this car back after the shadow. For the
green bus, the proposed method targets the roof as the most reliable
part. The result is consistent tracking in every frame.

In Fig. 11, the methods are tested in a longer night video over
6000 frames in an environment mixed with pedestrians and
vehicles. The vehicles are well illuminated on the right and not so well
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Mean shift

Fig. 11. Night video.

TABLE 1I
COMPARISON OF TRACKING ACCURACY

Experiment in the figures | Proposed method Mean Shift
Me Md Me Md
Fig.6 Truck 24966  1.7124  5.3678 2.4563
Fig.7 Red car 8.4400 3.8423  15.6935 6.8983
White car 6.4535 3.4883 8.2798 3.5685
Fig.8 Blue car 49912 22188 5.1649 2.1136
Green bus 10.8752 5.4763  43.4668 25.2133
Fig.9 White car 2.6913  1.9229  Lost after framel5
Fig.10 Lane2 sedan | 6.5690 3.3914  Lost after frame27
Lane? taxi 46165 22061 4.7918 3.2945
Lane3 bus 6.3466  2.0252  6.6028 3.7984
Lane3 jeep 4.6585 3.0800 79170 3.1663
Lane4 taxil 36106 22272  Lost after framel8
Laned taxi2 | 4.1916  2.4442  10.1492 5.2193
Laned taxi3 | 6.1347  3.2350 7.4494 3.3365
Fig.11 Taxil 114326 6.4356 22.4672 9.6735
Taxi2 12.6531 5.3677 20.4567 10.5155
Taxi3 11.6737 52294  Lost after frame 2613
Taxi4 82583 54127  Lost after frame 2673
Taxi5 10.6505 5.6300 212948 7.7848
Taxi6 12.2731 4.8037 23.1220 11.0329
SUv 109162 4.8348 15.7136 8.9360
Taxi7 12.5064 7.5509  26.1858 18.3006
Taxi8 16.0800 5.7254  38.4612 20.1123
Taxi9 10.6199 6.6717  24.6407 19.3325
TaxilO 11.0688 72760  Lost after frame 5982
Taxill 19.7020 11.1168 Lost after frame 6172
Taxil2 8.8040 4.5541 15.0700 11.8097
Taxil2 127369 59010 18.4772 14.9670

illuminated on the left due to insufficient light and shadowing. The
vehicles are also partially occluded by the pedestrians and the traffic
signs on the left. Both methods accurately track vehicles in the region
where illumination is consistent, i.e., either bright or dim, as illustrated
in frames 2353, 2775, 4111, etc. However, when vehicles travel
through regions of different illuminations and are slightly occluded
by nearby pedestrians, the accuracy of mean shift abruptly decreases
while the proposed method reliably tracks. For instance, in frames
2362 and 5122, the result of mean shift falls on the rear of the vehicle,
but the proposed method locks the target region as before. When the
vehicle has completely moved into the dimmer region (e.g., in frames
4226 and 7037), mean shift has a localization and scaling problem, but
the proposed method continues to generate a stable track. It is equally
challenging when the vehicle travels from the dimmer to the brighter.
In this case, mean shift lost its target (as shown in frames 2612 and
6188), whereas the proposed method continues to correctly track.

The tracking accuracy referring to the manually specified ground
truth position is compared in Table II. It can be seen that the proposed
method has a smaller mean deviation, and standard deviation is sub-
stantially smaller in the case of the proposed method as well.

IV. CoNCLUSION

This paper proposes the SASA-FDA object appearance
representation, which provides the ability to capture object scale
and rotation by representing both the object appearance and its spatial
layout. To solve the effect of object scaling on feature extraction, the
representation is trained on scale-adaptive features in a consistent
learning algorithm. The WLR measure from the appearance model
is used to construct the image cue for object tracking, and tracking
dynamics is provided to locate the object by the image cue. In testing
and comparing with mean shift, it is verified that the proposed method
works well with target objects under a variety of scale, rotation, and
illumination conditions and is more accurate in tracking compared
with mean shift. The proposed method can potentially be used as
a generic tracker as there is no assumption imposed on the target
objects, and since the appearance model is learned in one shot, an
offline line object training database is not required. The proposed
method can be further improved in the areas of online updating of the
appearance model, exploration of other types of features, and feature
fusion methods to achieve improved robustness.
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