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Abstract—In this report, we propose an object learning system
that incorporates sensory information from an automotive radar
system and a video camera. The radar system provides a coarse
attention for the focus of visual analysis on relatively small areas
within the image plane. The attended visual areas are coded and
learned by a 3-layer neural network utilizing what is called in-
place learning: each neuron is responsible for the learning of
its own processing characteristics within the connected network
environment, through inhibitory and excitatory connections with
other neurons. The modeled bottom-up, lateral, and top-down
connections in the network enable sensory sparse coding, unsu-
pervised learning and supervised learning to occur concurrently.
The presented work is applied to learn two types of encountered
objects in multiple outdoor driving settings. Cross validation
results show that the overall recognition accuracy is above
95% for the radar-attended window images. In comparison with
the uncoded representation and purely unsupervised learning
(without top-down connection), the proposed network improves
the overall recognition rate by 15.93% and 6.35%, respectively.
The proposed system is also compared with other learning
algorithms favorably. The result indicates that our learning
system is the only one fit for the incremental and online object
learning in the real-time driving environment.

Index Terms—Intelligent vehicle system, sensor fusion, object
learning, biologically inspired neural network, sparse coding.

I. INTRODUCTION

The field of intelligent vehicles has been rapidly growing
in the last two decades [1]. Examples include both fully
autonomous driving vehicles [2] [3] [4] and Advanced Safety
Driver Assistance Systems (ASDAS) [5] [6], such as adaptive
cruise control (ACC), lane departure warning (LDW) and
collision avoidance system, etc. The success of intelligent ve-
hicle systems depends on a rich understanding of the complex
road environment, which contains many signals and cues that
visually convey information, such as traffic lights, road signs,
other vehicles, and pedestrians, to name a few. To take correct
and intelligent actions in the driving conditions, recognition
of the varied objects becomes one of the most critical tasks.

Vision and radar systems have complimentary properties for
object detection and validation. As one type of active sensors, a
radar system has shown good performance detecting objects in
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driving environments. It provides fairly accurate measurements
of the object’s distance and velocity, and remains robust under
various weather conditions. However, present radars installed
on a vehicle do not have enough lateral resolution to model
object’s shape, leading to a limitation of recognizing object
types. On the contrary, video cameras, are able to provide
sufficient lateral resolution to analyze objects. The cues of
shapes, furthermore the appearance, give more details of the
characteristics of different objects.

The fusion of radar and vision information has been widely
discussed and utilized in intelligent vehicle systems. Early
fusion framework analyzed radar positions in a vision-based
lane recognition system to achieve better lane estimation
(e.g. Jochem and Langer 1996 [7], Gern et al. 2000 [8] and
Hofmann et al. 2000, 2003 [9] [10]). Afterwards, radar-vision
approaches are more focused on the fusion for detecting target
(e.g., vehicle, pedestrian, etc.) level. Grover et al. 2001 [11]
extracted low level blob features in a single radar map and a
single night-vision image. The fusion was performed in polar
coordinates to determine vehicle localization based on angular
positions. Kato et al. 2002 [12] fused radar tracks and motion
stereos together to identify the distance and vertical boundaries
of objects in an urban road environment. Sole et al. 2004 [13]
treated video and radar sensors as two independent sources of
target acquisition: the matched targets were validated and did
not require further processing while unmatched radar targets
were processed via motion and texture analysis for further
validation. Alessandretti et al. 2007 [14] estimated regions of
interest (ROI) from radar returns, where vertical symmetries
were used to search vehicles in the attended small areas. Using
the similar mechanism of ROI provided by radars, Kadow et al.
2007 [15] and Bertozzi et al. 2008 [16] developed an optimized
symmetry measure and new motion stereos, respectively, to
detect and track other vehicles. Recently, Wu et al. 2009 [17]
fused information from a stereo-camera and millimeter-wave
radar to estimate the location, pose and motion information of
a threat vehicle within 20 meters range.

However, the quantitative evaluation (e.g., average recogni-
tion rate) of object recognition/detection is missing in most of
the work above. In addition, aforementioned fusion researches
mainly detected key objects (i.e., vehicles or pedestrians) using
object-specific features, such as blobs, edges, symmetries and
motion, etc. The object-specific (also called task-specific) per-
ceptual approach is not suited to provide perceptual awareness
in complex environments with various objects of interest.

In the proposed work, we take advantage of radar-vision
integration to achieve an efficient attention selection on candi-
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Fig. 1: An outline of the system architecture.

date targets, and employ a generic object learning network
to identify object classes without using the low-level and
mid-level object-specific features. A cortex-inspired neural
network integrates 3-way computations (i.e., bottom-up, top-
down and lateral) to code object samples in an over-complete
space and learn the distribution of coded “key” object patterns
for favorable recognition performance. Its in-place learning
mechanism provides the incremental learning optimality, and
comparatively low operational complexity even for a very large
network.

A successful implementation requires a combination of
the following challenges (to the best of our knowledge, no
existing study meets them all): (1) General radar-vision fusion
framework not constrained for a task-specific learning; (2)
Visual sensory sparse coding via statistical independence of
developed features; (3) Incremental object learning adaptive
to the changing of environments and objects; (4) Online
real-time speed due to low computation complexity; (5) In-
tegration of supervised learning (via top-down propagation)
and unsupervised learning (via bottom-up propagation) in
any order suited for development. All the properties above,
coupled with a nurturing and challenging environment, as
experienced through sensors and effectors, allow the automatic
perceptual awareness to emerge as an important research area
in intelligent vehicles.

II. ARCHITECTURE

An outline of the system architecture is shown in Fig.1.
The eventual goal is to enable a vehicle-based agent to develop
the ability of perceptual awareness, with applications including
autonomous driving and advanced driver assistance. Perceptual
awareness is a conceptual and symbolic understanding of the
sensed environment, where the concepts are defined by a
common language1 between the system and the teachers or
users. In this report, a teacher points out sensory examples of
particular conceptual object classes (e.g., vehicle, pedestrian,
traffic lights, and other objects that are potential driving
hazards). The system learns to associate a symbolic token
with the sensed class members, even those that have not

1The language can be as simple as a pre-defined set of tokens or as complex
as human spoken languages.

been exactly sensed before, but instead share some common
characteristics (e.g., a van can be recognized as a vehicle by
the presence of a license plate, wheels and tail lights). More
complicated perceptual awareness beyond recognition involves
abilities like counting and prediction.

In Fig.1, the camera and the radar system work together
to generate a set of attended window images, containing
environment objects. A teacher communicates with the system
through an interface to train the class labels of objects.
A 3-layer network provides the processing and learning of
the extracted window images. The number of neurons in
each layer is specified at a 3D grid (see Fig. 4 for the set
of parameters). Layer 1 encodes the local input fields of
each window image using self-developed orientation-selective
features. Neurons in layer 2 learn the sparse-coded object
representations, associated by layer 3 with teacher’s output
tokens.

III. COARSE ATTENTION SELECTION

Two kinds of external (outward looking) sensors are used
in the proposed architecture. One is a system of radars,
composed of one long-range radar and four short-range radars,
utilized to find attended targets (with possible false alarms)
in the environment. The other senses the vision modality.
Information from this sensor is used to develop the ability
to recognize objects and identify false alarms. Tables I & II
specify the sensor parameters of radar and vision modalities,
respectively.

TABLE I: Sensor specifications of the radar system

Key parameters Specification
Refreshing rate 10 Hz
No. of targets max. of 20 targets
Max. range 150m±max(5%, 1.0m)

Field of view 180o (≤ 30m); 15o (> 30m)
Range rate ±56m/s± 0.75m/s

As shown in Fig. 2 (right), a group of target points in 3D
world coordinates can be detected from the radar system, with
a detection range of up to 150 meters. Each radar point is
presented by a triangle, associated with a bar, whose length
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TABLE II: Sensor specifications of the video camera

Key parameters Specification
Refreshing rate 15 Hz
Field of view 45o

Resolution 320× 240

and direction indicate the relative speed of an object. As a
rudimentary but necessary attention selection mechanism, we
discarded radar returns of more than 80 meters in distance
ahead or more than 8 meters to the right or left outside the
vehicle path (e.g., the red triangle points in Fig. 2 (right) are
omitted).

Vision Field: 45o
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Fig. 2: A projection of valid radar points (green) onto the image
plane, where window images are extracted for further recognition.

Based on the estimation of maximum height (3.0 meters)
and maximum width (3.8 meters) of environment targets, a
rectangular target window (with fixed size 3.0 × 3.8 m2) is
generated to be centered at each valid radar point. All the
target windows at each time t are then projected into the
corresponding image via perspective mapping transformation.
The transformation is performed by the calibration data that
contain the intrinsic and extrinsic parameters of each camera.
For example, if the radar-returned object distance (to the host
vehicle) is large, the attention window in the image is small
and vice versa.

For each attention window, the pixels are extracted as a
single image and most of the non-target or background pixels
(e.g., the part of sky, road and side grass in Fig. 2 (upper left))
have been filtered out. Each image is normalized in size, in this
case to 56 rows and 56 columns as shown in Fig. 2 (bottom
left). To avoid stretching small images, if the attention window
could fit, it was placed in the upper left corner of the size-
normalized image, and the other pixels are set to be uniform
gray.

There may be more than one object in each window image,
but for the purpose of object identification, the image is as-
signed with only one label. The labeled radar windows create a
set of selected areas while the rest of the image is ignored. This
is called coarse attention selection — finding candidate areas
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Fig. 3: General structure of the network connection. Neurons are
placed (given a position) on different layers in an end-to-end hier-
archy – from sensors to motors. Only the connections to a centered
cell are shown, but all the other neurons in the feature layer have the
same default connections.

purely based on physical characteristics of radar returns. The
attended window images may still contain some information
unrelated to the object, such as “leaked-in” background behind
the object. However, our object learning scheme does not
require the good segmentation of the object itself, but instead
it depends on the discriminant statistical distributions of the
scenes in each window image. The proposed system can learn
to detect and recognize multiple objects within the image
captured by the video camera, as long as a radar point is
returned for each one.

IV. OBJECT LEARNING NETWORK

The attended window images are coded and learned through
the proposed neural network (see Fig. 1) via 3 layers, till
the motor output, where each neuron in the motor layer
corresponds to one object class. Fig. 3 shows the general
structure of the network connection with three consecutive
layers. Every neuron at layer l is connected with four types
of connection weights:

1) Bottom-up weight vector wb
(l) that links connections

from its bottom-up field in the previous level.
2) Top-down weight vector wt

(l) that links connections
from its top-down field in the next level.

3) Lateral weight vector wh
(l) that links inhibitory connec-

tions from neurons in the same layer (larger range).
4) Lateral weight vector we

(l) that links excitatory connec-
tions from neurons in the same layer (smaller range).
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Note that each linked weight pair (i, j) shares the same
value, i.e., wt

(l−1)
i,j = wb

(l)
j,i . Moreover, this work does not use

explicit lateral connections, but instead uses an approximate
method: the top-k winners (i.e., k largest responses) along
with their excitatory neighbors update and fire. The suppressed
neurons are considered laterally inhibited and the winning
neurons are considered laterally excited.

Image input 
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Fig. 4: An example of layer representations (i.e., responses)
in the proposed neural network, including a specific set of
resource parameters implemented. Green and red directed lines
show the bottom-up and top-down connections to the firing
neurons, respectively. It is noted that the bottom-up fields of
layer 1 neurons are 16×16 local areas over the entire 56×56
image plane, with a stagger distance per 8 pixels, and the top-
down fields are not available in layer 1 and layer 3. In addition,
neural representations in layer 1 are reshaped to 36× 431 for
visualization purpose.

The object learning network is incrementally updated at
discrete times, t = 0, 1, 2, ..., taking inputs sequentially from
sensors and effectors, computing responses of all neurons, and
producing internal and external actions through experience.
Fig. 4 shows an example of network computation, layer
by layer, as well as key parameters used in the network
implementation.

As described in Algorithm 1, layer 1 of the proposed net-
work develops earlier than other layers, which is inspired from
the biological fact that early cortical regions in the brain (e.g.,
primary visual cortex) would develop earlier than the later
cortical regions [18]. Given t = 1, 2, ...500000, the network
receives 56× 56-pixel (same as attention window dimension)
natural image patches, which were randomly selected from the
thirteen natural images2. Neurons are learned through the in-
place learning algorithm described in Algorithm 2, however,
without supervision on motors. After 500000 updates of layer
1 neurons, their bottom-up features tend to converge. Then
the network perceives radar-attended images and all the layers
are developed through the same in-place learning procedure

2Available at http://www.cis.hut.fi/projects/ica/imageica/

in Algorithm 2, whereas supervised signals from a teacher are
given in the motor layer 3.

The network performs an open-ended online learning while
internal features “emerge” through interaction with its ex-
tracellular environment. All the network neurons share the
same learning mechanism and each learns on its own, as a
self-contained entity using its own internal mechanisms. In-
place learning, representing a new and deeper computational
understanding of synaptic adaptation, is rooted in the genomic
equivalence principle [19]. It implies that there cannot be
a “global”, or multi-cell, goal to the learning, such as the
minimization of mean-square error for a pre-collected (batch)
set of inputs and outputs. Instead, every neuron is fully
responsible for its own development and online adaptation
while interacting with its extracellular environment.

In the following sections, we will go through critical compo-
nents of the neural network in order to achieve the robust and
efficient object recognition. Sec. V will address the statistical
optimality of neurons’ weight adaption in both spatial and
temporal aspects. Sec. VI will explain how the sparse coding
scheme is performed by layer 1 and why such a coding scheme
is favorable compared to its original pixel representation. Sec.
VII will describe the abstraction role of top-down connections
to form the bridge representation in layer 2, along with its
perspective to reducing within-object variance, and thereby,
facilitating the object recognition.

V. LEARNING OPTIMALITY

In this section, we will discuss the learning optimality of
the in-place learning algorithm described above. Given the
limited resource of N neurons, the in-place learning divides
the bottom-up space X into N mutually non-overlapping
regions, such that

X = R1 ∪R2 ∪ ... ∪RN

where Ri ∩ Rj = ϕ, if i ̸= j. Each region is represented by
a single unit feature vector wbi, i = 1, 2, ..., N , and all the
vectors are not necessarily orthogonal. The in-place learning
decomposes a complex global problem of approximation and
representation into multiple, simpler and local ones so that
lower order statistics (means) are sufficient. The proper choice
of N is important for the local estimation of X . If N is too
small, the estimation becomes inaccurate. On the other hand,
if N is too large, it is possible to over-fit the space X .

From Eq. 14, a local estimator wbi can be expressed as:

∆wbi = Φ(ni)[xi(t)yi(t+ 1)−wbi(t)] (1)

When ∆wbi = 0, meaning that the learning weight wbi

converges, we have

xi(t)yi(t+ 1) = wbi(t) (2)

Consider a layer (e.g., layer 1 of the proposed network) in
which the top-down connections are not available3, Eq. 2 can
be re-written as below:

xi(t)
xi(t) ·wbi(t)

∥wbi(t)∥∥xi(t)∥
= wbi(t) (3)

3The functional role of top-down connection will be specifically discussed
in Sec. VII
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such that

xi(t)x
T
i (t)wbi(t) = ∥wbi(t)∥∥xi(t)∥wbi(t) (4)

Averaging both sides of Eq. 4 over xi(t), conditional on
wbi staying unchanged (i.e., converged), we have

C wbi = λ wbi (5)

where C is the covariance matrix of inputs xi(t) over time
t and the scalar λ =

∑
t ∥wbi(t)∥∥xi(t)∥. Eq. 5 is the

standard eigenvalue-eigenvector equation. It means that if a
weight wbi converges in a local region of the bottom-up space
X , the weight vector becomes one of the eigenvectors given
input covariance matrix. For this reason, the in-place neural
learning becomes a principal component analyzer (PCA)4 [21],
which is mathematically optimal to minimize the squared
mapping/representational error, such that

wb
∗
i = argmin

wbi

∑
t

∥(xi(t) ·wbi)wbi − xi(t)∥2. (6)

In addition, the multi-sectional function µ(n) in Eq. (13)
performs straight average µ(n) = 0 for small n to reduce
the error coefficient for earlier estimates. Then, µ(n) enters
the rising section and changes from t1 to t2 linearly. In
this section, neurons compete for the different partitions by
increasing their learning rates for faster convergence. Finally,
n enters the third section – the long adaptation section, where
µ(n) increases at a rate about 1/r, meaning that the second
weight (1 + µ(n))/n in Eq. (13) approaches a constant 1/r
to trace a slowly changing distribution. This kind of plasticity
scheduling is more suited for practical signals with unknown
non-stationary statistics, where the distribution does follow
i.i.d assumption in all the temporal phase.

In summary, the in-place learning scheme balances dual
optimalities for both limited computational resource (spatial)
and limited learning experience at any time (temporal):

1) Given the spatial resource distribution tuned by neural
computations, the developed features (weights) mini-
mize the representational error.

2) The recursive amnesic average formulation enables au-
tomatic determination of optimal step sizes in this in-
cremental non-stationary problem.

Because the in-place learning does not require explicit
search in high-dimensional parameter space nor compute the
second order statistics, it also presents high learning efficiency.
Given each n-dimensional input x(t), the system complexity
for updating m neurons is O(mn). It is not even a function
of the number of inputs t, due to the nature of incremental
learning. For a network meant to run in online development,
this low update complexity is very important.

VI. SENSORY SPARSE CODING

In this section, we will discuss important characteristics
of above dual optimalities in learning natural images – a
mixture of super-gaussian sources [22]. As discussed in [23],

4Although not shown here, Oja et al. [20] has proven that it is the first
principal component that the neuron will find, and the norm of the weight
vector tends to 1.

when the input is the super-gaussian mixture, the spatial
optimality of minimizing representation error in the in-place
learning can function as an Independent Component Analysis
(ICA) algorithm [24], and its temporal optimality performs
with surprising efficiency [25]. Such independent components
would help separate the non-Gaussian source signals into
additive subcomponents with mutual statistical independence.

An example of developed independent components (i.e.,
bottom-up weights of our layer 1) are shown as image patches
in Fig. 5. Many of the developed features resemble the orienta-
tion selective cells that were observed in V1 area, as discussed
in [26], [27]. The mechanism of top-k winning is used to
control the sparseness of the coding. In the implemented
network, k is set to 91 to allow about a quarter of 431
components active for one bottom-up field in a window image.
Although the developed features appear like Gabor filters, the
inside independent statistics of these developed features are
not available in any formula-defined Gabor functions.

Fig. 5: Developed layer 1 features (431) in one neural column,
arranged in a 2D grid. Each image patch shows a bottom-up weight
(16× 16 dimensions) of one neuron.

Because the object appearance in radar-attended window
images could potentially vary quite a bit (the object invariance
issue), and “leaked-in” background may pose some amount of
noise, it is computationally inefficient to present and recognize
objects using millions of pixels. The developed independent
features in layer 1 (considered as independent causes) are
able to code the object appearance from raw pixel space
(56 × 56) to an over-complete, sparse5 space (431 × 36).
Such a sparse coding leads to lower mutual information
among coded representations than pixel appearance, where
the redundancy of input is transformed into the redundancy
of firing pattern of cells [27]. This allows object learning to
become a compositional problem, i.e., a view of a novel object
is decomposed as a composite of a unique set of independent
events. As shown in the experiment, Sec. VIII, the sparse
coding decomposes high-correlated, redundant information in

5By over-complete, it means that the number of code elements is greater
than the dimensionality of the input space. By sparse, it means that only a
few neurons will fire for a given input.



6

the pixel inputs and forms the representations where statistical
dependency is reduced and “key” object information for later
recognition is preserved.

It is worth mentioning that as natural images hold the vast
inequities in variance along different directions of the input
space, we should “sphere” the data by equalizing the variance
in all directions [22]. This pre-processing is called whitening.
The whitened sample vector s is computed from the original
sample s′ as s = Ws′, where W = VD is the whitening
matrix. V is the matrix where each principal component
v1,v2, ...,vn is a column vector, and D is a diagonal matrix

where the matrix element at row and column i is
1√
λi

(λi is

the eigenvalue of vi). Whitening is very beneficial to uncover
the true correlations within the natural images, since it avoids
the derived features to be dominated by the larger components.

VII. TOP-DOWN ABSTRACTION
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Fig. 6: Illustration of the top-down connection role. Here, bottom-up
input samples contain two classes, indicated by samples “+” and “o”,
respectively. To see the effect clearly, we assume only two neurons are
available in the local region. (a) Class mixed using only the bottom-up
inputs. The two neurons spread along the direction of larger variance
(irrelevant direction). The dashed line is the decision boundary based
on the winner of the two neurons, which is a failure partition case.
(b) Top-down connections boost the variance of relevant subspace in
the neural input, and thus recruit more neurons along the relevant
direction [28]. (c) Class partitioned. Especially during the testing
phase, although the top-down connections become unavailable and
the winner of the two neurons uses only the bottom-up input subspace
X , the samples are partitioned correctly according to the classes (see
dashed line).

As described in Sec. II, the coded representation in layer 1
is feed-forward to layer 2, which is associated with feed-back,
top-down connections from supervised signals in layer 3. The
top-down connections coordinate the neural competition and
representations through two abstraction roles.

1) The top-down connections provide a new subspace
where the relevant information (the information that
is important to distinguish motor outputs) will have
a higher variance than the irrelevant subspace. Since
higher variance subspace will recruit more neurons due
to the Neuronal Density Theorem [28], the represen-
tation acuity becomes higher in the relevant subspace,
and more suited to the task(s) that were trained. Fig. 6
illustrates this top-down connection role. As shown in
Fig. 6(c), the neurons largely spread along the relevant
direction and are invariant to irrelevant information.

The classes are partitioned correctly in the subspace
(partitioned at the intersection with the dashed line) after
the top-down connection, but before that, the classes in
Fig. 6(a) are mixed in the bottom-up subspace X .

2) Via the top-down connections, neurons form topographic
cortical areas according to the abstract classes, called
topographic class grouping (TCG). That is, based on
the availability of neurons, the features represented for
the same motor class are grouped together to reduce
the relative within-class variance and lead to the better
recognition ability.
Consider the within-class variance w2

X of input space X

w2
X =

n∑
i=1

E{∥x− x̄i∥2 | x ∈ ci} pi (7)

and its total variance

σ2
X = E{∥x− x̄∥2} (8)

where x̄i is the mean of inputs in each class and x̄ is
the mean of all the inputs. pi denotes the probability of
a sample belonging to the class ci. Thus, the relative
within-class variance of input space X can be written
as

rX =
w2

X

σ2
X

(9)

From the Neuronal Density Theorem above, we know
that the neurons will spread along the signal manifold
to approximate the density of expanded input space
X × Z. Based on the top-down propagation from the
motor classes, we have w2

Z/σ
2
Z < w2

X/σ2
X , such that

the expanded input space X × Z has smaller relative
within-class variance than that in X .

rX×Z =
w2

X + w2
Z

σ2
X + σ2

Z

< rX . (10)

Note that if top-down space Z consists of one label for
each class, the within-class variance of Z is zero: w2

Z =
0 but the grand variance σ2

Z is still large.
Overall, above two abstraction properties work together to

transform the meaningless (iconic) inputs into the internal
representation with abstract class meanings.

VIII. EXPERIMENTAL RESULTS

In this section, we will conduct multiple experiments based
on the described system architecture and its learning ad-
vantages. An equipped vehicle is used to capture real-world
images and radar sequences for training and testing purpose.
Our dataset is composed from 10 different “environments”
– stretches of roads at different looking places and times.
Fig. 7 shows a few examples of corresponding radar and image
data in different environment scenarios. In each environment,
multiple sequences were extracted. Each sequence contains
some similar but not identical images (e.g., different scales,
illumination and view point variation, etc.). The proposed
learning architecture is evaluated for a prototype of two-class
problem: vehicles and other objects, which can be extendable
to learn any types of objects defined by external teachers.
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t

...

...

FrameSeqID FrameNum FrameTime ID1 ID2 … LongDist1 LongDist2 … LateralDist1 LateralDist2 … Confidence1 Confidence2 … 

… … … … … … … … … … … … … … … 

L0815_01 1081 108518 133 104 … 26.8 126.9 … -3.2 0.3 … 15 9 … 

… … … … … … … … … … … … … … … 

L0815_04 915 91865 143 242 … 30.2 11.5 … -0.2 10.2 … 15 15 … 

… … … … … … … … … … … … … … … 

L0815_05 466 46821 101 34 … 76.8 10.4 … 5 -0.1 … 15 15 … 

… … … … … … … … … … … … … … … 

L0815_08 836 83940 139 157 … 21.5 69.3 … 2.9 -5.2 … 15 15 … 

...
...

Fig. 7: Examples of radar data and corresponding images in the time sequence. It also shows some examples of different road environments
in the experiment.

There are 1763 samples in the vehicle class and 812 samples
in the other object class. Each large image from the camera
is 240 rows and 320 columns. Each radar window is size-
normalized to 56 by 56 and intensity-normalized to {0 1}.

A. Sparse coding effect
To verify the functional role of sparse coding discussed in

Sec. VI, we captured 800 radar-attended window images from
our driving sequences and presented them in an object-by-
object order. Each object possibly appears in several window
images with sequential variations. The correlation matrix of
800 window images is plotted in Fig. 8 (a), indicating the
high statistical dependence among the samples, especially,
across different objects. Each image is then coded for a sparse
representation in layer 1. The correlation matrix of generated
sparse representations is plotted in Fig. 8 (b). It shows the
advantage in two aspects: (1) object samples are de-correlated,
i.e., cross-object correlation is dramatically reduced; (2) object
information is maintained, i.e., within-object samples keep the
high correlation.
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Fig. 8: Correlation matrix of (a) 800 window images in pixel space
and (b) their corresponding sparse representations in layer 1 space.

B. Top-down abstraction effect
To evaluate the functional role of top-down abstraction dis-

cussed in Sec. VII, we first define the empirical “probability”

of a neuron’s firing across classes:

pi =
n(i)∑c
1 n(i)

i ∈ 1, 2, ..., c (11)

where n(i) is the winning age of a neuron fired on a motor
class i.

“Vehicle”
“Other objects”

(a) (b)

Fig. 9: 2D class map of 15×15 neurons in layer 2: (a) without top-
down connections and (b) with top-down connections. Each neuron is
associated with one color, presenting a class with the largest empirical
“probability” pi.

As shown in Fig. 9 and discussed in Sec. VII, neurons tend
to distribute along the classes (i.e., “relevant information”).
When the number of available neurons are larger than the
number of classes, the neurons representing the same class are
grouped together, leading to the lower within-class variance,
i.e., simpler class boundaries. Through the mechanism of top-
down abstraction, the network is able to develop both effective
and efficient internal neural distributions.

C. Cross validation

In this experiment, a ten-fold cross validation is performed
to evaluate the system performance. All the samples are
shuffled and partitioned to 10 folds/subsets, where 9 folds are
used for training and the last fold is used for testing. This
process is repeated 10 times, leaving one fold for evaluation
each time. The cross validation result is shown in Fig. 10 (c).
The average recognition rate of the vehicle samples is 96.87%,
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Fig. 10: 10-fold cross validation (a) without sparse coding in layer 1, (b) without top-down connection from layer 3 and (c) of the proposed
work.

and 94.01% of the other object samples, where the average
false positive and false negative rates are 2.94% and 6.72%,
respectively. Compared to the performance without sparse
coding in layer 1 (see Fig. 10 (a)), we found that, in average,
the recognition rate improves 16.81% for positive samples and
14.66% for negative samples, respectively. Compared to the
performance without top-down supervision from layer 3 (see
Fig. 10 (b)), the recognition rate improves 5.83% for positive
samples and 7.12% for negative samples, respectively.

D. Performance comparison

For an open-ended visual perceptual development, an in-
cremental (learning one image perception per time), online
(cannot turn the system off to change or adjust), real-time (fast
learning and performing speed), and extendable (the number
of classes can increase) architecture is expected. We compare
the following incremental learning methods in MATLAB to
classify the extracted window images (56 × 56) as vehicles
and other objects: (1) K-Nearest Neighbor (K-NN), with K=1,
and using a L1 distance metric for baseline performance; (2)
Incremental Support Vector Machines (I-SVM) [29]; (3) In-
cremental Hierarchical Discriminant Regression (IHDR) [30]
and (4) the proposed network described in this report. We
used a linear kernel for I-SVM, as is suggested for high-
dimensional problems [31]. We did try several settings for
a radial basis function (RBF) kernel, but the system training
becomes extremely slow and the performance improvement is
not obvious.

Instead of randomly selecting samples in cross validation,
we used a “true disjoint” test, where the time-organized
samples are broken into ten sequential folds. Each fold is used
for testing per time. In this case, the problem is more difficult,
since sequences of vehicles or objects in the testing fold may
have never been seen. This truly tests generalization.

The results are summarized in Tables III. K-NN performs
fairly well, but is prohibitively slow. IHDR combines the
advantage of K-NN with an automatically developed tree
structure, which organizes and clusters the data well. It is
extremely useful for the fast retrieval due to its logarithmic
complexity. IHDR performs the recognition better than K-
NN, and is much faster for the real-time training and testing.

However, IHDR typically takes a lot of memory. It allows
sample merging of prototypes, but in such case it saved every
training sample, and thereby did not use memory efficiently. I-
SVM performed the worst on our high-dimensional data with
amount of noise, but the testing speed is fastest, since its
decision making only based on a small number of support
vectors. A major problem with I-SVM is lack of extendibility.
By only saving support vectors to make the best two-class
decision boundary, it throws out information that may be
useful in distinguishing other classes added later.

Overall, the proposed network is able to perform the recog-
nition better than all other methods using only 15×15 layer 2
neurons with a top-down supervision parameter α = 0.3. It is
also fairly fast, and efficient in terms of memory. The proposed
work does not fail in any criteria, although it is not always the
“best” in each category. The proposed work also has its major
advantages in extendibility. New tasks, more specifically, new
object classes can be added later without changing the existing
learning structure of the network.

E. Incremental and online learning
The proposed neural network is incrementally updated by

one piece of training data at a time, and the data is discarded as
soon as it has been “seen”. The incremental learning enables
the recognition system to learn while performing online. This
is very important for the intelligent vehicle systems, especially
when information among input images is huge and highly
redundant. The system only needs to handle information
necessary for the decision making.

An incremental online teaching interface is developed in
C++ using a PC with 2.4 GHz Intel Core2 Duo CPU and 4GB
memory. The teacher could move through the collected images
in the order of their sequence, provide a label to each radar
window, train the agent with current labels, or test the agent’s
developed knowledge. Even in this non-parallelized version,
the speed is in real-time use. The average speed for training
the entire system (not just the algorithm) is 12.54 samples/s
and the average speed for testing is 15.12 samples/s.

IX. CONCLUSION

In this report, we proposed and demonstrated a generic
object learning system based on the automobile sensor fusion
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TABLE III: Average performance & comparison of learning methods over ”true disjoint” test

Learning Overall “Vehicle” “Other objects” Training time Testing time
method accuracy accuracy accuracy per sample per sample
K-NN 78.45± 12.64% 74.43± 13.55% 90.44 ± 8.33% n/a 891± 13.4ms
ISVM 71.54± 9.82% 73.23± 9.36% 69.32± 10.24% 161.2± 18.3ms 2.4± 0.3ms
IHDR 80.21± 6.14% 74.78± 10.24% 89.43± 5.38% 4.2± 1.9ms 6.4± 2.3ms

Proposed network 87.01± 1.43% 89.32± 1.64% 82.33± 6.54% 112± 8.2ms 42.3± 7.2ms

framework. Early attention selection is provided by an efficient
integration of multiple sensory modalities (vision and radar).
Extracted attended areas are sparsely coded by the neural
network using its layer 1 features that were developed from
the statistics of natural images. Layer 2 of the network further
learns in reaction to the coupled sparse representation and
external class representations, where each cell in the network is
a local class-abstracted density estimator. The proposed system
architecture allows incremental and online learning, which is
feasible for real-time use of any vehicle robot that can sense
visual information, radar information, and a teacher’s input.

For future work, we would like to test the system perfor-
mance on the other critical objects (e.g., pedestrians, traffic
signs, etc.) in various driving environments. Since the radar
system is robust for various weather conditions, the sensor
fusion framework can potentially be extended to some severe
weather conditions, such as in heavy rain or snow. Currently, it
is assumed that each frame is independent from the next. Re-
laxing this assumption may lead the way to explore temporal
information of images, which should benefit the effectiveness
of the learning system. We hope that these improvements will
eventually lead to a vehicle-based agent that can learn to be
aware of any type of objects in its environment.
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Algorithm 2 In-place learning procedure: (y(t + 1), L(t +
1)) = In-place(x(t),y(t), z(t) | L(t))

1: for 1 ≤ i ≤ Nl do
2: Compute pre-response of neuron i from bottom-up and

top-down connections:

ŷ
(l)
i (t+ 1) = gi

(
(1− αl)

wb
(l)
i (t) · x(l)

i (t)

∥wb
(l)
i (t)∥∥x(l)

i (t)∥

+ αl
wt

(l)
i (t) · z(l)i (t)

∥wt
(l)
i (t)∥∥z(l)i (t)∥

)
(12)

where x
(l)
i (t) and z

(l)
i (t) are bottom-up and top-down

input fields of neuron i. gi is a sigmoid function with
piecewise linear approximation. αl is a layer-specific
weight that controls the influence of top-down part.

3: end for
4: Simulate lateral inhibition and decide the winner:

j = arg max
i∈I(l)

ŷ
(l)
i (t+ 1)

5: The cells in excitatory neighborhood E(l) are also consid-
ered as winners and added to the winner set J .

6: The responses y
(l)
j of winning neurons are copied from

their pre-responses ŷ
(l)
j .

7: Update the number of hits (cell age) nj for the winning
neurons: nj ← nj + 1. Compute µ(nj) by the amnesic
function:

µ(nj) =

 0 if nj ≤ t1,
c(nj − t1)/(t2 − t1) if t1 < nj ≤ t2,
c+ (nj − t2)/r if t2 < t,

(13)
where parameters t1 = 20, t2 = 200, c = 2, r = 2000 in
our implementation.

8: Determine the temporal plasticity of winning neurons,
based on each age-dependent µ(nj):

Φ(nj) = (1 + µ(nj))/nj ,

9: Update the synaptic weights of winning neurons using its
scheduled plasticity:

wb
(l)
j (t+ 1) = (1− Φ(nj))wb

(l)
j (t)

+ Φ(nj)x
(l)
j (t)y

(l)
j (t+ 1)

(14)

10: All other neurons keep their ages and weight unchanged.

Algorithm 1 Network processing procedure
1: for t = 1, 2, ....500000 do
2: Grab a whitened natural image patch s(t).
3: for l = 1 do
4: Get the bottom-up fields x(t) from s(t). The top-

down fields z(t) are set to 0.
5: (y(t+1), L(t+1)) = In-place(x(t),y(t), z(t) |L(t)),

where L(t) presents the state of current layer l,
including its bottom-up and top-down weighs, neural
ages, etc.

6: end for
7: end for
8: for t = 500001, 500002, ... do
9: Grab the attention window image s(t).

10: Impose the motor vector (labeled) m(t) to layer 3.
11: for 1 ≤ l ≤ 3 do
12: if l = 1 then
13: Get the bottom-up fields x(t) from s(t). The top-

down fields z(t) are set to 0.
14: else if l = 2 then
15: Get the bottom-up fields x(t) from the previous

layer representation (responses) and the top-down
fields z(t) from m(t).

16: else
17: Get the bottom-up fields x(t) from the previ-

ous layer representation (responses). The top-down
fields z(t) are set to 0.

18: end if
19: (y(t+1), L(t+1)) = In-place(x(t),y(t), z(t) |L(t)).
20: end for
21: end for
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