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Abstract—Advanced vehicle guidance systems use real-time
traffic information to route traffic and to avoid congestion. Unfor-
tunately, these systems can only react upon the presence of traffic
jams and not to prevent the creation of unnecessary congestion.
Anticipatory vehicle routing is promising in that respect, because
this approach allows directing vehicle routing by accounting for
traffic forecast information. This paper presents a decentralized
approach for anticipatory vehicle routing that is particularly use-
ful in large-scale dynamic environments. The approach is based
on delegate multiagent systems, i.e., an environment-centric co-
ordination mechanism that is, in part, inspired by ant behavior.
Antlike agents explore the environment on behalf of vehicles and
detect a congestion forecast, allowing vehicles to reroute. The
approach is explained in depth and is evaluated by comparison
with three alternative routing strategies. The experiments are done
in simulation of a real-world traffic environment. The experiments
indicate a considerable performance gain compared with the most
advanced strategy under test, i.e., a traffic-message-channel-based
routing strategy.

Index Terms—Autonomous agents, distributed control, intel-
ligent vehicles, mobile agents, multiagent systems, navigation,
software architecture, traffic control.

I. INTRODUCTION

P EOPLE use vehicles to go places using the road infrastruc-
ture. The large number of current vehicles and the limited

capacity of the road networks make routing traffic a particularly
challenging problem. Not only does a vehicle need to reach its
destination, but it also is desired that the trip can be performed
in a timely comfortable fashion. Aside from basic SatNav
devices, which use static maps for the fastest path routing,
more advanced devices exploit broadcast traffic information,
e.g., through a traffic message channel (TMC). An accident that
causes a traffic jam on the route of a vehicle can trigger the
vehicle to reroute and bypass the traffic jam. This mechanism
allows a substantial performance gain.

One disadvantage of state-of-the-art approaches is that they
allow us only to react upon traffic jams after they have occurred
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and, hence, already propagate delays in a typically substantial
part of the traffic network. Anticipatory vehicle routing aims at
encompassing this approach by using forecast of traffic density.
Forecast information can either be extracted from historical
data or directly rely on the individual planned routes of the
vehicles. Aside from obtaining and disseminating forecast in-
formation, major challenges are listed as follows: 1) to cope
with the large scale of traffic, which consists of large numbers
of vehicles that reside on large road networks; 2) to cope with
dynamics, e.g., accidents, road blocks, and demand peaks, that
have local effects with potentially far-reaching consequences;
3) stability, i.e., reactions of vehicles to traffic information,
which must continually be managed to avoid unstable system
behavior due to vehicle rerouting.

In this paper, a decentralized approach for anticipatory vehi-
cle routing is defined and evaluated. The approach is defined as
a situated multiagent system (MAS) with environment-centric
coordination. Situated agents are embedded, i.e., directly linked
to the real-world environment, which they can observe and
attempt to influence through actions. To coordinate such large
numbers of entities (vehicles and road infrastructure elements),
a coordination model that uses the environment as a shared
space is appealing. The delegate MAS coordination model is in-
spired by ant behavior—ants coordinate their activities such as
food foraging not through direct ant-to-ant communication but
by dropping relevant information in the form of pheromones,
which are scented and interpreted by other ants. In our ap-
proach, antlike agents explore the traffic environment on behalf
of vehicles and drop relevant information in an information and
communication technology (ICT) infrastructure that is coupled
with the road infrastructure elements. This information can
thereafter be used by other antlike agents that act on behalf of
other vehicles.

The approach presented in this paper was first outlined in
the paper by Weyns et al. [1]. It has since been made more
robust by removing the need for vehicle reservations and has
more thoroughly been evaluated using microsimulations of a
real-world traffic environment. In this evaluation, the proposed
approach is compared with three other approaches, including
an advanced TMC-based route guidance system that broadcasts
real-time information to vehicles.

The remainder of this paper is structured as follows. First,
we formulate the problem statement and describe our basic as-
sumptions. Then, we outline our proposed anticipatory vehicle
routing using the delegate MAS approach. Next, we describe
the experimental setup that we use to evaluate this proposed
approach and analyze the results of the experiments. Finally,
we draw our conclusions.
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II. PROBLEM FORMULATION

In our vehicle routing approach, we consider a traffic network
that consists of roads and junctions. The capacity of roads is
determined by their length and the number of parallel lanes.
Junctions have a capacity that is generally defined by the width
of roads that end in the junction. The throughput of a road
is the sum of the throughput of the lanes in that road. The
throughput of a lane is determined by the speed limit enforced
on that lane. For junctions, the throughput is determined by a
combination of factors such as the presence of traffic lights and
the turning rules. The most important factors are the precedence
of traffic based on road categorization and the precedence of
traffic approaching from the right.

The traffic environment is a dynamic environment, and as
such, vehicle routing is a dynamic problem. We can identify
the following two important causes for the changes in traffic
intensities: 1) fluctuations in the demand and 2) fluctuations in
the capacity. Fluctuations in the demand occur when vehicles
enter the traffic network. Vehicles then need to individually be
routed from their origin to their destination. As the amount
of vehicles on roads increases, the speed at which they can
travel generally declines, and congestion is formed, causing
a reduction in road capacity. Traffic intensity thus affects the
throughput of roads. When trying to minimize trip durations,
traffic intensity should be considered.

Aside from fluctuations in the amount of vehicles in the
traffic network, there can also be fluctuations in the capacity of
the traffic network. Events such as accidents, road blocks, road
work, or even bad weather can reduce the capacity of roads.
These changes will have an effect on the throughput of roads
and junctions and, thus, on the duration of routes that traverse
them.

These causes are not unrelated. When demand rises, so does
the chance of accidents or other unforeseen road blockage.

The goal of our proposed coordination mechanism is to
reduce trip durations. As a consequence, our mechanism also
tries to reduce trip distance.

Making route choices must remain as the responsibility of
the driver. This condition calls for a decentralized coordination
mechanism in which driver preferences allow for fine-grained
control over route characteristics. Although individual route
calculations are demanding, advances in ICT in the traffic
infrastructure allow for such a demanding approach.

III. ANTICIPATORY VEHICLE ROUTING USING

DELEGATE MULTIAGENT SYSTEMS

In this section, we outline the three main elements in our
approach to anticipatory vehicle routing and describe how these
elements interact to coordinate traffic. The approach makes
realistic assumptions about the available infrastructure, which
is briefly discussed.

A. Multiagent-Based Vehicle Routing

Traffic is, by nature, an open environment. Vehicles continu-
ally enter and leave the system and are dispersed over the spa-
tially distributed road infrastructure. Our approach is based on a

situated MAS for modeling the entities that need coordination.
A situated MAS consists of a number of autonomous entities,
called agents, that are situated or embedded in an environment.
The agents can locally observe and act in the environment.
Coordination is decentralized—overall coordinated behavior
results from the interaction between the different agents. The
use of agent technology in various aspects of traffic and trans-
portation systems is well documented. Chen and Cheng in [2]
give an overview of agent-based applications in traffic and
transportation systems, including the use of agent-based control
mechanisms in intelligent transportation systems.

The MAS-based model of our approach is based on the
following three basic types of entities: 1) vehicle agent;
2) infrastructure agent; and 3) virtual environment.

Every vehicle is represented by a situated vehicle agent,
deployed on (a smart device within) the vehicle. A vehicle
agent can access information about that vehicle’s intended
destination and state, including location and speed. A vehicle
agent guides the driver by providing information on routing
toward its destination and not unlike SatNav route guidance
devices do today.

The core elements of the road infrastructure (such as roads
and crossroads) are represented and managed by infrastruc-
ture agents. Infrastructure agents are deployed on computa-
tion and communication devices in the road infrastructure.
Infrastructure agents maintain a view on the current status of
their road elements and information (received through vehicle
agents) on pending visits. The latter information will evaporate
over time, unless refreshed by vehicle agents. Cooperation
between vehicle and infrastructure agents requires the pres-
ence of vehicle-to-infrastructure communication or vehicle–
infrastructure integration (VII), as described in the work of
Ma et al. [3]. The authors use VII to achieve a real-time
assessment of highway conditions, for which the infrastructure
agents in our approach, to a lesser extent, are also responsible.

The virtual environment is a software representation of the
environment. The physical road network is mapped onto a
graph representation. The nodes of the graph represent road
elements such as lanes and intersections. This virtual envi-
ronment is a distributed software entity that is deployed on
the electronic devices provided by the road infrastructure. The
virtual environment conceptually hosts the infrastructure and
vehicle agents—the agents can observe and act through this
environment. The use of a virtual environment is discussed by
Weyns et al. in [4].

Vehicle and infrastructure agents are responsible for coor-
dinating traffic. Vehicle agents have two responsibilities. First,
they explore (through the virtual environment) and search vi-
able routes toward their respective destinations. Exploring a
route means assessing its quality (in terms of time that it would
take to follow this route). From this set of alternative explored
routes, every vehicle agent selects one route that it intends to
follow. The selection is based on the objective of individual
traffic users, which is assumed to be the travel time.

To allow for anticipatory vehicle routing, the vehicle agent
has a second responsibility. Every vehicle agent needs to inform
other agents of its intended routes to allow other agents to
incorporate this forecast occupancy in their own exploration.
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The vehicle agent achieves this approach by informing all
infrastructure agents that represent elements that are part of
its intention. By doing so, all vehicle agents cooperatively
maintain information about their intentions in the infrastructure
agents. Infrastructure agents can use this information to deter-
mine future traffic loads and provide this information back to
the vehicle agents, whereas they explore viable routes, thereby
improving the estimates of the vehicle that agents make on trip
duration and closing the information loop.

B. Delegate MAS for Anticipatory Vehicle Routing

Typical implementations of MASs would achieve the com-
munication patterns described in the previous section by having
all agents communicate through direct exchange of messages.
The large scale of such systems and the case that communica-
tion bandwidth is not unlimited leads to an environment-centric
approach.

We use delegate MASs to achieve both the exploration and
intention propagation functionality. Delegate MASs are intro-
duced in [5].

Delegate MASs are inspired by food foraging in ant colonies
and their use of pheromones. When coordinating the search
for food, ants do not directly communicate with each other.
Instead, they use smelling substances called pheromones to
communicate. An ant can notify other ants on its way back from
a food source to the nest by dropping pheromone on its current
location. Other ants receive this information by scenting the
pheromone. Pheromone deposits convey information by their
intensity, type, and location. If the information is not reinforced,
it will disappear, i.e., if an ant does not deposit fresh pheromone
on the same location at regular intervals, the evaporating
pheromone will no longer be detectable to other ants. By fol-
lowing the gradient of scent, other ants can reach the same food
source, without directly communicating with other ants. When
these ants return from the food source to the nest, they will rein-
force the pheromone trail between food and nest, thus maintain-
ing the information. As soon as the food source is depleted, the
reinforcement stops, and the information will start to dissolve.

In delegate MASs, we use similar techniques. Instead of
having vehicle and infrastructure agents directly communicate
with each other, they send out lightweight agents that some-
what mimic the ants’ behavior. To maintain a clear distinction
between the main agents, i.e., the vehicle and infrastructure
agents, and these lightweight agents, we refer to the latter
agents as ants. Together, these lightweight agents, or ants, form
delegate MASs that offer certain services to the main agents:
the agents can delegate some of their responsibilities to these
delegate MASs by using these services. Fig. 1 uses a Unified
Modeling Language (UML) conceptual diagram to show and
relate the different concepts of our approach.

In our anticipatory vehicle routing strategy, we employ two
different types of ants, which offer two distinct services to the
vehicle agents. Both ants are shown in Fig. 2.

1) Exploration Ants: A vehicle agent sends out exploration
ants at regular time intervals. Exploration ants explore various
paths between the agent’s current location and its destination.
To explore a path, an exploration ant follows it through the

Fig. 1. Architectural pattern of delegate MASs. A delegate MAD is a swarm
of antlike agents that can provide various services to a higher level agent.

Fig. 2. Exploration and intention ants that traverse routes in a virtual rep-
resentation of Leuven, Belgium. The exploration ants explore feasible routes
(highlighted in dark gray) and return estimates on the routes duration. When the
vehicle agent has chosen a route (highlighted in red) based on these estimates, it
sends out an intention ant to notify the infrastructure agents of its pending visit.

virtual environment. At every road element, it asks the in-
frastructure agent what the departure time from its element
would be if the vehicle would arrive at a certain arrival time.
It then continues to the next element on its path and asks the
same question, this time using the previously received departure
time as its new estimated arrival time. The exploration ants
assume basic static routing information to be available (similar
to routing functionality readily available in SatNav devices).

Eventually, an exploration ant reaches the vehicle’s destina-
tion with an estimate of how long it would take the vehicle to
get there, taking into account the predicted delays along this
route. The exploration ant then reports this aggregated data
back to the vehicle agent by reversely following its path. The
vehicle agent thus constantly receives alternative routes to its
destination along with an estimate on the trip duration.

2) Intention Ants: When a vehicle agent selects one of the
explored routes as the route that it intends to follow, it must
make this information available for other vehicle agents to take
into account. Vehicle agents do so by sending out intention ants
over their intended route at regular intervals. These intention
ants will follow the intended route through the virtual environ-
ment. While doing so, they repeat the question also posed by the
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Fig. 3. Reasoning loop of a vehicle agent.

exploration ants. However, instead of simply retrieving the de-
parture time from the current road element, they also inform the
infrastructure agent that the vehicle agent intends to make use
of this road element between the arrival and departure times.
Thus, the intention ants provide the infrastructure agents with
the information they need to predict future traffic intensities.

Vehicle agents are free to change their intentions when, e.g.,
a newly explored path is considered preferable. If they would do
so, they invalidate all notifications that their intention ants have
made. To prevent this incorrect information from building up
in the virtual environment, the principle of evaporation is used.
The notifications handed out by the intention ants will evaporate
over time. If an agent changes its intention and no longer sends
out intention ants over its old intention, the notifications on the
old route will simply evaporate.

C. Design Decisions in the Implementation

The aforementioned generic description of our approach
leaves many design issues unanswered. This section offers
further information on the details of our approach as it has been
evaluated and tested.

1) Vehicle Agent Architecture: The vehicle agent architec-
ture is based on the belief–desire–intention (BDI) architecture
[6], which has already been successfully used in vehicle agents
[7]. The BDI architecture can easily be combined with the use
of delegate MASs. The basic algorithm that describes the inner
working of the vehicle agents is given in Fig. 3.

When using anticipatory vehicle routing with delegate
MASs, line 3 will cause the vehicle agent to send out explo-
ration ants. On line 5, the agent will select the route with the
shortest trip duration based on the information sent back by
the exploration ants. On line 7, the vehicle agent will decide
on whether to deviate to this new route. Whatever the agent
decides, on line 11, the vehicle agent will send out an intention
ant across its current intention.

2) Infrastructure Agents: While explaining the delegate
MAS approach in the previous section, infrastructure agents
were given the functionality of collecting notifications from
intention ants and using these notifications to provide predic-
tive traffic intensity information. In this implementation, the
infrastructure agents do so by a simple learning algorithm.
Infrastructure agents monitor the vehicles that pass over them
and collect information on the number of notifications and the

average time that it takes a vehicle to pass the road element.
Using this information, the infrastructure can predict future
traversal times based on the number of notifications that it has
received. Infrastructure agents have a parameterized model that
describes the relationship between the traversal time and notifi-
cations, and the parameters are continuously updated based on
both historical and real-time data.

This learning algorithm is very simple but appears to be suffi-
cient. By using a learning algorithm and not a reservation-based
scheme, we are unaffected by the drawbacks of reservation
schemes in traffic situations, such as problems with vehicles
that are not guided by the system that steals reserved slots [8]
and should handle scenarios where only a portion of the drivers
uses anticipatory vehicle routing.

The infrastructure agents need to be supported by the traffic
infrastructure with the following infrastructure: 1) The road
infrastructure is equipped with electronic devices that provide
some computation power and are connected through a network;
2) the roadside computing devices need to communicate with
the smart devices located in the vehicles; and 3) the roadside
computing devices can access sensor information on the cur-
rent traffic intensity for learning purposes. These requirements
are not unrealistic. The road-pricing scheme that is currently
planned in the Netherlands has similar requirements.

IV. EXPERIMENT SETUP

We have evaluated the delegate MAS described in this paper
by simulating it in a real-world setting, i.e., the city of Leuven,
Belgium. In this section, we discuss the setup of our experi-
ments, i.e., the type of simulation that we use, the map on which
the model is based, and the alternative routing strategies with
which we will compare our delegate MAS routing strategy.

A. Traffic Microsimulation

To evaluate our delegate multiagent routing strategy, we
compare it with alternative routing strategies. We have de-
veloped a microsimulation that can simulate detailed traffic
scenarios. In this microsimulation, every individual vehicle is
modeled by its position on the road. The vehicles can move
across the traffic network by accelerating and decelerating,
changing lanes, and taking turns on junctions. The driving
behavior of the vehicles is determined by the intelligent driver
model [9] (IDM).

Simulation is given an origin–destination (OD) matrix that
contains vehicles’ start and destination locations that are an-
notated with the vehicles’ departure time and IDM model
parameters. This approach ensures that all simulation processes
simulate the same vehicles that are operated by the same
drivers. All experiments described here are initiated with the
same OD matrix of 28 800 entries. The origin and destination
are chosen at random with a distribution that favors trips cutting
through the city. The entries are chosen as follows.

1) An angle θo is chosen from a uniform distribution. A
radius ρo is chosen from an log-normal distribution,
with the average just outside the beltway. Together, these
coordinates act as polar coordinates that originate in the
city center and describe the vehicles starting location.
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Fig. 4. Map of a simulated region. (a) Rendering of the OpenStreetMap data. (b) Graph with more than 1600 roads used in the microsimulation.

2) An angle θd is chosen from a normal distribution with
a mean opposite to the θo − π. A second radius ρd is
taken from the same distribution as ρo. Together, these
coordinates form the vehicles’ destination.

3) Both coordinate pairs are mapped on the closest
traffic element—road or junction—in the simulated
environment.

B. Traffic Network of Leuven

The traffic network modeled in our microsimulation is
that of the city of Leuven,1 Belgium. It includes more than
1600 roads, mostly bidirectional, and 1250 junctions. The data
are detailed and describe not only the location of most of the
cities roads and junctions but their characteristics, such as their
type, maximum speed, and capacity, as well. Fig. 4 shows the
region modeled in our experiments.

C. Alternative Routing Strategies

To evaluate the efficiency of our delegate MAS approach, we
have implemented three alternative routing strategies for com-
parison. These alternatives are all based on the A∗ algorithm
[11] often used in traffic routing applications.

The first two alternative routing strategies—optimistic and
pessimistic fastest routes—do not rely on communication. The
third alternative is based on the real-world usage of TMC [12],
i.e., a service that is commonly used in Belgium.

1) Optimistic Fastest Route Strategy: In the optimistic
fastest route strategy, every vehicle relies on the A∗ algorithm
combined with a cost function Cofr, as described in (1), to
calculate its individual route. Cofr calculates the estimate travel
time of a vehicle by iterating over all segments si in a road r and
uses the length l and speed limit vmax to determine the traversal
time or cost of r, i.e.,

Cofr(r) =
∑
si∈r

(
l(si)

vmax(si)

)
. (1)

1For this region between latitudes 50.8612 and 50.8958, longitude 4.6665
and 4.7294, we accessed OpenStreetMap data based on [10].

Equation (1) results in the estimated time that a vehicle
would need to traverse a road in the absence of other traffic.
Using (1) as the cost function in an A∗ algorithm results in
routes that are the fastest, as long as vehicles are solitary, hence
the term optimistic. Early experiments with optimistic shortest
path and the Leuven street map indicated that this approach
is an unrealistic routing strategy but is useful as a reference
strategy.

The city of Leuven has a beltway that surrounds it. Most
drivers consider this beltway the preferred way of driving from
one side of the city to the other side. This case is not because
of the speed limit on the beltway, which is mostly 50 km/h,
the same speed limit as in the inner city region, but because it
has more lanes than the narrower streets in Leuven centrum.
Routes that are calculated with Cofr have a tendency to cut
straight through the city center, which is a strategy that might
work if the city center is desolated but is likely to result in long
unforeseen waiting periods otherwise.

2) Pessimistic Fastest Route Strategy: A more realistic rout-
ing strategy is the pessimistic fastest route strategy. The cost
function, as described in (2), used by this strategy is an adap-
tation of (1). Here, the time needed to drive down a road is
weighed by a factor w that is determined by the number of lanes
of the road, i.e.,

Cpfr(r) =
∑
si∈r

(
w(si)

l(si)
vmax(si)

)
(2)

where w(si) decreases as the number of lanes in segment si

increases. In our experiments, we take

w(si) =
1√

min (4, lanes(si))

cutting the effect of the weighing factor of at a width of
four lanes.

This routing strategy results in what appears to be a much
more realistic route choice. Simulation shows that vehicles now
use the beltway around the city center, avoiding the smaller
roads, only turning toward the city center in the proximity of
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Fig. 5. Distribution of trip durations from two separate experiments. (Left) Histograms of two separate experiments with the fitted Weibull distribution density
function. (Right) Fit of the Weibull distribution using a Q–Q plot. While not providing a perfect fit, the Weibull distribution describes the trip duration better than
both the Gamma and log-normal distributions.

their destination. Although we can expect the routes generated
by this routing strategy to be somewhat slower than the routes
generated with the optimistic variant, they are likely to become
the better alternative when traffic intensity increases, hence the
term pessimistic.

TMC-Inspired Routing Strategy: The third and most im-
portant alternative for delegating MASs is a TMC-inspired
routing strategy. Many modern SatNav devices receive regular
traffic updates over radio frequencies. In Belgium, six such
services currently exist. The information broadcast by TMC
systems includes congestion, accidents, and other unforeseen
circumstances that can affect routes calculated by in-vehicle
SatNav devices. This information is generally broadcast with
a small time delay as incoming information such as floating
car data or incident reports that have to be processed and
mapped in a traffic information center before it can be broadcast
by radio stations. The number of locations on which TMC
information can report is limited to a set of predefined loca-
tions already included in the digital maps of the major map
vendors.

Our implementation is, in many ways, an improvement to
existing TMC implementations for the following three reasons:
1) Information is continuously broadcast; 2) it reports on all
roads in the network and not just the major traffic arteries;
and 3) it includes average speeds of noncongested or slightly
congested roads and not only information about blocked roads.
The improvements of our TMC implementation are not feasible
in the real world because of the limited bandwidth available
to the TMC system. Although the TMC-inspired strategy is
not realistic, it makes a good reference model, because aside

from the imposed delay, it comes close to the ideal use of real-
time data.

In this routing strategy, the average speed of all vehicles on a
given road in a 5-min interval is calculated. This information
is gathered for all roads in the network and is continuously
broadcast to all vehicles with a 5-min delay. Thus, at 10:15,
all vehicles would receive the average speeds on all roads in the
10:05–10:10 time interval. The vehicles can use this historical
data to replace vmax in (1). The in-vehicle routing calculations
then use the following cost function for their A∗ algorithm:

∑
si∈r

(
l(si)

vtmc(si)

)
(3)

where vtmc is the latest average speed for segment si that the
vehicle received. The number of lanes is no longer included
in this cost function, because it already influences the value of
vtmc if traffic is sufficiently dense.

V. EXPERIMENT RESULTS

In this section, we will compare the results obtained using
the delegate MAS approach with the results obtained with the
three alternatives. All results were acquired using the simulator
described in Section IV-A, initiated with the Leuven traffic
layout described in Section IV-B. For these experiments, we
generated a list of 28 800 origins and destinations, and during
the simulation, this list is used to instantiate 28 800 vehicles.
The rate at which these vehicles enter the network is dependent
on the parameters of the experiment.
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Fig. 6. Trip durations for all route guidance strategies for both static and dynamic input rates at various levels. Only the TMC-inspired (tmc) and delegate MAS
(dmas)-based strategies consistently perform under various loads. The optimistic (ofr) and pessimistic (pfr) fastest route algorithms fail to handle the increase
in vehicles. (a) Static input rates. (b) Dynamic input rates.

The experiments can be divided into the following two major
clusters: 1) experiments with static input rates and 2) experi-
ments with dynamic input rates. A static input rate means that
every second, n vehicles are inserted into the network and this
n remains constant throughout the duration of the experiment.
The origin and destination of the n vehicles will be taken from
the OD matrix.

A dynamic input rate means that n will evolve over time,
allowing us to temporarily increase the traffic intensity in the
network. The experiments with dynamic input rates described
in this paper all have n that evolves in a block-wave fashion.
The input rate will remain n for half a period and will be zero
during the next half. The period is chosen to be 5 min, because
smaller periods have little impact on the traffic intensities, and
larger periods mean that fewer drivers are affected by change in
the traffic intensity during their trip.

By using the generated OD matrix, we guarantee the same
demand in all experiments. Because of the different input rates,
the conditions that vehicles face in fulfilling these trips will
differ.

A. Trip Duration

In this section, we will compare the different routing
strategies based on the trip duration. All the route guidance
algorithms use this trip duration as their primary heuristic
in selecting the route that they intend to follow. Therefore,
it becomes the most important metric when evaluating their
performance. The trip distance, which is examined in the next
section, is only a consequence of the route guidance algorithms’
effort to minimize trip durations.

A standard normal distribution does not model the trip du-
rations very well, and the Weibull distribution appears to be
a better fit for the observed durations. The distribution of trip
duration for two separate experiments is shown in Fig. 5. The
Weibull distributions definition of the mean will be used to
evaluate the trip durations.

Fig. 7. Gain in average trip duration obtained by using forecast instead of
real-time data.

Experiments show that only the TMC-based routing strategy
and the delegate MAS routing strategy can handle increasing
traffic intensity under both static [see Fig. 6(a)] and dynamic
[see Fig. 6(b)] input rates. Both routing strategies use informa-
tion about traffic intensity on the vehicles intended route.

Examining the gain 100% × (1 − meanant/meantmc) that
the use of our proposed approach (and, thus, the use of forecast
data) has over the TMC-based approach results in Fig. 7. As the
traffic intensity (and, thus, the likelihood of congestion) rises,
the benefit of forecast data increases.

Taking these results into account, it appears that the use of
forecast data results in shorter trip durations. The benefit of
forecast data increases as traffic intensity increases, and vehi-
cles are confronted with dynamic traffic intensities. The use of
routing strategies that use external data, i.e., the TMC-inspired
and the anticipatory routing strategies, drastically outperform
stand-alone route guidance strategies.
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Fig. 8. Trip distances for all route guidance strategies for both static and dynamic input rates at various levels. (a) Static input rates. (b) Dynamic input rates.

B. Trip Distance

Although trip duration is often the main criterion for route
selection, the length of the route also plays an important role.
The driver often has to consider the tradeoff between distance
and duration. Always choosing a route that results in an earlier
time of arrival completely disregards fuel, maintenance, and
environmental costs.

The average trip distances in Fig. 8(a) and (b) indicate that
using anticipatory routing decreases trip distances. Although
this approach may seem counterintuitive, it is explained by
the intention update strategy of the vehicle agents. Vehicle
agents that use ofr or pfr never reconsider their route, because
they never receive new information. The A∗ algorithm using
cost functions in (1) and (2) will not necessarily generate the
shortest route but will try to generate the fastest route. The
anticipatory route guidance algorithm also initially generates
the fastest route. However, as congestion starts to form, the
anticipatory route guidance algorithm starts looking for alterna-
tives. These alternatives will often be the shorter less fast route.

Fig. 8 shows a steady upward trend in the trip distance
when using the TMC-based routing strategy. One possible
explanation for the upward trend that is noticeable in both static
and dynamic input profiles is the staleness of the information
that the TMC-based algorithm uses. This condition could cause
a buildup of rerouting actions, where the TMC-guided vehicle
agent deviates from its original route and starts a detour, only to
find that this detour has also become congested. Such instability
and inefficient decision making is predicted in [13].

VI. RELATED WORK

Dynamic vehicle routing is an extensively studied field of
research [14]. In this paper, we focus the discussion of related
work on a number of representative agent-based approaches
used for vehicle routing. First, we describe other work that
involves “anticipatory vehicle routing” and see whether it de-
scribes the same problem as we do. The discussion focuses
somewhat on the work on anticipatory vehicle routing done in
[15] because of its resemblance to the approach that we describe

here. Then, as a comparison of the delegate MAS approach, we
look at a number of routing approaches that are biologically
inspired, including the use of swarm techniques and stigmergy.
Finally, we discuss reservation-based mechanisms and the hints
at using machine learning found in [16].

A. Anticipatory Vehicle Routing

There is already an extensive body of work that involves
the term anticipatory vehicle routing. Some of this related
work, e.g., the work of Wunderlich et al., deals with a similar
problem as in this paper, although their focus differs. Other
work, e.g., [17] and [18], focuses on different problems such
as the dispatching of pickup vehicles to meet anticipated future
customer demands in a pickup and delivery problem.

The U.S. National Intelligent Transportation Systems (ITS)
Architecture [19] outlines an evolution in route guidance ar-
chitectures. The first step of this evolution is an autonomous
architecture in which all vehicles make isolated decisions based
on static link data, which correspond with the optimistic and
pessimistic route guidance algorithms that we described in
Section IV-C. This autonomous architecture is followed by
a decentralized architecture in which real-time information is
broadcast to vehicles, allowing them to adjust their routing to
current traffic densities. The third and final step would be a
centralized architecture in which vehicles send routing requests
to an Independent Service Provider (ISP). This ISP will then
provide the vehicle with an individualized route, taking into
account all other issued routes to predict future traffic states.
Such a centralized architecture is expected to solve the prob-
lems predicted in [13]. In [13], the authors argue that providing
information to vehicles can lead to instability and inefficient
decision making as all vehicles take part in a minority game.

The need for this last evolution, i.e., the transition from a
decentralized to centralized architecture, can be avoided by
providing the vehicles with predictive, instead of real-time,
information, according to [15].

A comparison between a decentralized and centralized ar-
chitecture for traffic route guidance systems is discussed in
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[15]. The distinction between a decentralized and centralized
architecture is made based on the location of the route choice.
If the vehicle makes a routing decision on its own based on
the information broadcast by an ISP, the architecture is said to
be decentralized. If, on the other hand, the routing decision is
centrally made by some ISP and is only then broadcast to the
vehicle, the architecture is considered centralized.

The route guidance system described in [15] uses forecast,
instead of real-time, data in a way that is similar to our ap-
proach. The method of collecting and distributing these forecast
data, however, differs from the approach that we describe in
this paper. The architecture described in [15] can only be called
decentralized when disregarding the role of the ISP. In this
paper, we describe a truly decentralized architecture, where the
functionality attributed to the ISP in [15] is distributed across
the traffic infrastructure.

B. Propagation of Information

One of the contributions of this paper, compared with the
work discussed in the previous section, is the decentralized
propagation of vehicles’ intentions using swarms. The light-
weight agents in delegate MASs have some resemblance to
an approach known as polyagents introduced by Brueckner
and Parunak [20], [21]. Propagation of information through
traffic networks using biologically inspired mechanisms such as
pheromones or swarms have extensively been studied by Ando
in [22] and by Tatomir in [23].

1) Use of Pheromones: In [22], pheromones are used to
aggregate and propagate traffic densities in traffic networks. Ve-
hicles in [22] drop virtual pheromones at their current location.
These pheromones will locally spread before evaporating over
time. The pheromone intensity at any given location in the net-
work is used as an indication of traffic density at that location.
As vehicles drive slower, they will deposit more pheromones
in the same region. Information about traffic density and
congestions is thus propagated through the environment. The
information is kept up to date through evaporation. Vehicles can
look ahead and sense the pheromone levels on their intended
route and compare these pheromone levels with the pheromone
levels of alternative routes.

Digital pheromones are also used in [24]. Here, the
pheromones are deposited onto the roads and represent in-
formation about the number of vehicles and their link entry
time. The deposited information can be used to label roads
as congested, and this information can be transmitted back to
vehicles. The use of pheromones in [24] resembles the approach
in [25] in that it uses pheromones to represent the current traffic
situation in a virtual environment. How the pheromones are
applied in [24] differs from [22], but the view that they provide
on the traffic network is similar.

The main difference between the route guidance approach
in [22] and [24] and the approach described in this paper is
on the nature of the data. Both approaches store information
about traffic densities in the environment and thus use a process
called stigmergy to propagate information to other agents.
The information stored in the environment in [22] and [24]
represents current or past traffic information, whereas the infor-
mation stored in the environment by delegate MASs describes

future traffic densities. The use of the environment to store
pheromones and the process of propagation and evaporation are
based on the work on ant colony optimization [26].

The second difference between the approach presented in
this paper and the approach in [22] is the entity that deposits
the pheromone trails. In our approach, because pheromones
represent future information, the pheromones are deposited by
antlike agents that operate in a delegate MAS. In the approach
described in [22], vehicle agents deposit the pheromones, be-
cause they represent real-time traffic information.

2) Use of Swarm Computing: The use of ants in the do-
main of traffic are described in [23] and [27]. In [27], the
authors focus more on pickup and delivery problems. The
second paper [23] describes a hierarchical routing system that
uses the following three different types of ants: 1) local ants;
2) backward ants; and 3) exploration ants. The function of the
exploration ants in [23] differs from the function described in
this paper. In [23], exploration ants maintain information about
routes between different sectors in the hierarchy. Local ants
are dispatched by nodes in the network to prepare for arriving
vehicles. These local ants will explore the route the vehicle
intents to follow and updates the information using backward
ants in all the nodes involved in this route.

C. Reservation-Based Mechanisms

In our delegate MAS approach, vehicles send out intention
ants to notify road agents of pending visits. Although this
approach is not a reservation-based mechanism, it resembles
one. Reservation-based intersection control has been described
by Dresner and Stone in [28] and expanded to a market-inspired
approach in [29]. The authors of [28] later experimented with
traffic scenarios where not all vehicles use the reservation-based
mechanism in [8] and identify a number of difficulties with
reservation-based mechanisms in such settings.

In [16], the authors identify a number of learning oppor-
tunities for both their agent types, i.e., “driver agents” and
“intersection agents.” Here, the authors hint at the use of a
learning approach similar to the approach that we use to replace
the need for reservations by saying that “intersection agents”
could learn the characteristics of traffic as a response to a
number of inputs, including recent history.

VII. CONCLUSION

In this paper, we have described a routing strategy for antici-
patory vehicle routing using delegate MASs. This routing strat-
egy can more efficiently route vehicles by using forecast infor-
mation. This anticipatory vehicle information is collected and
distributed in a decentralized fashion, unlike other approaches
that involve forecast information, where collection and distri-
bution of information is performed as a central service. The
distributed nature of this approach fits the distributed nature of
the traffic domain and ensures that scalability requirements can
more easily be met than in centralized systems.

Experiments show that the use of forecast data, even when
gathered in a decentralized manner, helps drivers reach their
destination up to 35% faster, compared with drivers who use
no data or real-time data made available by TMC services.
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The forecast data not only allow drivers to avoid existing
congestions but prevents them from forming congestion as well.

Further research on the subject of anticipatory vehicle rout-
ing and the use of delegate MASs remains necessary. Providing
efficient and stable routes to vehicles will be challenging, even
with the use of forecast data, as we apply our approach to
larger traffic scenarios that involve more dynamics. Further
experimentation with the learning algorithms used by the in-
frastructure agents could improve the quality of the predictive
information by including information such as the time of day
and day of the week.

The use of forecast information obtained by delegate MASs
comes at a cost. Instead of the one-way broadcasting of
information needed for TMC-based systems, our approach
would require two-way communication between vehicles and
the road infrastructure. However, road-side pricing schemes
that are deployed share these communication and computation
requirements.
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