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Estimation of Lane Marker Parameters With High
Correlation to Steering Signal

A. Demčenko, M. Tamošiūnaitė, A. Vidugirienė, and L. Jakevičius

Abstract—This paper considers the design and analysis of lane marker
parameters in 2-D images. Five different parameters, which have high
correlation to the steering angle of a vehicle, are proposed, and their
correspondence to the steering signal is analyzed. The parameters are
based on the position, angle, area, and curvature of the lane marker and
have not been reported in the literature before, except the curvature. A new
derivative-free method is proposed for curvature estimation. The stability
of the proposed parameters is analyzed with respect to the look-ahead
distance. Possible application of the parameters for overtaking detection
is presented. This paper is performed using signals from real country road
driving.

Index Terms—Driver’s assistance, human-like driving, lane marker,
steering signal.

I. INTRODUCTION

The drivers’ behavior, which involves braking, acceleration/
deceleration, and steering, is complex and individual [1]–[4]. Individ-
ualized assistance in some isolated driver’s actions, e.g., steering or
braking, is possible, and such systems are under development or even
integrated into modern vehicles [5], [6]. However, much more of the
current autonomous driving technologies still stick with standard ap-
proaches where the control provided by the system is clearly based on
physical laws and does not consider the driver’s individuality [7]–[10].
If such principles are applied for human assistance, the systems may
interpret the driver’s behavior in a wrong way and produce a false
control or warning signal. Thus, the design of a reliable driver’s
assistance system (DAS) for the individual driver’s behavior prediction
and assistance at different driving conditions is a challenge and is an
important direction in the future development of intelligent DAS.

Lane markers on a road can provide reliable and useful information
for DAS [11]. Many lane keeping systems usually involve vision
systems that perform lane marker detection, recognition, and tracking
[1], [12], [13]. However, direct use of the lane marker shape for the
vehicle’s control assistance is complicated; therefore, it is desirable
to parameterize the lane markers by features [14]. In existing liter-
ature on driving assistance, mainly a curvature parameter is exploited
[14]–[16], but a more general analysis of the parameters of a 2-D visual
scene was never performed. The parameters in the car’s coordinate
system, like lateral offset of the lane marker and orientation of the lane
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marker, have been suggested for lateral control (steering) [7], [17], but
a comparison with the 2-D image parameters has not been provided in
the mentioned studies. In driver’s behavior literature, a tangent point is
hypothesized to govern the steering on a curved road [18], [19], but the
tangent point rather defines a control strategy, and it is not a parameter
of the 2-D scene that correlates to the steering signal on its own.

The objective of this paper is to design and analyze lane marker
parameters derived from 2-D images with high correlation to the
vehicle’s steering signal. Four new parameters and a new algorithm
for curvature calculation (the fifth parameter analyzed in this paper)
are introduced. The introduced parameters are estimated from visual
data recorded during usual driving on country roads. The stability of
the parameters is investigated with respect to look-ahead distance (i.e.,
height coordinate of the image where the parameters are estimated).
The estimation results are compared with the steering signal evaluating
cross-correlation coefficients between the signals. A possible applica-
tion of the parameters for steering signal prediction and overtaking
action detection is presented.

II. DATA

Data were collected on country roads in Germany. The driving
action sequences were simultaneously recorded with the traffic sce-
nario. The analyzed records were performed in the years 2006–2008
by different drivers on different routes.

The driving data analyzed here consist of two different parts: the
first part is provided by a CAN bus, and the second part is provided
by a video camera installed in the car. The CAN bus data include
the driver’s behavior action recordings (steering, braking, acceleration,
etc.) and information related to the vehicle (velocity, position on the
lane, etc.). The video camera data were captured at 20 or 25 Hz and
had image dimensions of 1280 × 1024 pixels.

A right-side lane marker is usually best visible on the country road
camera images, and it can most readily be extracted. In this paper,
the right-side lane marker data (x and y coordinates in pixels) were
extracted from the captured images using an algorithm based on an
edge detection method [20].

III. PARAMETERS

Five different lane marker parameters are proposed and analyzed
here: 1) x coordinate variation xv measured at the fixed y coordinate;
2) angle α between lane marker and horizontal line at fixed y coordi-
nate; 3) area s estimated from a lane marker curve segment in a frame;
4) maximum m of the lane marker x and y coordinate ratio in a frame;
and 5) curvature c of the lane marker (including a new algorithm for
curvature evaluation). All the five parameters are further presented in
more detail.

A. Variation of x Coordinate xv

Depending on the curvature of the road, the upper part of the lane
marker appears more to the right (for the right curve) or more to the left
(for the left curve) in the camera image. The parameter “variation of x
coordinate” xv is based on this lane marker position variability. Fig. 1
presents the coordinate system and illustrates a case when a segment
of the country road is curved first to the right and in far distance to
the left. The red curve is the estimated lane marker on the road. The
upper horizontal line indicated in Fig. 1(a) is used for the estimation of
the parameter xv , and its coordinates are defined a priori. Above the
horizontal line, the lane marker is not informative for an immediate
driver’s steering action (in the given example: negotiation of the right
curve). Going down from the horizontal line, the x position of the lane
marker becomes less variable with the road curvature. Accordingly,

Fig. 1. Estimation of the lane marker parameters. (a) Variation xv and
angle α. (b) Area s and illustration of raw lane marker (red curve) and scaled
lane marker (x/y, white curve). Red curve is the estimated lane marker;
horizontal lines are the additional lines for the estimation of lane marker
parameters. The proportions are true except for ratio x/y.

there is an interval along the image height coordinate y (which roughly
corresponds to image depth in 3-D or look-ahead), where the position
of the lane marker will correlate with the upcoming curvature and with
the upcoming steering action.

The parameter is measured at some predefined value of y coor-
dinate. In our setup, the lane markers can be extracted stably up to
y = 450 pixels (this value corresponded to 33 m in a look-ahead
distance). The parameter stability analysis presented later in this paper
confirms that a wide interval of the y (look-ahead) values may be
applied for parameter construction.

B. Angle α

A right lane marker on a camera image most of the time is tilted to
the left due to perspective effects. However, the degree of tilt varies
with the road curvature, and on more pronounced right curves, the
lane marker tilts to the right in some parts of the image, as shown
in Fig. 1. An angle α of the lane marker to the horizontal line can
be considered as the feature to reflect this left-right tilt of the lane
marker and, consequently, left and right steering actions. The angle is
estimated by applying the law of cosines for the triangle ABC using
coordinate values of the lane marker xc, yc and xv , yv , as shown in
Fig. 1(a).

C. Area s

A lane marker extracted from visual data may contain noise. To cope
with the small-scale noise components on the extracted lane marker, an
area-based parameter is introduced. Two points are chosen to denote
the beginning and end of the lane marker segment. By connecting those
two points by a straight line, it is possible to calculate the area inside
the loop [Fig. 1(b)]. The area increases as the road curvature increases
and vice versa.
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Fig. 2. Geometry for curvature estimation. The first vector involved in cur-
vature estimation is given by the coordinates (x1, y1) and (x2, y2), and the
second vector is denoted by the coordinates (x2, y2) and (x3, y3).

D. Maximum Ratio m

Let the lane marker coordinate x and y ratio be denoted rx/y:
The ratio and the raw lane marker are presented in Fig. 1(b). The
scaling of the x coordinates by the y coordinate acts in the direction
of the perspective restoration [21]. The maximum value of the ratio
along the lane marker here is called m and considered as a parameter
for steering prediction. Thus, parameters m and xv are estimated in
different coordinate systems. The m parameter is calculated in the
coordinates proportional to the 3-D world scene, and xv is calculated
in the 2-D image area coordinates.

E. Curvature

Curvature is one of the most frequently used parameters for the
characterization of a lane marker on a road [14]–[16]. Usually, cur-
vature, given by a planar curve C = (x(t), y(t)), is estimated from
the following generalized expression [22]:

c = (x′(t)y′′(t) − x′′(t)y′(t)) /
(
x′(t)2 + y′(t)2

)3/2
(1)

where x′ and x′′ denote the first- and second-order derivatives of
the curve parameters, respectively. As derivatives are employed, the
estimation of the curvature is numerically unstable. To overcome
this numerical instability, the derivative-free method for curvature
estimation is proposed below.

Two vectors are perpendicular when their scalar product is 0. In
this paper, the two vectors are given by the beginning and end points:
(x1, y1) and (x2, y2), (x′, y′′) and (x, y). The geometry is shown in
Fig. 2.

The middle point, denoted by the coordinates (x′, y′) (Fig. 2), of the
first vector is given by

x′ = (x1 + x2)/2, y′ = (y1 + y2)/2. (2)

For two perpendicular vectors, given by the end coordinates (x1, y1)
and (x2, y2), and (x′, y′) and (x, y), the product can be written as

(x2 − x1)(x − x′) + (y2 − y1)(y − y′) = 0. (3)

The system of linear equations for two spans, given by the two
vectors (Fig. 2), can be written as{

y=(y2+y1)/2+(x2−x1)/(y1−y2) (x−(x2+x1)/2)
y=(y3+y2)/2+(x3−x2)/(y2−y3) (x−(x3+x2)/2) .

(4)

Assuming that y2 − y1 = y3 − y2 and then denoting the difference
as Δy, (4) is solved for the coordinate x as

x=
((

x2
2−x2

1

)
−

(
x2

3−x2
2

)
−2Δy

)
/ (2 [(x2−x1)−(x3−x2)]) . (5)

To estimate the curve radius R (Fig. 2), it is necessary to evaluate the
y coordinate. The y coordinate can be calculated using (4) when x is

TABLE I
ESTIMATED CROSS-CORRELATION COEFFICIENTS BETWEEN THE

PRESENTED PARAMETERS AND THE VEHICLE’S STEERING SIGNALS

known from (5). When y1, y2, and y3 are fixed, for a parameter that is
proportional to the curvature, it is enough to estimate the x coordinate.
In this case, the pseudo-curvature c can be written as

c = 1/x. (6)

Finally, in the curvature analysis, a variable x is replaced by the
ratio x/y, which acts as perspective restoration, as mentioned in
Section III-D.

IV. RESULTS

To determine the quality of the presented lane marker parameters,
cross-correlation coefficients are calculated between the parameters
and the steering signal for 20 driving data sets. The results are listed
in Table I. In Table I, the following notation is introduced: Ns is the
number of samples in the data set, and θmin and θmax are the minimum
and maximum amplitudes of the steering signal in degrees, respec-
tively. ρx, ρα, ρs, ρm, and ρc are the cross-correlation coefficients
between the vehicle’s steering signal and the lane marker parameters:
the coordinate variation xv , the angle α, the area s, the maximum ratio
m, and the curvature c, respectively.

The cross-correlation coefficients listed in Table I are evaluated
using the following initial conditions: the xv parameter is estimated
by tracing the lane marker data at y = 500 pixels, and the angle α
is calculated when two points in the lane marker data are estimated
at yv = 500 pixels and at yc = 550 pixels [see Fig. 1(a)]. The area
s is estimated for a lane marker segment between y = 500 and
700 pixels, respectively [Fig. 1(b)]. The maximum ratio m is calcu-
lated by limiting the lane marker from 500 pixels to the end, i.e.,
rejecting the lane marker part below 500 pixels. The curvature c
is calculated by applying (5) and (6) with y1 = 700 pixels, y2 =
600 pixels, and y3 = 500 pixels (Fig. 2).

The results listed in Table I show that in most cases, the correlation
is above 0.9, but in some cases, the cross-correlation coefficients are
significantly lower. A major part of these low correlation values is
caused by a missing lane marker due to side streets or lane marker
deterioration. As this paper is not concentrating on lane marker ex-
traction techniques, no specific processing for special situations like
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vanishing road markers is employed. Instead, gaps in the parameter
vectors are interpolated by cubic splines.

Summarizing the results listed in Table I, correlations of up to
ρ = 0.98 can be achieved for both lane marker curvature c and x
coordinate variation xv . Estimated medians (see the last row in Table I)
show that if one wants to achieve the highest correlation with the
steering signal, one should use x coordinate variation parameter xv .
The lowest correlation can be expected between angle α and the
steering signal. However, the medians M and standard deviations
of the cross-correlation coefficients prove good correlation with low
variance in the obtained correlation values between the steering signal
and all the investigated parameters.

V. STABILITY OF PARAMETERS

The stability of the lane marker parameters is analyzed with respect
to the look-ahead distance (in the image appearing as a vertical shift
of the area where analysis is performed). The stability is evaluated by
shifting the horizontal lines used for parameter estimation (see Fig. 1)
up and down the image and by changing the distance between the lines
(when more than one line is used for parameter estimation).

Fig. 3 shows the estimated cross-correlation coefficients between
the steering signal and the lane marker parameters. The illustrations
are presented for data set No. 16 listed in Table I. Fig. 3(a) shows
how cross-correlation coefficients depend on the look-ahead distance
when the lane marker parameter xv is investigated. The horizontal axis
y corresponds to the look-ahead distance. The result shows that the
cross-correlation coefficient goes down with the reduction of the look-
ahead distance. However, in a relatively wide range, i.e., 450 < y <
527 pixels, the cross-correlation coefficient above 0.95 is obtained.

The estimated cross-correlation coefficients between the lane
marker parameter α and the steering signal are presented in Fig. 3(b).
The solid curve shows how the correlation coefficient depends on
the look-ahead distance. The curve is obtained using the following
parameters: the upper line [see Fig. 1(a)] at y = 450 pixels and the
lower line at y = 500 pixels. The correlation coefficients are estimated
in the range 450 ≤ y ≤ 600 pixels for the upper line position. After
that, the upper line is placed at y = 506 pixels, i.e., where a maximum
of the cross-correlation coefficient is obtained. The lower line is
placed one pixel below, i.e., at y = 507 pixels. The cross-correlation
coefficients are estimated by shifting down the position of the lower
line and thus increasing the width of the interval in which the angle
is estimated. The resulting cross-correlation coefficients are presented
in Fig. 3(b) by the dotted curve. The results show [Fig. 3(b)] that the
parameter angle α strongly depends on the look-ahead distance (solid
curve) and has a low dependence on the lane marker segment width in
which the parameter is estimated (dotted curve).

Cross-correlation coefficients between the lane marker parameter
area s and the vehicle’s steering signal are presented in Fig. 3(c). The
solid curve shows the cross-correlation coefficient dependence on the
look-ahead distance, and the dotted curve shows the cross-correlation
coefficient dependence on the employed lane marker segment width.
As initial conditions, the upper and lower lines [see Fig. 1(b)] are at
y = 450 pixels and y = 650 pixels, respectively. In the second part
of the experiment, the upper line is at y = 495 pixels, and the lower
line passes the range 496 ≤ y ≤ 696 pixels. The results [see Fig. 3(c)]
show that the area s does not change much with the change of the look-
ahead distance (range 480 ≤ y ≤ 552), but it has low correlation to the
steering signal when the look-ahead distance is below y = 480 pixels.
In addition, one can see that the cross-correlation coefficient becomes
low when the look-ahead distance is above y = 558 pixels. The dotted
curve [Fig. 3(c)] shows that a narrow window (approximately up to
50 pixels of the lane marker segment) results in relatively low corre-

Fig. 4. Steering signals: true (solid curve) and predicted (dotted curve). The
steering signal prediction mean squared error is 2.83%.

Fig. 5. Illustration of overtaking action: predicted steering signal (dashed
curve) and true signal (solid curve); below mean squared error of the predicted
steering signal.

lation between the area s and the steering signal, but the wider lane
marker window (more than 50 pixels) increases the correlation that
grows with the window size.

The cross-correlation coefficients between the lane marker parame-
ter m and the steering signal when the maximum look-ahead distance
varies are presented in Fig. 3(d). The results show that evaluation of
the parameter m is unstable in the range 450 ≤ y ≤ 485 pixels, but
beyond 485 pixels, the correlation becomes stable. It can be observed
that decreasing the look-ahead distance reduces the cross-correlation
coefficient between the parameter m and the steering signal.

The investigated cross-correlation coefficients between the steering
signal and the lane marker curvature c are presented in Fig. 3(e).
The following initial conditions are applied: three points (see Fig. 2)
are placed at y1 = 450, y2 = 550, and y3 = 650 pixels. The cross-
correlation coefficient between the curvature and the steering signal
is estimated [solid curve, Fig. 3(e)], simultaneously shifting all the
three points. The results show that the correlation decreases (due to
unstable curvature estimation) when the lowest point (initial position
y = 650 pixels) approaches 760 pixels. The dotted line [see Fig. 3(e)]
shows the cross-correlation coefficient when the middle point (x2, y2;
Fig. 2) coordinate y2 is varied. In this case, the initial conditions are
as follows: The uppermost and lowest points are fixed at y = 511 and
y = 711 pixels. The middle point coordinate varies in the range 512 ≤
y2 ≤ 710 pixels. The results show that the position of the coordinate y2

between y1 and y3 has very little influence on the correlation between
the curvature c and the steering signal.

VI. APPLICATIONS

Here, we show how the proposed lane marker parameters can be
applied for the detection of an overtaking action. A neural network,
specifically the extreme learning machine [23], is used for steering
signal prediction. A hidden layer has four neurons and the sigmoid
transfer function. Training is performed using signal Nos. 2–5 (see
Table I), and signal No. 1 is used for testing.

An illustration of the predicted signal is presented in Fig. 4 (pre-
diction error 2.83%). The steering signal prediction accuracies using
different lane marker combinations were presented in our previous
work [24].
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Fig. 3. Cross-correlation coefficient between the steering signal and the lane marker parameters. (a) xv parameter correlation to steering signal for the interval
of y values. (b) Angle α correlation to the steering signal for the interval of y values when the width of evaluation window is 50 pixels (solid curve) and angle α
correlation to the steering signal when y = 507 and the width of evaluation window varies. (c) Area s correlation to the steering signal for the interval of y values
when the evaluation window is 200 pixels (solid curve) and area s correlation to the steering signal when y = 495 and the width of evaluation window varies
(dotted curve). (d) Maximum ratio m correlation to the steering signal for the interval of y values. (e) Curvature c correlation to the steering signal for the interval
of y values when the evaluation window is 200 pixels and point y2 (Fig. 2) is in the middle between points y1 and y3 (solid curve) and correlation to the steering
signal when the y2 coordinate varies (dotted curve).

Fig. 5 shows the predicted steering signal and the prediction error
during overtaking action of a bicyclist. This overtaking action made
it possible to analyze the lane marker parameters without additional
interpolation of the parameters because the estimation of the lane
marker on the road was not strongly distorted or hidden by the
bicyclist. The presented results show that the prediction error increases
rapidly during the overtaking action. The error level above 10% of the
mean square error, which here will be considered as a threshold level,
coincides well with the beginning of the overtaking action (starting
at frame number 970). The time delay between the beginning of the
overtaking action and the steering signal prediction error overcoming
the threshold is 0.32 s.

VII. DISCUSSION

Four new lane marker parameters, i.e., the x coordinate variation
xv estimated at the fixed y coordinate, the angle α between the lane
marker and the horizontal line at a fixed y coordinate, the area s
estimated from a lane marker curve segment, and the maximum m
of the lane marker x and y coordinate ratio in a frame, are introduced.
The fifth parameter analyzed in this paper is the curvature c of the
lane marker, which is long known in autonomous driving literature,
but here we propose a new method for curvature estimation. All five
parameters are estimated from monocamera images and have high
correlation to the vehicle’s steering signal. The highest correlation to
the steering signal is obtained using parameters xv (mean correlation
0.93) and m (mean correlation 0.92), and the lowest correlation is
obtained using angle α (mean correlation to the steering signal 0.84).
It is shown that the proposed parameters are stable with respect to
the change of look-ahead distance in relatively wide intervals, which
would guarantee parameter stability with respect to small shifts of
coordinate frame, which may happen due to different placement of
cameras in different vehicles. The best stability with respect to look-
ahead distance is achieved for parameters xv , s, and c. Consequently,
the only parameter that has slightly worse properties is the angle α.
Any of the remaining four parameters could be used for steering angle
prediction on its own, or all parameters may be used together (although
correlated in between) to compensate for estimation noise.

Recent methods enable the reconstruction of the real road (bird’s
eye view) geometry [25], but the results presented in this paper
indicate that already features from 2-D image analysis are sufficient
to predict the steering signal with high accuracy. One should agree
that reconstruction of the real road geometry makes it easier to reason

about current traffic situation in human-like terms (e.g., the vehicle is
2 m away from the right lane marker and turned toward the lane marker
at the angle of 20◦), which our features do not support. Alternatively,
this knowledge in the proposed features is implicit and allows making
predictions using black-box models like neural networks, as would be
discussed further.

As the presented features have correlation to the steering signal up
to 0.98, only the few remaining percentages in accuracy are left for
improvement using more features, or more advanced features, e.g.,
adding 3-D information, like slope or bank angle (superelevation) of
the road [26]. One can expect that slope information would be much
more important on hilly roads, whereas the data that were analyzed
here were obtained in flat surroundings. Superelevation would make a
difference in the circumstances where the roads are less standardized
but apparently does not make a big difference for driving on highly
standardized German roads.

It was shown that employing presented lane marker parameters
makes it possible to achieve steering signal prediction error smaller
than 3%. Application of the lane marker parameters to detect the over-
taking maneuver through monitoring prediction error was presented.
Detection of the driver’s action was done with respect to the driver’s
“normal” driving, where a neural network had learned the normal
driving pattern of this specific driver before. As suggested by the
given application example, through predicting the driver’s behavior
and analyzing inconsistencies, adaptive DAS that takes into account
human-like driving can be developed.

It was reported [16] that an autonomous vehicle drove in a more sta-
ble manner than the human driver. That is true because all conventional
driving systems try to keep a vehicle exactly at the position on a road
that is considered optimal. However, a human driver has his individual
driving style and experience; therefore, a mismatch between the human
driver and autonomous driving can cause an incorrect interpretation of
the driving situation for DAS.

For the overtaking action detection presented here, the steering sig-
nal prediction error rapidly grows with the beginning of the overtaking
action, and thus, the action can be detected by analyzing the error
signal (e.g., introducing a threshold). The same strategy can be used
for lane change detection and for the detection of incorrect or unsafe
driving supplemented by triggering of the warning message for the
driver in case of need [27].

A DAS that uses a visual system for the estimation of lane marker
parameters on a road may fail when the lane marker is missing or
illumination is unfavorable. However, a lane marker failure can be
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compensated by GPS and map data [12], [28], [29] or vehicle to
vehicle and vehicle to infrastructure communications [30]. Even when
using other sources than vision to obtain lane information, some of
the designed features (or their analogs for the nonvision scene) can be
advantageously used for steering action prediction.
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Integration of Physical and Cognitive Human Models to
Simulate Driving With a Secondary In-Vehicle Task

Helen J. A. Fuller, Matthew P. Reed, and Yili Liu, Member, IEEE

Abstract—Human behavior models give insight into people’s choices
and actions and are tools for predicting performance and improving
interface design. Most models focus on a task’s cognitive aspects or its
physical requirements. This research addresses the divide between cog-
nitive and physical models by combining two models to produce an inte-
grated cognitive–physical human model that enables studying of complex
human–machine interactions. The capabilities of the integrated model are
evaluated in a task scenario with both cognitive and physical components,
i.e., driving while performing a secondary in-vehicle task. When applied
in this way, the integrated model is called the Virtual Driver model
and can replicate basic driving, in-vehicle tasks, and resource-sharing
behaviors, providing a new way to study driver distraction. The model has
applicability to interface design and predicting staffing requirements and
performance.

Index Terms—Driver distraction, driver modeling, queuing network,
secondary task.
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