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Part-Based Pedestrian Detection and Feature-Based
Tracking for Driver Assistance: Real-Time,

Robust Algorithms, and Evaluation
Antonio Prioletti, Student Member, IEEE, Andreas Møgelmose, Student Member, IEEE, Paolo Grisleri,

Mohan Manubhai Trivedi, Fellow, IEEE, Alberto Broggi, Senior Member, IEEE, and
Thomas B. Moeslund, Member, IEEE

Abstract—Detecting pedestrians is still a challenging task for
automotive vision systems due to the extreme variability of tar-
gets, lighting conditions, occlusion, and high-speed vehicle motion.
Much research has been focused on this problem in the last ten
years and detectors based on classifiers have gained a special place
among the different approaches presented. This paper presents a
state-of-the-art pedestrian detection system based on a two-stage
classifier. Candidates are extracted with a Haar cascade clas-
sifier trained with the Daimler Detection Benchmark data set
and then validated through a part-based histogram-of-oriented-
gradient (HOG) classifier with the aim of lowering the number
of false positives. The surviving candidates are then filtered with
feature-based tracking to enhance the recognition robustness and
improve the results’ stability. The system has been implemented on
a prototype vehicle and offers high performance in terms of several
metrics, such as detection rate, false positives per hour, and frame
rate. The novelty of this system relies on the combination of a
HOG part-based approach, tracking based on a specific optimized
feature, and porting on a real prototype.

Index Terms—Advanced driver assistance system (ADAS), clas-
sifiers, features, machine vision, pedestrian detection.

I. INTRODUCTION

OVER the past decade, the essential role of machine vision
modules to realize active safety systems for accident

prevention is clearly established in academic research [1],
[2] and is also reflected in innovative systems introduced by
industry [3], [4]. Effective vision systems need to accurately
assess situational criticalities from the panoramic surround of
a vehicle [5] and simultaneously assess awareness of these
criticalities by the driver [6]. One of the major thrusts in situa-
tional criticality assessment is that of pedestrian detection, and
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it still remains an active area of research [7]–[15]. Pedestrian
detection has multiple uses, with the most prominent being
advanced driver assistance systems (ADASs). The overarching
goal is to equip vehicles with sensing capabilities to detect and
act on pedestrians in dangerous situations, where the driver
would not be able to avoid a collision. A full ADAS with regard
to pedestrians would as such not only include detection but also
tracking, orientation, intent analysis, and collision prediction.

Pedestrian detection brings many challenges, as outlined by
[8]: high variability in appearance among pedestrians, cluttered
backgrounds, high dynamic scenes with both pedestrian and
camera motion, and strict requirements in both speed and
reliability. It follows from this list that there is a high risk of
occlusion, and this occlusion might not be present for very
long since all objects in the scene are moving relatively to each
other. Part-based detection systems seem intuitive to cope well
with occlusion as they do not necessarily require the full body
to be present to make detection. In addition, many existing
systems (see Section II) are plagued by a high false positive
per frame (FPPF), something that a part-based system can
reduce if requirements of several body parts to be detected are
put in place. These two motivations for part-based detection
can be somewhat contradictory. Narrowing the classification
parameters will reduce the number of false positives but, like-
wise, the number of true positives. A tracking technique can
be introduced to supply missing detection and, thus, counteract
this tradeoff.

This paper builds on a part-based staged detection approach
(PPD), which was first put forth in [9], providing four major
contributions:

1) a thorough analysis of the impact of changes in param-
eters for this algorithm that goes far beyond what was
presented in the initial study;

2) an expansion of the system to a full-fledged ADAS, not
just a detection algorithm, and a discussion of the require-
ments put upon the full system from such an application;

3) the use of more pedestrian-related training and test sets,
where the original paper used the INRIA data set [11],
which is a more general-purpose person data set;

4) porting of the system to a real prototype vehicle and
analysis of critical situations in a real environment,
optimizing the system to improve detection and speed
performance.

1524-9050/$31.00 © 2013 IEEE

mailto: antonio.prioletti@studenti.unipr.it
mailto: am@create.aau.dk


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

One of the innovations of this system is the use of histogram-
of-oriented-gradient (HOG) features in a PPD; moreover, an
optimized kind of a feature has been adopted to decrease as
much as possible the computational time; this helps when
testing the system on a real prototype. Given the reaction speed
of a human, it is clear that a braking assistance system can help
in reducing braking distances.

The ADAS is a challenging domain to work within. Reaction
times must be fast for driving, where a fraction of a second
can be the deciding factor between a collision and a near
miss. At the same time, the system must be robust; therefore,
no action is erroneously triggered (due to a false detection),
which could itself lead to accidents. Further reasoning than just
detection is necessary in such a framework, with pedestrian
intent estimation being a good example, as presented in [12],
or automatic braking, as in [13].

This paper contains an overview of related works in
Section II, a description of the implemented pedestrian detec-
tion ADAS in Section III, and details of the algorithmic stages
in Section III-A–C. A thorough set of experiments follows
in Section IV, where the impact of parameter adjustments in
the system is investigated. Section V describes the porting of
the system to a real prototype car, and Section VI presents
a final evaluation of the performance, in comparison with the
state of the art of the vision-based detectors, with the full-body
approach by Geismann et al. and with the final system after the
implementation on a real platform [14].

II. RELATED WORKS

The purpose of pedestrian detection is first and foremost to
protect pedestrians. Pedestrian safety is a large area, including
passive solutions, such as car design, and active solutions,
such as pedestrian detection. It also involves infrastructure
design to a great extent. In [15], a survey of the pedestrian
detection field and a taxonomy of the involved system types
are provided. Many standard features and learning algorithms
have been adapted to pedestrian detection. Common options
include an AdaBoost cascade on Haar-like features [16], [17]
or HOG+SVM [11], [18], but many other features are also
used, such as edgelets [19], variations of gradient maps, or
simple intensity images. The cascade classifier based on Haar-
like features, which is described in [16], is a very fast algorithm
for pedestrian detection. A drawback of this approach is the
close link with the appearance of pedestrians and the resulting
lack of robustness. An alternative is the solution using HOG
and support vector machines (SVMs) presented in [11]. At the
cost of speed, this algorithm is much more robust and detects
pedestrians in harder situations. The combination of these two
algorithms allows the system to benefit from both approaches
and obtain a robust system with considerable speedup.

Decomposing the pedestrian shape into parts is gaining great
interest in this area, particularly for increased tolerance of
occlusion. Interesting dilemmas are how many and which parts
of pedestrians to use, and how to integrate all the part-based
detectors in a final detector; an example is shown in [20]
where, in the first stage, head, arm, and leg detectors were
trained in a fully supervised manner and are then combined

to fit a rough geometric model . Other two-stage approaches
are shown in [21] and [22]. Several feature types and different
environment kinds can be used. In [23], a system is developed
based on Viola’s Adaboost cascade framework, using edgelet
features in addition to Haar-like features, to improve the de-
tection of the pedestrians contour; moreover, the concept of
interfering objects is introduced, i.e., objects similar to a human
body on a feature level. Before detecting pedestrians, they
remove this type of an object. In [19], multiple part detectors
based on edgelets are combined to form a joint likelihood
model that includes cases of multiple possibly interoccluded
humans. Due to the high difficulty of detecting interest points
at low resolutions, unsupervised part-based approaches that do
not rely on key points have been proposed. An example is
multiple-instance learning, which determines the position of
parts without part-level supervision [24]. In [25], one of the
most successful PPD that models unknown part positions as
latent variables in an SVM framework is proposed. In [26],
this method switching to a part-based system only at suffi-
ciently high resolutions is improved. Detecting highly variable
objects, such as pedestrians, is essentially the use of a tracking
module. Tracking a variable number of elements in complex
scenes is a challenging process. To cope with this kind of
problem, a tracking-by-detection approach is commonly [19],
[27] used, i.e., pedestrians are detected in individual frames
and then associated between frames. The main challenge to this
regards discontinuous detection in conjunction with possible
false positives and missing detection; this problem makes use
of a Kalman filter hard, due to the continuous detection that
it needs to give accurate results. Several multiobject tracking
systems [28], [29], such as our system, use a large temporal
window to make the association; in this way, a pedestrian not
detected in two subsequent frames but in more frames can be
also included in the tracking system with a temporal delay.
Another interesting approach that can be investigated in the
future is to represent the uncertainty of a tracking system with
a particle filter [30] in a Markovian manner. Using a stereo-
based approach is possible to reduce the searching area and,
consequently, the elaboration time, as described in [31] and
[32]. Examples of detection that is not based on images but in-
stead on time-of-flight (TOF), such as radars and lidars, are put
forth in [33]–[35]. These systems very often combine the TOF
sensor with a camera as in [13], with a combination of a near-
infrared camera and a lidar. Furthermore, they use a scenario-
driven search approach where they only look for pedestrians in
relevant areas. Further reading on pedestrian protection systems
can be found in [15], and comprehensive surveys on vision-
based detection systems are found in [7], [8], [36], and [37].

A. Public Data Sets

Several data sets are publicly available. The two best known
are the Massachusetts Institute of Technology data set [38] and
the INRIA data set [11]. Recently, more comprehensive data
sets have been put forth. These include the ETH [39], TUD-
Brussels [40], Caltech [41], and Daimler Detection Bench-
mark (DaimlerDB) [36] pedestrian data sets. Note that the
DaimlerDB set should not be confused with the older and
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TABLE I
KEY STATISTICS ABOUT MAJOR PUBLIC PEDESTRIAN DATA SETS, COURTESY OF DOLLÁR ET AL. [7]

smaller Daimler Classification Benchmark, which is often
wrongly abbreviated as DaimlerDB. Key statistics about the
data sets are presented in Table I and also presented in [7].
While the INRIA data set was used in the first presentation of
this system [9], this paper deals mainly with the DaimlerDB
since that is a much larger data set created with focus on in-car
detection systems. All testing is done against the DaimlerDB
(see Section IV for further details), and we compare the training
with the DaimlerDB and the INRIA data set.

B. Performance of the State of the Art

To know what the performance target for a vision-based
system is, we turn to the evaluation of the state-of-the-art
performance in [7]. Two results are interesting: the detection
rate versus the false positives per frame (FPPF) and the de-
tection speed (frame rate). As this paper uses the DaimlerDB
pedestrian data set, we compare our performance with the state-
of-the-art detectors on this database, as reported in [7]. Ten
different systems have been tested on the data set and detection
rates are available at a false positive rate of 0.1 FPPF. The
results are shown in Table II. Apart from the ten systems that
were tested on the DaimlerDB data set, we have included the
fastest detector of all. No detection results were reported for this
detector on the DaimlerDB, but on the other sets, it achieved
detection rates of around 0.4.

III. PART-BASED PEDESTRIAN DETECTION

SYSTEM OVERVIEW

A two-stage system based on the combination of Haar cas-
cade classifier and a novel part-based HOG–SVM will be pre-
sented here; an innovative features-based pedestrian tracking
approach will be also described.

A monocular vision system is used since a simple onboard
camera is present in many new high-end cars already. A Haar
detector is used to reduce the region of interest (ROI) (detection
stage), providing candidate pedestrians to the HOG detector,
which classifies the windows as pedestrians or nonpedestrians
(verification stage). To increase the robustness of the system
and reduce the number of false positives, a PPD is used in the
verification stage. The full body, the upper body, and the lower

TABLE II
DETECTION RATES AND SPEEDS FOR STATE-OF-THE-ART PEDESTRIAN

DETECTION SYSTEMS AT 0.5 FPPF ON THE DAIMLERDB DATA SET,
COURTESY OF DOLLÁR ET AL. [7]. THE PAPER CONTAINS AN

EXPLANATION OF EACH OF THE SYSTEMS. THESE PERFORMANCES ARE

DIRECTLY COMPARABLE WITH THE RESULTS OBTAINED IN THIS PAPER.
THE FASTEST SYSTEM IS ALSO LISTED, ALTHOUGH DETECTION RATES

FOR THE DC DATA SET ARE UNKNOWN. ABBREVIATIONS ARE

THE SAME WITH THAT DESCRIBED IN [7]

body are each verified using an SVM. These three results are
then combined to obtain the final response for the ROI. Two
ways were investigated to combine results in the verification
stage:

• a simple majority vote, where at least two of three SVMs
must classify the window as a pedestrian;

• a more advanced way, where another SVM classifies the
window based on the estimated function value from an
SVM regression performed on each part.

Due to the high variability in pedestrian appearance, a robust
system with strict thresholds for detection may not detect the
same pedestrian in subsequent frames and, thus, reduce the
detection rate considerably. To counter this, a stage of feature-
based tracking was introduced, significantly increasing the
number of true positives.

A. Detection Stage

An AdaBoost cascade on Haar features is used in the detec-
tion stage. Several weak classifiers are combined into a strong
classifier; the final classifier is formed with the combination of
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Fig. 1. Different bounding boxes required by Haar cascade and HOG–SVM.
The base image is from the DaimlerDB data set [36]. The red dashed line is the
Haar bounding box and the blue continuous line is the HOG bounding box.

several layers of these strong classifiers. The cascade structure
removes most false positives in the first stages, increasing the
speed of the classifier and not having to calculate these in
the following stages. In the following, we denote the number
of cascade stages as k. In [42], a comprehensive description
of the algorithm is presented. Unlike HOG features, Haar-like
features do not benefit from having much background included.
Training images need to be closely cropped around the anno-
tated human shape (e.g., see Fig. 1). Following the suggestions
in [42] about the optimal image size for the Haar cascade
approach, the training images are resized to 20 × 40 pixels.
Another interesting element in the training phase is the choice
of data sets used to train the cascade classifier. Most of the
older systems were trained with the INRIA data set, containing
general environments and not specifically pedestrians. To show
how the change results with different training data sets, the
system has been trained with the INRIA data set alone, with
the DaimlerDB data set alone, and with a combination of the
two sets.

Since the detection stage defines the upper bound of de-
tection for the entire system, it is fundamental to choose the
best value for the number of the stages. A lower value of k
means not only a high detection rate but also a high number
of false positives. Initially, it might seem logical to choose
the number of stages as low as possible, to ensure a high
number of detections. That will, however, result in inaccurate
bounding boxes (and many of them), as shown in Fig. 2; thus,
the final results will be incorrect. The PPD was not introduced
to the detection stage, as preliminary tests and the work in
[43] showed a bad performance for this approach. When the
bounding boxes of candidate pedestrians (e.g., see Fig. 3) have
been obtained, they are passed to the verification stage.

Fig. 2. Example of the degradation of the bounding box varying k from 13 in
the last pictures to nine in the second picture and to eight in the first picture.

Fig. 3. Detection stage output. Several false positives are contained, but these
will be removed in the verification stage.

B. Part Verification Stage

As opposed to the full-body verification stage in [14], a PPD
scheme is used in this paper. Two different compositions of
body parts have been tested:

• a full body, an upper body, and a lower body;
• a full body, a head, a torso, and legs.

A fixed ratio between them have been used. The upper body
and the lower body are obtained by dividing the shape into
two equal parts. When we split the shape into three parts,
instead, it was assumed a ratio of 16% for head and neck and
34% for torso, whereas legs are considered to occupy 50%
of the entire body. These numbers are taken from standard
human body ratios. Before passing the ROIs to the SVMs,
preprocessing to add background and to resize the image is
needed to ensure good performance by HOG–SVMs, which
takes some background into account. Then, the individual part
verification and the combined verification form the verification
stage. SVM regression based on dense HOG descriptors is
calculated for each part in the ROIs given by the detection stage.
Two different types of SVMs were tested: a linear SVM and a
nonlinear SVM. Each was tested in two variants, i.e., a binary
SVM or a regression SVM. The binary SVM provides only the
classification (pedestrian or nonpedestrian) of the element; the
regression SVM provides the estimated function value. In [14],
a special kind of sparse HOG descriptors is used, whereas our
algorithm uses classic dense HOG descriptors. Integral images
were used to speed up the descriptor calculation, as described
in [44]. For SVM training, images from several data sets were
tested with the goal of analyzing the effects of training sets in
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Fig. 4. Example of part boundaries for the two-part and three-part verification.

the verification stage. The process of training the SVMs for the
different parts of the body are almost identical; the only changes
being the portion of images used to calculate the HOG features.
Examples of parts are shown in Fig. 4.

C. Combined Verification Stage

For this last stage, two different approaches have been im-
plemented: majority vote and regression output classification.
The majority vote approach performs the final labeling without
further classifiers, and the regression output classification uses
one more classifier to label the window. There is a philosophical
difference between the voting-based combination methods and
the others. Voting-based combination requires only a subset
of body parts to be visible and detectable and can deal well
with occlusion. The other requires all body parts to be visible,
at least to some extent; therefore, they will handle occlusion
somewhat worse but reduce the number of false positives. A
possible compromise is to use occluded pedestrians in the data
set, training the classifier to detect pedestrians partially visible;
obviously, this also means an increase in FPPF.

The majority vote approach uses the binary outputs from the
SVM. The value will be 1 if the classifier detects the specific
part of the body or −1 if the part is not detected. A window
is classified as correct detection if at least two out of three
classifiers label the window as a pedestrian. The formula used
for the majority voting is

lout =

{
1, if

∑i<3
i=0 li >= 1

−1, if
∑i<3

i=0 li < 1
(1)

where lout is the final decision, and li is the output from one of
the three part-based detectors.

Regression output classification uses the three-float value
coming from SVMs of the verification stage to train a new
classifier. Several types of classifiers were tested: a linear SVM,
a nonlinear SVM, and a Bayesian classifier; in the results, the
different performances of each one will be shown.

D. Tracking Stage

A feature-based tracking was used to enhance the detection
rate. The tracker is introduced to increase the number of true

positives due to the higher stability of the detection in the case
of, for example, occlusion, and to decrease the number of false
positives since only the stable detection will be considered
pedestrians. The core of the tracking system is the feature
matcher, using the matching approach in [45]. The tracker
labels pedestrians to supply possible missing detection due
to mistakes of the classifier in the verification stage; a more
detailed description of the tracking is presented in Section V.
An overview of the flow through the algorithm is shown in
Fig. 5.

IV. EXPERIMENTS

One of the main contributions of this paper is a thorough
evaluation of the algorithm’s parameters. Here, we describe
the experiments to determine the best detector, which is then
quantitatively and qualitatively tested in Section V. DaimlerDB
was primarily used, with elements from the INRIA data set in a
few tests. Unless otherwise specified, images from the training
part of DaimlerDB was used for training, i.e., both the detection
stage and the part verification stage. The test part of DaimlerDB
was split into two.

• One portion of 1500 images was used for the parameter
optimization here.

• One portion of 500 images was used for the final test
presented in Section V.

This ensures that the final performance measures are fully
independent of the training images. The experiments are laid
out as follows.

1) The best detection stage training is determined, and then,
the optimal value of k in the detection stage is decided.

2) The part-based verification is tackled with a compari-
son of the two-part and three-part approaches. They are
compared with a simple detector without a part, similar
to the original version of the algorithm proposed by
Geismann et al. Furthermore, the significance of each part
is evaluated.

3) The combined verification stage is tested with various
methods.

4) The system speed is tested, and the time is broken down
into individual stages.

A. PASCAL Detection Evaluation

For all the following experiments, the PASCAL measure [46]
has been used to determine the detection rates. This is also used
in [7]; therefore, the results should be directly comparable. The
PASCAL measure evaluates to true if the overlap is more than
50%, i.e.,

ao ≡ area(BBdt ∩BBgt)

area(BBdt ∪BBgt)
> 0.5 (2)

where BBdt and BBgt are the bounding boxes of the detec-
tion and the bounding box of the ground truth, respectively.
Each detection is compared with the ground truth of the 1500
images and is counted as a true positive if ao is true and as
a false positive, otherwise. All tests in the following are run



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 5. Flowchart for the proposed PPD and feature-based tracking modules. The output of the detection stage and the following stages are in bounding boxes.

Fig. 6. Comparison of different training sets for the detection stage. The
system trained with the DaimlerDB data set performs significantly better,
remarking the excessive generality of INRIA. Chosen for having the best
training sets, it was analyzed, for the system training with this data set, with the
best value of k . As described in Section IV-C, 13 is the best value, obtaining a
good tradeoff between true positives and false positives.

on the complete system. For each test, all parameters are held
fixed, except for the one in question. Thus, the results cannot
necessarily be compared across tests, but the results are always
comparable relative to each other within the tests.

B. Training of the Detection Stage

This test pitted different training setups of the Haar cascade.
Four versions were tested:

• 2400 DaimlerDB images;
• 2400 INRIA images;
• 6000 images composed of 2400 INRIA and 3600 Daim-

lerDB images;
• 10 000 DaimlerDB images.
The results are presented in Fig. 6 and show that performance

is improved using more images. Fig. 6 is a receiver operating
characteristic (ROC) curve created by plotting the fraction
of true positives out of the positives (tpr = true positive rate)
versus the fraction of false positives out of the negatives (fpr =
false positive rate), at various threshold settings. Note the bad
performance of the system when trained with the INRIA data
sets; this show how the INRIA are too general, being developed

for the human detection. The big influence of this kind of
data set is also clearly visible in the system trained with 4000
DaimlerDB images and 2000 INRIA images; the system with
less images (2000 DaimlerDB), but only from the DaimlerDB
data set, performs better than this one with more images.

C. Choice of k in the Detection Stage

This test determines how many stages k the Haar cascade
should have. As there are two verification stages after this, the
detection stage should be tweaked so that it returns as many true
positives as possible, whereas the number of false positives is
less important; they will be removed later. Still, there is a point
where raising the number of false positives does not provide a
better detection performance; therefore, the only effect will be
a slowdown of the system since more ROIs must be inspected
by the verification stages. Fig. 6 shows the ROC curve for
different values of k. Few stages should mean raise the number
of both false positives and true positives, but at some point, the
quality of the bounding boxes provided by the detection stages
degrade to a level where the verification stage only verify a few
candidates.

D. Part Verification Padding

Padding p is the amount of area added to the ROIs returned
by the detection stage. The HOG–SVM approach is sensitive
to the amount of free space around the subject as described in
[11]; therefore, the parameter is relevant for optimization. An
example of padding is shown in Fig. 3, where the bounding box
for the Haar cascade is much closer to the subject than the rest.
We express p as a fraction of the width of the ROI found by the
detection stage, i.e.,

ppixels =
wROI

wt
· p (3)

where p is the padding value, wROI is the width of the found
ROI, wt is the width of the training images, and ppixels is the
padding measured in pixels. Fig. 7 shows the performance of
different padding values. It is evident how less padding means
worse images to the verification stage. At the same time, too
much padding makes the verification more difficult for the
HOG detector since more items are analyzed and more mistakes
happen.
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Fig. 7. Choosing the padding values to be put on the ROIs from the detection
stage before passing them to the verification. The DaimlerDB training set with
10 000 images and a k value of 13 were used.

Fig. 8. Detection performance with varying numbers of parts. Note that two-
part verification performs well, whereas three-part verification is just as bad as
one-part verification due to the low quality of the images and the high difficulty
in identifying small areas, such as the head. Considering the results shown in
the previous charts, the DaimlerDB training set with 10 000 images, a k value
of 13, and a padding value of 2 were used.

E. Number of Parts

The performance of one-, two-, and three-part verification
is compared (with one-part verification obviously not being
part-based at all). Illustrations of the part boundaries for both
the two- and three-part detectors are shown in Fig. 4. The
performance of various part numbers is shown in Fig. 8.

Two-part verification is the best choice and three-part verifi-
cation performs better than having one-part verification at the
lower FPPF. These results can be attributed to the quality of the
images; the three-part detector needs to detect the head, which
is a comparatively small element and too hard to detect in an
image with low resolution. With higher resolution images, it
is likely that the three-part approach would provide the best
results, but at the same time, the speed of the system would
suffer.

Fig. 9. Detection performance with single parts, showing the reliability of
each part type. The graph confirms the assumptions regarding the difficulty to
detect the head. The same configuration parameter system of the last pictures
was used in this experiment.

In connection with this, an analysis of the significance of
each part was done. The results show how the detection perfor-
mance would be, relying on that specific part only. Four parts
have been tested: a lower body, an upper body, a head, and a
torso. The lower body is used both for the two- and three-part
verification, whereas the upper body is only used for the two-
part verification, and the head and torso are used for the three-
part verification. Results of this analysis are shown in Fig. 9.
None of the parts alone perform better than a unified detector,
but the upper body and torso provide the major contribution
to the detection. These results support the hypothesis that the
three-part verification has a worse performance than the two-
part verification, i.e., due to the low resolution for the head
detection. In this figure, the head detection system is the worst,
with a very low detection rate. The combination of the upper
body and the legs/lower body is the best combination due to the
high detection rate from the upper body and the reduction in
false positives provided by the lower body.

F. Combined Verification Step

For the final combined verification step, four options have
been investigated: the linear SVM, the radial SVM, and the
Bayesian classification for confidence classification and ma-
jority vote based on the discrete classification from the part
verifiers. The result of this comparison is shown in Fig. 10. The
vote-based combination should better deal with occlusion than
the other approaches, but at the same time, more false positives
are returned by this method. The best performance, i.e., when
the goal is a low FPPF, is given by the radial approach. This
logically follows from the nonlinearity of the data returned from
the part detectors. The plot of the Bayesian approach shows
an excellent detection rate but with a high number of false
positives. Applying a linear separation on set of nonlinear data,
the Bayesian approach classifies more elements as pedestrians
but, at the same time, incorrectly classifies a greater number
of true negatives. This explains the high detection rate and the
raise in false positives.
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Fig. 10. Comparison of different methods for combined part verification.
With a low false positive rate, the radial approach performs better. The system
configuration is as follows: DaimlerDB training set, a k value of 13, a padding
value of 2, and a two-part-based approach.

Fig. 11. Speed versus detection rate and FPPF. The time has been measured
for each stage, which is denoted as k. We see that the reduction in false positives
and the increase in true positives increase the number of stages. The PC is
equipped with a 2.20-GHz Intel Core i7-2670QM CPU and 8 GB of DDR2
RAM.

G. Speed Evaluation

This test evaluates the speed of the system at various settings
for the detection stage for given hardware. The results are
shown in Fig. 11. Changing k, which is the number of Haar
cascade stages, has a large impact on the system speed since
it directly influences how many candidates the next stages
must evaluate. The largest contribution in processing time is
the full-body verification, whereas the contribution of the last
stage is practically irrelevant. Setting a high k results in lower
number of ROIs and a faster system, and in a system capable of
detecting fewer targets. The goal here is to choose the system
where parameters are set to obtain a tradeoff between speed and
detection rate, taking the FPPF into account. Speed has been
measured on a run of 1000 images, and the results are the mean
of those runs. For the fastest run, a complete calculation can be
performed in about 0.757 s, corresponding to 1.32 frame/s.

TABLE III
FINAL SYSTEM PERFORMANCE

H. Parameterization of the Input Image Geometry

To make the system more configurable, the possibility of
choosing the image size has been added; therefore, processing
time can be only adjusted by resizing the input image. Camera
calibration parameters will automatically change to ensure the
correct behavior of perspective and inverse perspective map-
ping (IPM) functions used when filtering candidates. Resizing
the image results in a reduction in processing speed and the true
positive rate, as shown in Table III.

I. Key Improvements

Significant improvements were applied to the system de-
scribed in [9], as shown in Fig. 6, by comparing the blue graph
with the green graph. At the FPPF of 0.5, the true positive
rate was increased from 0.4 to 0.63 with a speedup of more
than 16×. The filtering of candidates and feature-based tracking
introduced a significant speedup as the implementation was
parallelized.

J. Evaluations With “Real-World” Driving Data

Fig. 12 shows some examples of possible circumstances that
may occur in a real environment, varying from simple, medium,
and hard situations.

The first two lines represent simple situations with pedestri-
ans crossing the street, riding bicycles, or walking along the
sidewalk, and some more critical situations, with pedestrians
partially occluded in a structured environment. Line C shows,
instead, some case of hard detection as highly occluded pedes-
trians, pedestrian underexposure, and pedestrians situated in a
highly complex scene.

A measure of the maximum distance of recognition is pro-
vided by line D, where one can recognize pedestrians at about
45/50 m away.

In addition, our algorithm still has some shortcomings, as
shown in the last line. Some “common” errors of classification
are shown in the last two pictures; however, these errors can
be considered superficial since they are only present in single
frames and, therefore, can be detached by our tracking system.

A relevant problem is shown in the first picture of line E. Due
to the geometric filter on the size of pedestrians, our system
does not detect pedestrians smaller than 1.45 m. A possible
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Fig. 12. Line A shows the examples of pedestrians detection with simple environment. Line B shows the examples of behavior of our detector in the presence of
small occlusion and structured scenes. The potential of our classifier in the presence of pedestrians strongly occluded, highly structured scenes, and underexposure
of the camera is shown in line C. Examples of detection of pedestrians far apart, at about 45 m, are shown in line D. Line E shows the samples of possible detector
problems: pedestrians are too small, cyclists at the intersections, and “common” misclassification, such as trees and poles.

solution is to broaden the constraints of the filter, thus obtaining
a greater number of false positives. An additional downside of
the geometric filter regards the accuracy of the calculation of the
IPM if the ground is not flat, as is presupposed by our system.
Using techniques of image stabilization described in [47] and
[48] could provide significant improvements; an alternative
solution would involve introduction of a stereo-based approach
to filter candidate pedestrians.

A further case of interest is depicted in the second illustration
of the last line, showing the situation where a pedestrian is
crossing the street where the car is turning. With cameras

situated in the front of the vehicle, it is impossible to detect the
pedestrian in time to brake. A solution could be the introduction
of cameras that allow looking on the side of the car and detect
pedestrians in advance.

V. PORTING PART-BASED PEDESTRIAN DETECTION

ON AN INSTRUMENTED VEHICLE TEST BED

With the aim of testing the developed system in the real
world, the original standalone software has been ported first to
a prototyping software platform to optimize it in a laboratory
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setting and then to a real hardware platform. Given on the
results obtained on the real platform, a set of additional features
have been identified and implemented to improve the detection
performance in a number of critical situations. These modifica-
tions are described in the following.

A. Porting and Optimization

The original code has been ported to be an application of the
latest version of the GOLD[49] software.

GOLD offers a number of advantages in this phase, allowing
the application to deal with virtual devices, instead of using
the hardware directly. This allows the system to work in the
laboratory on recorded data previously taken and stored on a
disk, or on a real platform and taking data from the hardware.

During the porting, a conversion of the Daimler database
images has been done, making it possible to read this recording
with GOLD and to use this data set as input for the pedes-
trian detection application. This has been done mainly for the
availability of a high-quality per-frame ground truth that can be
recovered any time and can be used to check the consistency of
the results with those obtained with the standalone application.

GOLD also offers a profiling application programming inter-
face allowing timing of different parts of the application, seeing
the time spent in the execution of these parts for every frame,
and computing cumulative statistics collected across a playback
session.

B. Platform

After reaching an acceptable performance level, the system
was transferred to a real prototype vehicle [50].

The platform is equipped with ten cameras, and one of these,
looking forward, has been physically connected to the appli-
cation. The camera used is a PointGrey DragonFly 2, working
at 10 Hz and producing images with a resolution of 1024 ×
768. The camera is equipped with a 6-mm micro lens, which
provides an acceptable level of distortion for this application.
The camera has a firewire interface that is connected to an
adapter located in the trunk, in an industrial PC. The PC is
equipped with a 2.20-GHz Intel Core i7-2670QM CPU and
8 GB of DDR2 RAM. Using this configuration and downsam-
pling the image to 640 × 480 pixels, it is possible to keep the
processing time below 100 ms for simple scenes generating a
reasonably low number of candidates. During the tests on the
real platform, some weaknesses of the original system emerged.
These weaknesses were mostly due to a lack of robustness in
the results observed over long driving periods and include a
high number of false positives and two discontinuous recog-
nition processes of the same targets observed along several
frames.

C. Candidate Filtering

As a first step, a set of filters was introduced to reduce
false positives to remove the candidates with size outside of
a selected range of [1.45–2.20] m in real-world measurements.
The IPM technique [51], [52] was used to calculate the posi-

tion of the pedestrian candidate in real-world coordinates; by
using the pedestrian baseline, it is possible to determine the
ratio of pixels and meters at this distance and estimate the
pedestrian height in the world, knowing its height in image
coordinates, using the flat road assumption. The application
of this filter gives a good reduction in false positives with a
small impact on true positives; quantitative results are shown in
Section VI.

D. Features

Classification schemes can be enhanced with a tracking sys-
tem to counteract the high instability of the detector due to the
high variability of pedestrians. A feature-based tracking system
was used to fix this lack. Features provide a robust base to track
people due to their translation and light invariance. A set of
features, as detailed in Section V-E and described in [45], based
on multiple local convolutions, key points and descriptors,
are extracted from two different hash images. Stable feature
locations are obtained to filter the input images with 5 × 5 blob
and corner masks, and then, it was applied with nonmaximum
suppression (NMS) and nonminimum suppression [53] on the
filtered images. Starting from the pedestrian output from the
verification stage, features are computed and used to match
pedestrians in subsequent frames. The feature-based tracking
has the downside of being dependent on the vehicle egomotion.
Vehicles moving at high speed, particularly in conjunction
with low frame rates, cause a high difference between two
subsequent frames and, consequently, a bad match between
corresponding features. To cope with this problem, a higher
frame rate must be used. Another downside of using features
for a tracking system is the difficulty of distinguishing between
foreground and background pixels. As a result, some matches
could be wrong, but the impact of these errors is very low and
decreases pedestrian motion.

E. Tracking

When a candidate pedestrian has been recognized by the
SVM for 250 ms (a time limit is used due to the variability
of frame rates), it is considered a true pedestrian, and it is
introduced in the tracking system. In the following frames, the
pedestrian features will be matched with new candidate pedes-
trians, and their positions and descriptor will be updated with
the new one. By using the sum-of-absolute-difference error
metric, 11 × 11 block windows of horizontal and vertical Sobel
filter responses were compared with each other. The whole
block window with Sobel responses is reduced to 8 bits, and
the differences over a sparse set of 16 locations are summed.
For further significant speedups, it was matched only to a subset
of all features, which are found by the NMS. The features are
then assigned to a 50 × 50 pixel bin of an equally spaced
grid and will be computed with the minimum and maximum
displacements for each bin. In this way, we reduce the final
search space and speed up the system. If no candidate matches
the search criteria (missing detection by the SVM), searching
for a match will be done across the entire image. If a match is
found, a ghost pedestrian will be introduced. It will be updated
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TABLE IV
FINAL SYSTEM CONFIGURATION

for up to 0.5 s; after which, it will be removed. A flowchart of
the tracking system is shown in Fig. 5.

F. Higher Frame Rate

The best results from the feature-based tracking are obtained
in correspondence to a good match between the features ex-
tracted from the candidate images in consecutive frames. When
working at low frame rates, such as 10 Hz, the high variability
between consecutive frames, which are both due to the object
movement in the scene and the vehicle egomotion, leads to a
bad performance of the feature matcher and, as a consequence,
the tracking system. Using the prototype platform, a new set of
images has been recorded at 30 Hz from one of the forward-
looking cameras. These images have been used offline with
tracking enabled, showing significant improvements in the re-
sult robustness and reducing the blinking of correct detection
caused by missed detection in single frames and by the false
positives. Unfortunately, the frame rate of the DaimlerDB data
set is lower than 10 Hz, and this is a limiting factor for com-
paring recognition performance improvement with the tracking
system. To get a significant sampling speed in real time, the
prototype was altered to acquire images with different sizes.
The reduction of the input image to 320 × 240 pixels leads to
a frame rate of 20 frame/s, and offers a level of recognition
performance similar to the one obtained at 30 Hz with the
offline processing.

VI. PERFORMANCE EVALUATION AND COMPARISONS

After the evaluation of all the parameters, a final system to be
tested on the DaimlerDB has been defined. Table IV contains
the parameter values used in the final system.

A. Final Test Without Tracking

Fig. 13 shows the performance of the final system. This
figure shows results for several values of k to plot ROC curves
and gives a detection rate of about 0.69 with an FPPF of 0.5,
considering 13 as the best value for k. Despite a high FPPF,
our system is directly comparable with others shown in [7]; it
shows the same performance of LatSvm-V2, which is one of
the most successful PPD described in [25], but with a huge
speedup of 10× (not considering the extra speedup described in
the following). A better performance is achieved by filtering the
candidates as described earlier, reducing the false positive rate
from 0.5 to 0.046 with a small reduction of the true positive rate
to 0.673, as shown in Fig. 14. These results allow our system to
gain a foothold in the state of the arts consolidated by a huge

Fig. 13. Final test detection. Evaluation on the performance on the last part of
DaimlerDB images without the optimization for the porting on a real prototype.

Fig. 14. Evaluation on the performance of the optimized system on the last
part of DaimlerDB images.

speedup described in the following. The results are summarized
in Table III.

B. Tracking Improvements

Introducing a tracking system resulted in significant im-
provements in the number of true positives and a reduction in
the number of false positives. The performance improvements
due to the introduction of tracking were tested on our own data
set (two sequences of 5182 and 11 490 frames, respectively)
captured on the real prototype described in Section V. It was
not possible to use the DaimlerDB test set due its low frame
rate of about 10 Hz, which is too low to ensure a stable tracking.
An increase of 27% and 22% in true positives on the two data
sets was obtained with a reduction of 5% and 10% in false
positives. These results showcase better stability of the system,
allowing tracking of the pedestrian in consecutive frames and
opening the way for further improvements, such as determining
pedestrian direction and orientation [54].
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Fig. 15. Examples of detection on a prototype platform. People in different poses are detected, including cyclists or people walking close to a tree that are often
hard to detect. A missed detection is shown in the last figure due to overexposure of the pedestrians.

C. Performance on the Prototype Platform

To guarantee real-time performance on the prototype plat-
form (GOLD), a parallelization technique was introduced. Par-
allelization of Haar-feature and HOG-feature calculation and
classification was obtained by compiling OpenCV with thread
building blocks (TBBs) enabled. In this way, it is possible
to take advantage of multicore CPUs. Further parallelization
was obtained by executing the classification of HOG features
for the different body parts on separate threads, reducing the
verification stage processing time of about 30%. With an image
of 640 × 480 pixels, the processing time changed from 755
to 60 ms, which is a speedup of 12×. Thus, our system is
running eight times faster than the fastest system presented
in [7]; 16.67 versus 2.6 frame/s. A further speedup can be
provided by reducing the images size, which results in a pro-
cessing speed of about 30 Hz on an image of 320 × 240. This
approach, however, has a detrimental effect on detection rates.
Examples of detection on a prototype platform are shown in
Fig. 15.

VII. CONCLUDING REMARKS

Various studies to improve the presented pedestrian detec-
tor are currently ongoing. Since feature-based tracking works
better at higher frame rates, a low-level reimplementation of
the two-stage classifier fully exploiting multicore-processor (or
graphics processing units) features may give some significant
speedup. The current system relies on OpenCV 2.4 compiled
with Intel TBB support. Looking at the CPU utilization, we get
values between 60% and 80% for each core, which is a clear
indication that some serial piece of code is still present. By
reducing the image area, the processor utilization falls, ranging
from 80% at 640 × 480 pixels to 60% for 320 × 240 pixel
images.

Another improvement can be added to the high-level pro-
cessing, introducing filters on the predicted pedestrian tra-
jectory. In particular, when working with high frame rates,
a good tracking of the pedestrian trajectory is produced

from the current system. A Kalman filter could provide a
prediction of the trajectory that a pedestrian is taking in
the future, which could be evaluated to predict dangerous
situations.

The vehicle egomotion has intentionally not been used for
this system since one of the constraints was to obtain a final
system simply relying on vision. Introducing a visual odometry
block could supply information on egomotion without breaking
this requirement. However, additional computational power
would be needed.

In this paper, a novel pedestrian detector system, running on
a prototype vehicle platform, has been presented. The algorithm
generates possible pedestrian candidates from the input image
using a Haar cascade classifier. Candidates are then validated
through a novel part-based HOG filter. A feature-based tracking
system takes the output of the two-stage detector and compares
the features of new candidates with those of the past. Matching
is performed with the aim of assigning a consistent label to
each candidate and of improving the recognition robustness,
by filling false negatives filtered by the previous phases. The
whole system has been ported to a prototyping framework and
integrated on a platform vehicle, for testing and optimization.
A significant performance improvement has been obtained by
exploiting the CPU multicore features. As a result, a system
working at 20 Hz and offering performance comparable with
the state of the art has been obtained. Additional real-world tests
have been performed on the platform for finding weaknesses.
Although the system is faster compared with the state of the
art, its detection performance compares very favorably to the
state of the art with a true positive rate of 0.673 at a FPPF of
only 0.046.
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