
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Observation of Vehicle Axles Through Pass-by
Noise: A Strategy of Microphone Array Design

Patrick Marmaroli, Mikael Carmona, Jean-Marc Odobez, Xavier Falourd, and Hervé Lissek

Abstract—This paper focuses on road traffic monitoring using
sounds and proposes, more specifically, a microphone array design
methodology for observing vehicle trajectory from acoustic-based
correlation functions. In a former work, authors have shown that
combining generalized cross correlation (GCC) functions and a
particle filter onto the audio signals simultaneously acquired by
two sensors placed near the road allows the joint estimation of
the speed and the wheelbase length of road vehicles as they pass
by. This is mainly due to the broadband nature of the tire/road
noise, which makes their spatial dissociation possible by means
of an appropriate GCC processor. At the time, nothing has been
said about the best distance to chose between the sensors. A
methodology is proposed here to find this optimum, which is
expected to improve the observation quality and, thus, the tracking
performance. Theoretical developments of this paper are partially
assessed with preliminary experiments.

Index Terms—Acoustic signal processing, direction-of-arrival
estimation, microphone arrays, particle filters, road vehicles, ve-
hicle detection.

I. INTRODUCTION

ROAD TRAFFIC monitoring (RTM) plays a key role in
ensuring road safety, predicting traffic jams, measuring

noise, assessing environmental impact on urban areas, etc.
Among existing techniques, passive acoustic ones present the
advantage of being nonintrusive, safe for health (no wave
emission), and multiuse, i.e., different kinds of information
may be extracted from the same observation, depending on
the associated signal processing algorithm. That is why a
large community of acoustic/signal processing researchers are
working on the challenge of equaling or even outperforming
the performance of active or intrusive technologies, based on
the power of modern-day computing.

Since the mid-1990s, more and more attention has been
paid to passive acoustic-based systems for traffic monitoring.
In 1996, vehicle classification using wavelet decomposition of
audio signals was investigated by Choe et al. [1]. In 1997,
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Fig. 1. Typical CCTS of a road vehicle pass-by (about 50 km/h). d is the
intersensor distance and c is the speed of sound.

Chen et al. [2] and Forren and Jaarsma [3] independently inves-
tigated the detection problem using cross-correlation functions
between sensors that are spatially disjointed. The counting
problem was also handled by Brockman et al. in 1997 [4]
and Kuhn et al. [5] in 1998, who deployed an autoregressive
algorithm based on a pass-by spectrum model (one sensor) and
a beamforming-based technique (80 sensors), respectively, to
detect vehicle presence. Other kinds of counting techniques
based on correlation and filters have emerged later [6]–[10].
The speed estimation problem has been also extensively ad-
dressed, e.g., in [11]–[16]. A recent trend consists in consider-
ing the pass-by noise as a measure of the energy consumption;
in 2011, Can et al. successfully showed the correlation between
emitted airborne pollutant and road traffic noise near a highway
[17]. This is a brief overview of what information traffic noise
can provide.

In this paper, we are interested in observing and estimating
the wheelbase length of road vehicles using pass-by noise. The
wheelbase estimation problem has been rarely addressed in
the acoustic literature. However, it is an important feature for
vehicle classification. In [16], Cevher et al. suggested a wave-
pattern-based recognition algorithm enabling the joint speed
and wheelbase estimation from a one-channel pass-by record-
ing acquired on the roadside. Engine, tire, exhaust, and air
turbulence noises are meticulously modeled, but the presence
of interfering noises in the monitored area may limit its appli-
cability. In a former work [18], we opted for a two-microphone-
array-based procedure. The idea was to concatenate successive
cross-correlation measurements and apply a particle filter (PF)
to the obtained image where the position of each axle and their
common speed were included in the state of the target. As an
example of observation, Fig. 1 depicts what we called a Cross-
Correlation Time Series (CCTS) of a vehicle pass-by (nearly
50 km/h) with two dimensions, i.e., Time Delay of Arrival
(TDOA) versus Time. The TDOA refers to the time for the
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Fig. 2. Bimodal-sound–source model of a two-axle road vehicle. Wavefronts
are acquired by a microphone array placed in parallel to the road lane at dis-
tance D from the vehicle CPA.

sound wave to travel from one microphone to the other; it is
bounded by ±d/c, where d is the intersensor distance and c is
the speed of sound. Two traces, one per axle, are clearly distinct
when the vehicle is in front of the array (i.e., TDOA = 0 ms).
The slope of both traces is directly related to the vehicle speed,
and their space is directly related to the wheelbase length. In
[18], the authors showed the promising results of applying a
Bayesian filter on such an observation, particularly for cases
in which multiple vehicles pass each other in front of the two-
element array. However, at the time, nothing was said about
the microphone array aperture, which needs to be meticulously
adjusted to provide the best observation (CCTS) as possible.
Mathematically speaking, it is a well-known result that the op-
timal microphone arrangement for TDOA-based sound-source
localization is the Platonic-shaped array surrounding the target
[19], [20]. In the RTM context, such a geometry is difficult, if
not impossible, to achieve. In the present case, we are looking
for the optimal d (distance between the two sensors of the array)
for which the two traces inherent to the rear and front axles in
the CCTS are clearly depicted.

The remainder of this paper is structured as follows. In
Section II, the objective and the theoretical background of
the sound–source localization since time-delay estimates are
introduced. In Section III, methods are proposed for finding
minimal, maximal, and optimal intersensor distances. Prelim-
inary experimental results are discussed in Section IV. A final
discussion concludes this paper in Section V.

II. PROBLEM DEFINITION

Let us consider the scenario depicted in Fig. 2. A two-
element microphone array with intersensor distance d is placed
on the roadside. Both microphones are placed at the same
distance D from the road lane. Road vehicles are modeled as

two stochastic and identically distributed processes separated
by the wheelbase length wb. The distance between the closest
point of approach (CPA) of the vehicle and the front axle is
denoted x0. Both axles are also identified by their respective
direction of arrival (DOA) θ1 and θ2 on the array.

A commonly accepted approximation consists of saying that
the mechanical noise predominates for vehicles running at low
speed (below 50 km/h) and the tire/road noise predominates
for vehicles running at higher speeds. However, over time,
more and more modern cars make the tire/road noise always
dominate even in a congested urban situation for constant speed
driving [21]. The model in Fig. 2 therefore seems reasonable
for a wide scope of scenario. In this paper, the speed is simply
assumed to be a constant during the observation (nearly 1 s).
We should also mention that one observation results from the
concatenation of successive 30-ms audio frames processing
during which the vehicle is considered as static.

A. Signal Model

Let N be the number of zero-mean broadband and uncorre-
lated sound sources located at coordinate rsn, 1 ≤ n ≤ N . Let
x1 and x2 be the audio signals acquired by both microphones
located at coordinates rm1 and rm2 , respectively. Without loss
of generality, sensor 1 is taken as the reference microphone.
Assuming an ideal free field, the homogeneous medium of
propagation and no energy loss between the two sensors, i.e.,
x1 and x2, can be modeled as

x1(t) =

N∑
n=1

sn(t− δn) + w1(t) (1)

x2(t) =

N∑
n=1

sn(t− δn − τn) + w2(t) (2)

where δn is the time of flight between the nth source and
the reference microphone; wm is an additive measurement
noise, considered as a wideband stationary zero-mean Gaussian
process, uncorrelated both with the signals and the noise at
other sensors; and τn is the TDOA between both sensors of the
nth incoming wavefront.

In the considered applied framework, the model, i.e., (1) and
(2), is restricted to N = 2, where s1(t) and s2(t) are supposed
to be the sounds produced by front and rear tire–asphalt inter-
actions, respectively. Under far-field assumption, the wheelbase
length wb is related to sound sources TDOAs by

wb = D(tan θ2 − tan θ1) (3)

with

θi = arcsin
(cτi

d

)
i ∈ [1, 2] (4)

and where c is the speed of sound. After (3) and assuming that
D and d are known, the wheelbase length estimation problem
is turned into a time-delay estimation problem. The time-delay
estimator on which we rely is presented in the next section.
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B. Time-Delay Estimation

It is a well-known result that, in the presence of a single
broadband source, i.e., N = 1 in (1) and (2), the optimal es-
timator of τ1 is the lag corresponding to the maximum value of
the cross correlation between x1(t) and x2(t) [22]. In that case,
one can also give an explicit expression of the Cramer–Rao
lower bound (CRLB), which depends on the spectral bandwidth
of the source and on the signal-to-noise ratio. If N > 1, the
optimal estimator cannot be computed if the source spectrum is
not exactly known. Consequently, two strategies can be consid-
ered, i.e., undertake a source identification process (requiring
a high number of sensors to achieve a spatial filtering for
instance) or derive a suboptimal estimator that will directly
process the observations, considering that the signal-to-noise
ratio is high enough. As the proposed approach implies two
microphones only, we relied on the traditional generalized
cross correlation (GCC) functions, which are suboptimal time-
delay estimators but very popular for their robustness and weak
computation requirements. They are expressed by [23]

Rg
s1s2

(τ) =

+∞∫
−∞

ψg(f)X1(f)X
∗
2(f)e

2jπfτdf (5)

where (.)∗ stands for the complex conjugate operator, f denotes
the frequency (in hertz), X1(f) (resp. X2(f)) is the Fourier
transform of x1(t) (resp. x2(t)), τ stands for the time lag, and
ψg(f) is a weighting function. For instance, setting ψg(f) =
1 ∀f turns expression (5) into the classical cross-correlation
function. In the single-source case, an estimation of TDOA τ1 is
given by looking at the argument of the peak value of the GCC
function, i.e.,

τ̂1 = argmax
τ

Rg
s1s2

(τ). (6)

In order to accentuate the peak, different weighting functions
were investigated in the literature regarding the acoustical
conditions. In the sound-source localization community, one of
the most successful processor is the phase transform weighting
(PHAT). It is expressed by [23]

ψphat(f) =

{
1

|X1(f)X∗
2 (f)|

if |X1(f)X
∗
2(f)| �= 0

0 otherwise.
(7)

Heuristically developed in the middle of the 1970s, the
GCC–PHAT function proved to perform very well under realis-
tic acoustical conditions. Reasons for its success are numerous,
i.e., its implementation is straightforward, no a priori knowl-
edge of signal and noise is required, and it is more consistent
than some other GCC members when the characteristics of the
source change over time [24]. Also, it has been recently proven
that, in case of high signal-to-noise ratio, the GCC–PHAT
function is the optimal time-delay estimator in a maximum-
likelihood sense, regardless of the amount of reverberation
[25]. Aside from that, many comparative studies proved its
robustness in the presence of multipath distorsion (see, for
instance, [26] and [27]).

After (5)–(7), the PHAT processor may be seen as a cross-
power spectrum whitening [28] discarding any magnitude in-

formation contained in the audio signals. That makes it well
adapted to cases in which pairwise amplitude differences can-
not be used as a relevant feature for localization, typically
when the microphone array has a small aperture in comparison
with the distance to the source. However, the main problem is
that any spatially coherent noise, even when lower in magni-
tude than the signal of interest, results in a spurious peak in
the PHAT correlation function. Unfortunately, such a kind of
noise may frequently occur in outdoor monitoring (industrial/
agricultural noises, birds, pedestrian activity, etc.). One way
to overcome this problem is to apply the PHAT transform
on a predefined spectral band only. This is achieved using
the Bandpass-PHAT (BPHAT) weighting. This processor was
previously proposed for speaker localization by DiBiase in [29]
or for water-pipe-leak localization by Gao et al. in [30] and
[31]. It is defined as

ψbphat(f)=
{
ψphat(f) if fc −Bw/2 ≤ |f | ≤ fc +Bw/2
0 otherwise

(8)

where fc and Bw denote the central frequency and the band-
width on which the BPHAT transform is applied, respectively.
To be effective, the spectral band on which the BPHAT is ap-
plied needs to be identical or within the bandwidth of the signal
of interest. For the sake of simplicity, the perfect equality is
assumed in this paper. According to (8) and (5), one can demon-
strates that the closed-form expression of the GCC–BPHAT
function for the single-source case is (see Appendix A)

Rbphat
s1s1

(τ) = 2Bw cos [2πfc(τ − τ1)] sinc [Bw(τ − τ1)] . (9)

For the two-sound-source case and under the assumption that
each source delivers a zero-mean signal, uncorrelated with the
other, one gets

Rbphat
s1s2

(τ) =Rbphat
s1s1

(τ) +Rbphat
s2s2

(τ) (10)

= 2Bw(A1 +A2) (11)

with

Ak = cos [2πfc(τ − τk)] sinc [Bw(τ − τk)] , k ∈ [1, 2].

It may be noted that, regarding the application targeted for
these developments, the noncorrelation of the two sources is
a debatable assumption. Sounds coming from the axles of
the same vehicle would be somewhat correlated (mechanical/
structural connection between axles, identical speed and load-
ing, etc.), but as a first approximation, cross-terms in the
correlation measure are neglected in this paper.

III. INTERSENSOR DISTANCE OPTIMIZATION

After (11), the characteristics of the peaks (width, emer-
gence, and spacing) depend on the spectral properties of the
sources (Bw, fc) and the geometrical parameters of the scene
(x0, D,wb, d). In situ distances D and d are the only adjustable
parameters, except for normative measurements where D is
imposed. The challenge therefore consists in finding the opti-
mal d ensuring the best observation of the two traces in the
BPHAT–CCTS. This is what is addressed in the following.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

A. CRLB

The CRLB defines the smallest variance than can be achieved
by an unbiased estimator. It is based on the Fisher information
matrix. For cases when the estimator depends on variable
parameters, the CRLB enables their optimization.

Suppose that the parameter to estimate is wb and the param-
eter to optimize is d. The available measurements are τ12,1 and
τ12,2, simply noted as τ1 and τ2 below, such that

τ1 = τ̂1 + n1 (12)

τ2 = τ̂2 + n2 (13)

where τ̂j is an estimate of τj , and nj is a zero-mean Gaussian
noise with variance σ2

j denoting the uncertainty on the measure-
ment, i.e., j ∈ [1, 2]. τ̂2 can be expressed as a function of τ̂1 and
wb, i.e.,

τ̂2 = f(τ̂1, wb). (14)

After (3), it becomes

θ2 = arctan
(wb

D
+ tan θ1

)
. (15)

Replacing θ1 and θ2 by their expressions in (4) yields f , i.e.,

f(τ̂1, wb) =
d

c
sin

{
arctan

[
tan

(
arcsin

(
cτ̂1
d

))
+

wb

D

]}
.

(16)

The CRLB is defined as the inverse of the Fisher information
matrix. The latter is given by [32]

F = A′
(
σ2
1 0

0 σ2
2

)
A (17)

where

A =

(
∂τ1/∂τ̂1 ∂τ1/∂wb

∂τ2/∂τ̂1 ∂τ2/∂wb

)
(18)

=

(
1 0

∂f/∂τ̂1 ∂f/∂wb

)
. (19)

The optimal d is the one that maximizes the determinant of F
(D-optimality criterion) [33]. The determinant of F is given by

|F | = |A|2σ2
1σ

2
2 . (20)

Maximizing (20) is the same as maximizing |A|2 = (∂f/∂wb)
2

with respect to d. This quantity is expressed by

(
∂f

∂wb

)2

=

(
d

cD

)2

⎛
⎜⎝
(
wb

√
d2 − c2τ̂21 + cDτ̂1

)2

D2 (d2 − c2τ̂21 )
+1

⎞
⎟⎠

−3

︸ ︷︷ ︸
ξ

.

(21)

Let us consider the case where the vehicle is in the broadside
direction (the more convenient case for wheelbase estimation).
For this case, τ̂1 is very small. Since term ξ tends to a constant
when τ̂1 tends to zero, it ensues that the larger the value of d,
the better the estimate of wb but also, in practice, the lower

Fig. 3. Illustration of the additive effect problem as a function of the inter-
sensor distance d. (a) d < dmin. (b) dmin < d � tdmax. (c) dmin � d <
dmax. (d) dmax < d.

the correlation between acquired signals. This highlights that
a much more precise and realistic model than (12) and (13)
needs to be found to find an analytical expression of the optimal
d using the CRLB. As an alternative, we explore the role of
d into the BPHAT correlation function using its closed-form
expression (11).

B. Minimal and Maximal Intersensor Distance

Because of the additive effect, due to the sum operator in
(11), axles cannot be distinguished for very small values of d
and phantom sources (spurious peaks) appear for very large
values of d. Such an effect is depicted in Fig. 3. For all plots,
the acoustic scenario (i.e., fc, Bw, D, x0, and wb) is the same,
d being the only variable. The GCC–BPHAT function and the
primary correlations are drawn in black and gray, respectively.
The actual TDOAs τ1 and τ2 and their average value τ0 are
also represented. In Fig. 3(a), d is so small that it is impossible
to predict the existence of the two sources. In Fig. 3(b), both
peaks begin to appear since d has been increased. In Fig. 3(c), d
has been increased again, and both peaks are clearly distinct. In
Fig. 3(d), d has been increased again, and both peaks are well
distinguished but one spurious peak appears at τ0.

As spurious peaks do not have any physical meaning here,
it is always better to avoid them because of possible misinter-
pretations, particularly when it comes to estimating the number
of axles during pass-by. Consequently, the intersensor distance
should be limited to values between a minimal distance dmin,
above which both axles are distinct, and a maximal distance
dmax, below which no spurious peaks appear. Inspired by Fig. 3,
the two peaks are distinct once Rbphat

s1s2
(τ) is locally convex

around τ0, yielding an implicit expression of dmin, i.e.,

dmin = argmin
d>0

(gτ0 > 0) (22)
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Fig. 4. Sign of gτ0 as a function of the spectral properties of the BPHAT
transform (Bw, fc, λc) and the intersensor distance d. (Gray areas) Negative
sign. (White areas) Positive sign.

where

gτ0 =
∂2Rbphat

s1s2
(τ)

∂τ2

∣∣∣∣∣
τ0

. (23)

Similarly, the condition for avoiding a central spurious peak
is that Rbphat

s1s2
(τ) is not convex around τ0 for larger values of d.

An implicit expression of dmax is therefore

dmax = arg min
d>dmin

(gτ0 < 0). (24)

To conclude, domain [dmin,+∞[ defines what one can call
a range of bimodality detection, i.e., the set of intersensor
distances for which the two peaks are observable. However,
in order to avoid central spurious peaks, one needs to restrict
this range to [dmin, dmax]. We called this domain the range of
undistorted bimodality (RUBI).

C. RUBI

According to (22) and (24) and considering a given acoustic
scenario, the sign of gτ0 may be expressed as a function of both
the spectral properties of the BPHAT transform (Bw, fc) and
the intersensor distance d due to (11), (22), and (24). This is
what Fig. 4 illustrates. The vertical and horizontal axes have
been specifically chosen for the sake of generalization so that
spectral values are not necessarily acoustic values. This is the
reason why d is normalized by the halved central wavelength
λc = c/fc. This plot has been generated using arbitrary geo-
metrical parameters, i.e., wb = 2.47 m, D = 6.3 m, and x0 =
0 m. Dark zones (resp. white zones) correspond to a negative
sign (resp. positive sign) of gτ0 . The six plots on the right in
Fig. 4 show the GCC–BPHAT at different points of the abacus
(A, B, C, D, E, and F).

Let us apply the BPHAT transform into the bandwidth of
250–4750 Hz, i.e., Bw/fc = 1.8. This bandwidth has been
empirically chosen, but any other one can be considered, de-
pending on the application, and without undermining the theory

Fig. 5. Sign of gτ0 as a function of d (normalized by the halved wavelength)
and the vehicle DOA θ in degrees. Ratio Bw/fc is set to 1.8.

described hereafter. In zone I, the two peaks are undetectable
(point A). They begin to appear at the boundary between zones I
and II (point B). The two peaks are clearly distinct in the middle
of zone II (point C). Then, in zones III, IV, and above, secondary
lobes appear around τ0 (points D, E, and F). Thus, in this
example, the RUBI is delimited by B and D, and the optimal
distance dopt is somewhere within this range.

In Fig. 5, the same scenario as aforementioned is considered,
except that the variable is now the DOA θ of the center of the
vehicle (at coordinate [x0 + wb/2, D]) instead of ratio Bw/fc;
the latter is fixed here to 1.8 for the whole plot. By considering
zone II, one can see that the opening angle in which bimodality
is observable is more or less wide depending on d. For instance,
setting d = 5λc/2 allows the observation of the two peaks (i.e.,
axles here) on an angle range of about 90◦ (±45◦) as depicted
by points A, B, and C. Reducing d to 3λc/2 will reduce the
observation area to nearly 70◦ (±35◦), as depicted by points D,
E, and F.

D. Optimal Intersensor Distance

In passive acoustic outdoor monitoring, observations are
frequently corrupted because of interfering noises. Multiple
vehicles may also be present in the monitoring zone, which
means that the estimation of the hidden values of each vehicle
(position, speed, and wheelbase) had to be processed in parallel.
Consequently, one good option is to rely on the Bayesian
theory. In the former work [18], the successive correlation
measurements are filtered by a PF. Particle filtering, also known
as the sequential Monte Carlo method, is a successful technique
to recursively estimate hidden states of nonlinear non-Gaussian
dynamical systems [34]. The mathematical framework of the
particle filtering is not detailed here, but for a good introduction,
the interested reader is referred to appropriate papers such as
[35] and [36]. To briefly summarize, one particle is composed
of a state value, i.e., a hypothesis, and an associated weight,
i.e., the probability that this hypothesis is true regarding the
observation. Recursively, each particle state is propagated by
following an a priori dynamic model disturbed by stochastic
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Fig. 6. Effect of a spurious peak on the particles distribution.

noise, and the associated weights are updated according to the
observation. The more the state of a particle matches with the
observation, the heavier the weight associated to this particle,
and the more this particle is duplicated in favor of the lighter
ones. The number of particles stays constant during all the
observations.

In this paper, we are looking for the optimal intersensor
distance dopt, which we define as the minimal intersensor dis-
tance d > dmin, which guarantees the best time-delay estimates
by particles. This choice is driven by our objective of using
a lightweight, portable, movable, and small device while also
limiting the relative Doppler effect between sensors affecting
the correlation measurement. For this, the percentage error of
the particle estimates w.r.t. to the actual TDOA is assessed as a
function of d and after a single resampling.

An illustrative example of the process is depicted in Fig. 6.
Let us consider a theoretical GCC-BPHAT function with two
opposite TDOAs τ1 and −τ1, and fc = 2500 Hz, Bw = 1.8fc,
wb = 2.47 m, D = 6.3 m, and x0 = wb/2. This function is
symmetrical w.r.t. 0; this is why only the positive part (in black)
is represented. In Fig. 6(a) or (b), the shape of the correla-
tor is typical of an appropriate intersensor distance, whereas
in Fig. 6(c) or (d), d > dmax; therefore, a central spurious
speak (at τ = 0) appears. At initialization [see Fig. 6(a) and
(c)], particles are uniformly distributed on the observation.
After one resampling, they coalesce around the target value in
Fig. 6(b), which is what is expected. However, in Fig. 6(d),
some particles are “attracted” by the spurious peak. In that
case, the convergence is not as efficient as for the previous case
because both the percentage error and the standard deviation are
higher.

In fact, Fig. 6 depicts the particles distribution of one run
when using two different d. The idea is to explore the statistical
behavior of the particle filtering algorithm over a high number

Fig. 7. (Thick line) Global percentage error and (dashed line) coefficient of
variation of TDOA estimation as a function of d, both expressed in percent.

of runs (e.g., 200) and for a large set of potential d. This
procedure is explained in greater detail below.

1) Initialize 100 particles uniformly on the whole states
space of physically possible time delays [like in Fig. 6(a)
or (c)].

2) Compute the likelihood of the particles (correlation
amplitude).

3) Update the particles once using, for instance, the multi-
nomial resampling technique described in [37] [like in
Fig. 6(b) or (d)].

4) Compute and store in memory the percentage error and
the coefficient of variation of the particles w.r.t. to the
actual time delay to estimate.

5) Reiterate procedures 1, 2, and 3 for 200 times, and de-
duce the mean percentage error and the relative standard
deviation of the particles distribution w.r.t. to the actual
time delay to estimate.

6) Reiterate procedure 4 for each tested d.

The result is depicted in Fig. 7. As previously demonstrated,
zone I should not be considered because of the nonobservability
of the two peaks (d < dmin). The global mean percentage error
and the global coefficient of variation are logically high in this
area. From the beginning of zone II (RUBI), both the accuracy
and the repeatability of the estimator increase. As predicted
by the Fisher information matrix, the general trend is that, the
larger the intersensor distance, the better the estimate. However,
with the proposed approach, one local minimum appears within
the RUBI suggesting that setting d = 2λc < dmax provides a
better estimator than setting d = dmax. Hence, by integrating
both the analytical model of the correlation measure and the
Monte-Carlo-based tracking process in the optimization proce-
dure, a much more adapted design is obtained in comparison
with deriving the CRLB.

IV. PRELIMINARY EXPERIMENTS

A. Experiment 1: Wheelbase Observation Quality

A preliminary experiment has been carried out to confront
the theoretical RUBI with an in situ measurement. The exper-
iment consists in acquiring the signal radiated by two moving
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Fig. 8. First experimental setup. (a) Car equipped with two loudspeakers.
(b) Linear array of microphones.

and uncorrelated white noises using microphone pairs of differ-
ent length. In order to be quite close to one realistic scenario and
also for simplicity of implementation, loudspeakers have been
fixed on a car, in front of the wheels, as shown in Fig. 8(a). The
gain of the loudspeakers was sufficiently high for masking the
own tire/road noise of the vehicle. The wheelbase of the car was
of wb = 2.47 m. A linear array was disposed on the roadside at
a height of 40 cm and at a distance D = 6.3 m to the loud-
speakers during pass-by. The array was composed of seven mi-
crophones, allowing pairs of different apertures ranging from 7
to 50 cm [see Fig. 8(b)]. The vehicle speed was nearly 60 km/h
during the measurement. The recording was collected on the
École Polytechnique Fédérale de Lausanne (EPFL) Campus
(lat. 46◦31′7.74′′N, long. 6◦33′56.39′′E). The location was free
for reverberation but quite noisy because of a demolition site
150 m away and a light wind. The sky was clear, and the temper-
ature was 17 ◦C. For each pair of sensors, one BPHAT–CCTS
image (Bw/fc = 1.8 and fc = 2500 Hz) was computed. Some
examples are depicted in Fig. 9. Bold (resp. thin) dashed verti-
cal lines delimit the period of time during which the vehicle is in

Fig. 9. GCC–BPHAT time series of the same vehicle pass-by using different
array apertures.

the 60◦ opening angle (−30◦ ≤ θ ≤ +30◦) [resp. 90◦ opening
angle (−45◦ ≤ θ ≤ +45◦)].

In Fig. 4, the minimal intersensor distance respects equality
d/(λc/2) ≈ 1.8, i.e., dmin ≈ 12 cm in the present case. In
Fig. 9(a) and (b), d is equal to 9 and 10 cm, respectively. As
expected, front and rear axles are not dissociated at all. In
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Fig. 9(c), d is equal to 12 cm, and one can perceive the very
beginning of the separation of the two traces. This is confirmed
in Fig. 9(d) and (e) in which d is equal to 14 and 18 cm,
respectively. In Fig. 5, the minimal distance enabling the disso-
ciation of axles over an opening angle of 60◦ respects equality
d/(λc/2) ≈ 2.8, d ≈ 19 cm. This is a rather good prediction
regarding Fig. 9(f) and (g) in which d is equal to 19 and 21 cm,
respectively; the traces are well separated between the two
bold dashed lines. Similarly, covering an opening angle of 90◦

requires d to be 31 cm. However, such an objective is actually
achieved for a lower intersensor distance, e.g., in Fig. 9(h)
with d equal to 28 cm. In Fig. 4, the maximal intersensor
distance respects equality d/(λc/2) ≈ 5, i.e., dmax ≈ 34 cm
in the present case. This is clearly demonstrated by inspecting
Fig. 9(i) for which d = 33 cm and Fig. 9(j) for which d =
40 cm, that in the first case, no spurious peak appears between
both traces, in opposition to the second case in which a third
“phantom axle” appears between the two actual ones. Finally,
in Fig. 7, the optimal intersensor distance respects equality
d/(λc/2) ≈ 4, i.e., dopt ≈ 27 cm. Indeed, one can conclude
that the best contrast is achieved for d = 28 cm in this test, as
shown in Fig. 9(h).

B. Experiment 2: Wheelbase Length Estimation

A second measurement was carried out on the Route Can-
tonale of Ecublens, near the EPFL campus (lat. 46◦31′0.28′′N,
long. 6◦33′50.41′′E). A two-element microphone array was set
up on the roadside at a height of 84 cm and at an average
distance of D = 2.5 m to the vehicles closest wheels. The
optimal intersensor distance provided by the presented method
is dopt = 20.4 cm; thus, we opted for d = 20 cm. The scene
was continuously filmed by two cameras, one placed on the
road side near the radar to get a view of the sides of all the
vehicles and another placed on the balcony of a nearby building
to get a more global view of the scene. Both devices produced
a video at 30 frames per second. Fig. 10 depicts the views
provided by both cameras and the location of the microphone
array. Only the right-hand traffic lane is considered in this
experiment, namely, the lane where a black vehicle is present
in these pictures. Audio and video signals are synchronized
offline. A homemade detection algorithm through successive
image differences in the square in Fig. 10 returned the time of
apparition of each new vehicle in this lane. The recording takes
240 s. The sampling rate is fs = 51.2 kHz. During this time,
24 vehicles were detected. The brand and the model of each
vehicle were identified so that their actual wheelbase length is
assumed to be known.

The whole CCTS is constituted of the successive
GCC–BPHAT function applied on short audio frames of
length Ns = 2048 samples (40 ms), 75% overlapped (30 ms).
For each passage, the speed and the wheelbase length are
estimated using the bimodal PF proposed in [18] with 5000
particles. Performances are averaged over 200 runs.

Results are depicted in Fig. 11. The acoustic estimates (cir-
cles) are compared with the actual ones (crosses), and their
absolute differences are represented by a bar chart below. The
a priori wheelbase length (2.25 m) has been also represented by

Fig. 10. Second experimental setup viewed (a) from above and (b) from the
side. The location of the microphone array is highlighted by a black circle.
Incoming vehicles are detected after an image difference-based algorithm inside
the black square in (a).

a horizontal dashed line. For clarity, actual wheelbase lengths
have been sorted in ascending order. We should mention that
the value of the a priori wheelbase length has been arbitrarily
chosen to demonstrate the robustness of the proposed strategy,
as such value is quite far from most actual lengths.

Despite an a priori wheelbase length far below the actual
ones, the estimates are pretty good for wheelbase lengths vary-
ing between 2.4 and 2.8 m. When the axles are poorly observed,
the final result tends to be close to the a priori value. This is the
case for vehicles 16 and 21, which are, in fact, motorbikes. For
such vehicles, the tire/road noise is dominated by the exhaust
noise so that only one trace appears in the CCTS, making the
wheelbase length estimation impossible. The estimates are also
poor for cars 2, 12, and 17 since their wheelbases are too distant
from the a priori value. After excluding the two motorbikes
from the database, as they are considered out of context, we
obtained an error less than or equal to 30 cm for 19 out of
22 cases. It is worth noting that these results not only depend
on the quality of the observation (which has been optimized
according to the methodology described in this paper) but
also on the detection strategy (defining the initial conditions
of the target) and PF parameters (number of particles, noise
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Fig. 11. Confrontation between actual and acoustic wheelbase estimates as a
function of the vehicle ID when using two microphones.

covariance matrix, dynamical model, likelihood model, etc.).
Therefore, much better scores can be expected by also optimiz-
ing these two other aspects.

V. CONCLUSION

In this paper, we have confirmed that a well-designed pair
of microphones, placed on the roadside, enables the wheelbase
length of two-axle road vehicles to be estimated during pass-
by. This paper has been related to the way of optimizing
the intersensor distance to improve the cross-correlation-based
observations of both axle trajectories. The wheelbase length es-
timation problem is primarily a time-delay estimation problem.
Due to the additive effect occurring in the cross correlation in
the presence of more than one source, the model, i.e., (12) and
(13), appears to be too simplistic compared with simulated and
experimental results, since the variance and the error of time-
delay estimates do not quadratically evolve with the intersensor
distance. A heuristic methodology of the design has been
therefore proposed consisting in the following: 1) expressing
the closed-form expression of the observation; 2) defining
a range within which the intersensor distance must be con-
tained; 3) filtering the modeled observation with a sequential
Monte Carlo method for each intersensor distance within this
range; and 4) looking at which candidates yield the most
accurate and repeatable time-delay estimates.

Experimental measurements have been designed to confirm
the difficulties and to validate the proposed approach. In par-
ticular, a preliminary test of the wheelbase length estimation
on 22 unknown vehicles passing by has been carried out, after
following the proposed array design methodology. An error of
less than 30 cm was obtained in 86% of the cases, i.e., less than
the size of a wheel, which is rather promising since only two
sensors have been used.

The acoustic-based wheelbase estimation is still in its in-
fancy, but even better results can be expected over the coming
years. Further research is likely to improve the observation
quality using an array with more than two sensors to exploit
the redundant information between sensor pairs.

APPENDIX A
CLOSED-FORM EXPRESSION OF THE GCC–BPHAT

FUNCTION IN THE SINGLE-SOURCE CASE

Without noise and under free-field conditions, the signal
acquired by one sensor is a delayed version of the signal
acquired by the other sensor, such that

x2(t) = x1(t+ τ1). (25)

Equation (25) may be translated to the frequency domain by

X2(f) = X1(f)e
+2jπfτ1 (26)

where Xi(f) and xi(t) are related by the Fourier and inverse
Fourier transforms according to the conventions, i.e.,

Xi(f) =

+∞∫
−∞

xi(t)e
−2jπftdt (27)

xi(t) =

+∞∫
−∞

Xi(f)e
+2jπftdf. (28)

Substituting (26) into the expression of the GCC (5) with
ψg(f) replaced by the BPHAT weighting ψbphat(f) (8) gives

Rs1s2(τ) =

+∞∫
−∞

X1X
∗
1

|X1X∗
1|
e2jπf(τ−τ1)df,

=

−f−∫
−f+

e2jπf(τ−τ1)df +

f+∫
f−

e2jπf(τ−τ1)df (29)

= 2R

⎡
⎢⎢⎢⎢⎢⎣

f+∫
f−

e2jπf(τ−τ1)df

︸ ︷︷ ︸
A

⎤
⎥⎥⎥⎥⎥⎦ (30)

where f− = Bw − fc/2, f+ = Bw + fc/2, and R[.] is the
real-part operator. Furthermore

A =
e2jπf

+(τ−τ1) − e2jπf
−(τ−τ1)

2jπ(τ − τ1)
(31)

=
e2jπ(fc+Bw/2)(τ−τ1) − e2jπ(fc−(Bw/2))(τ−τ1)

2jπ(τ − τ1)
(32)

=
e2jπfc(τ−τ1) sin (πBw(τ − τ1))

π(τ − τ1)
(33)

=Bwe
2jπfc(τ−τ1)sinc [Bw(τ − τ1)] . (34)

Substituting (34) into (30) yields expression (9).
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