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Abstract—The tracking of vehicles over large areas with limited
position observations is of significant importance in many indus-
trial applications. This paper presents algorithms for long-term
vehicle motion estimation based on a vehicle motion model that
incorporates the properties of the working environment and infor-
mation collected by other mobile agents and fixed infrastructure
collection points. The prediction algorithm provides long-term
estimates of vehicle positions using speed and timing profiles built
for a particular environment and considering the probability of
a vehicle stopping. A limited number of data collection points
distributed around the field are used to update the estimates, with
negative information (no communication) also used to improve
the prediction. This paper introduces the concept of observation
harvesting, a process in which peer-to-peer communication be-
tween vehicles allows egocentric position updates to be relayed
among vehicles and finally conveyed to the collection point for
an improved position estimate. Positive and negative communi-
cation information is incorporated into the fusion stage, and a
particle filter is used to incorporate the delayed observations har-
vested from vehicles in the field to improve the position estimates.
The contributions of this work enable the optimization of fleet
scheduling using discrete observations. Experimental results from
a typical large-scale mining operation are presented to validate the
algorithms.

Index Terms—Delayed observations, intervehicle communi-
cation, long-term motion prediction, particle filtering, vehicle
tracking.

I. INTRODUCTION

CCURATE tracking of vehicle positions is very important

in applications such as traffic management, improving
resource utilization, autonomous systems, vehicle safety, and
many others. The standard approach to vehicle tracking is
to have vehicles in direct communication with a centralized
“control room” and broadcast the current state information.
There are many applications where the infrastructure required
to provide full communication coverage is not feasible due to
a large area of operation, geographic constraints (terrain), etc.
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In most cases, however, it is possible to install a number of
fixed data collection points and to fit a fleet of vehicles with
vehicle-to-vehicle (V2V) communication capabilities. The data
collection points are connected to a central base station or con-
trol room, providing a central location for scheduling and fleet
management. In this case, V2V in combination with sparsely
distributed vehicle-to-infrastructure (V2I) communication can
be combined with vehicle models to obtain accurate prediction
and tracking of the fleet. In addition, in [1], the V2V and V2I
communication has been employed to improve the efficiency of
traffic management.

There are various existing sensing technologies that can
track the state (e.g., position, speed, and heading) of people
or vehicles in an outdoor environment. In a typical tracking
application, observations obtained from sensors are distributed
among nearby vehicles, using some form of wireless com-
munication such as ad hoc wireless sensor networks [2], ve-
hicular mobile ad hoc networks [3], delay-tolerant networks
(DTNs) [4], etc. In most applications, frequent measurements
are required to reduce the uncertainty of the vehicle position.
Most of the existing work in this area focuses on the tracking
of vehicles in small areas. The complexity of the problem
dramatically changes when the vehicle position estimates are
required over a large environment of potentially hundreds of
square kilometers.! This is further complicated in an environ-
ment with difficult terrain for communication purposes, such as
a typical mountainous environment shown in Fig. 1. Deploying
infrastructure to provide complete site-wide communication
becomes very expensive, and consequently, it is only feasible to
provide sparse coverage where vehicles may not be observed by
a central control room for a long period of time. Generally, the
uncertainty of the vehicle position quickly grows in the absence
of position observations, and the vehicle position estimate
becomes unusable after a short period of time.

This paper extends our previous work in [5], which pre-
sented a technique for long-term vehicle motion prediction and
tracking based on a model of the vehicle that incorporates
the known properties of the environment. It uses a limited
number of data collection points distributed around the field
to update vehicle position estimates when in range and then
predict vehicle positions at points in between.

The current work introduces the concept of observation
harvesting, where peer-to-peer (P2P) communication between
vehicles allows position updates to be exchanged and brought

'Some types of mines, particularly where the resources to extract are not
deep (e.g., bauxite mines), can extend for more than 100 km.
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Fig. 1. Features in a mining operation. The mountainous environment illus-
trated in (a) can be represented by a road network based on context areas
(loading areas, parking lots, etc.) connected by winding road segments and
intersections formed by crossing roads, as demonstrated in (b).

forward to any of the fixed data collection points, which then
connect through to the centralized base station. We introduce
new algorithms to incorporate the delayed information into the
global position estimate when a vehicle brings back information
to a data collection point. Furthermore, the negative information
from observers is also used in the fusion stage.

In summary, this paper extends our previous work toward
long-term multivehicle motion prediction and tracking. Ego-
centric position information from vehicles not in the commu-
nication range of infrastructure is brought back to the central
base station through intervehicle communication (the obser-
vation harvesting). The main contribution of this work is the
introduction of a nonparametric filtering algorithm to fuse
the delayed information collected during vehicle interactions.
The algorithms are resilient to failures of fixed data collection
points since the estimation of position based on the vehicle
interactions can be downloaded by any vehicle and at any
working data collection point.

The remainder of this paper is organized as follows.
Section II describes the related work in the area of agent motion
prediction and tracking. Section III presents a brief summary
of the modeling of roads, intersections, and areas [5], followed
by a probabilistic formulation of a long-term motion prediction
algorithm. Following the observation harvesting mechanism

introduced in Section IV, Section V proposes a probabilistic
tracking algorithm to fuse the delayed information, as well as
the implementation using a particle filter. Section VI presents
experimental results of tracking multiple vehicles, followed by
discussions. Lastly, conclusions and possible future work are
presented in Section VIIL.

II. RELATED WORK

Due to a complex interrelationship between vehicular and
environmental variables, it is generally not feasible to ex-
plicitly parameterize the inherently nonlinear system process
and measurement noise into a vehicle kinematic model [6].
Probabilistic approaches have been widely used for motion
prediction making use of motion pattern learning techniques.
These approaches predict the future state of a vehicle based
on the assumption that the vehicle motion has typical patterns,
which can be learned. To date, literature on vehicle tracking
and motion prediction based on historical patterns mainly relies
on an efficient pattern learning and recognition technique.
More specifically, strongly related research areas are trajectory
matching and trajectory classifiers. References [7] and [8]
used hidden Markov models (HMMs) for vehicle and people
tracking applications, respectively. An extension of the HMM
given in [9] incrementally learns motion patterns online to
predict vehicle motion. In [10] and [11], neural networks were
trained with actual vehicle measurements to predict the future
state of the vehicle given steering angle and velocity inputs.
More work related to learning-driven approaches are surveyed
in [12]. These existing approaches are capable of predicting
vehicle motion up to a few seconds into the future, which is,
however, far from the requirement of several minutes prediction
addressed in this paper.

Cooperative localization has attracted a growing interest
in the research community. In a noncooperative centralized
localization scenario, only interactions between agents and
infrastructure are incorporated into the position estimate. In
a large environment, it is very difficult to guarantee that the
wireless infrastructure can cover the entire working area, which
reduces the performance of a global localization strategy. With
cooperative localization, the communication between vehicles
can reduce the need for all vehicles to be always within
the range of centralized infrastructure. Reference [13] applied
a cooperative approach to indoor localization with benefits
demonstrated from the cooperation between agents. Similar
work is presented in [14], where a decentralized cooperative
approach is adopted, aiming for self-tracking in large mobile
wireless networks. Interested readers may refer to [15]-[20] for
more examples on cooperative localization.

In a standard cooperative framework, real-time vehicle state
information can be transmitted to other vehicles using multihop
communication through a mesh network [21]. However, an
isolated agent problem occurs when there is segmentation of
the mesh, which is inevitable in a large sparsely populated en-
vironment, as illustrated in Fig. 2(a). A possible solution to this
problem is to use additional mobile agents that travel close to
the isolated agent(s) to collect the state information updates and
bring the information to the main network, although with some
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Fig. 2. Cooperative localization and the isolated agent issue. (a) Typical
cooperative localization application where every agent (but one) is connected
with others nearby to form a mesh network. An isolated agent problem occurs
when an agent does not have any neighbors around and is consequently unable
to join the mesh. In (b), another mobile agent passes and brings the information
from the isolated agent, although delayed, back to the main mesh.

time delay. This approach requires a network that is capable of
allowing time delays in data transmission and a filtering method
capable of fusing the delayed information received.

DTN are appropriate candidates for applications where con-
tinuous network connectivity is not available. A key difference
between DTNs and traditional networks is that a traditional
network requires a reliable end-to-end route to be established
and maintained until the communication is completed. This
is not a requirement for DTNs, which use store-and-forward-
type overlay functions for dealing with disconnected operations
and aiming at opportunistic transmission [4]. This is shown in
the Haggle Project [22], where agents exchange messages with
nearby devices. Each agent carries a message until it is close to
another device, constructing a global (although delayed) mesh
network.

Delayed-state filtering emerges from simultaneous local-
ization and mapping domain to cope with time latencies in
landmark initialization and communication. Reference [23]
introduced the concept of delayed-state decentralized data fu-
sion, with past estimates retained in the state-space vector for
managing historical dependencies. Approaches based on the
delayed-state concept differ from the conventional cooperative
localization by maintaining a history of agents states to allow
fusion of the past data when received. Delayed-state infor-

mation filter is adopted in [24] and [25], with a canonical-
form representation of Gaussian states kept in its sparse infor-
mation matrix. These studies demonstrated the advantages of
the additivity property of the information filter in the update
stage and the ability to cope with information loss due to
network latencies. However, these approaches require Gaussian
assumptions to be satisfied and are not suitable in the case
concerned in this paper due to the non-Gaussian properties of
the speed and timing profiles for vehicle motion.

III. LONG-TERM VEHICLE MOTION PREDICTION

This section focuses on consistent long-term vehicle motion
prediction based on a model of the vehicle that incorporates
parameters from the environment and the vehicle history.

A. Modeling Environment Properties

One of the fundamental requirements to improve the pre-
diction of vehicle motion is to obtain an accurate description
of the areas of operation. A very large environment can be
represented by a road network based on context areas (loading
areas, parking lots, etc.) connected by winding road segments
and intersections formed by road junctions. As an example,
Fig. 1 illustrates this map representation for an actual mining
operation. This kind of information is built based on [26] and
[27] and is incorporated as prior knowledge.

1) Modeling Road Segments: The most basic model for
vehicle motion is to assume a constant velocity. In practice,
the speed of a vehicle may vary depending on road conditions,
gradients, terrain variations, etc. In addition to the physical
constraints, a vehicle will always have a certain probability
to stop anywhere and at any time due to operational reasons
(taking a break), engine problems, queueing/traffic, or in the
event of an accident. Determining the range of potential vehicle
dynamics for each part of the road is essential to improve the
long-term position estimate. In order to obtain this specific
information, each road segment connecting two intersections
or areas can be evenly divided into slots. For each road seg-
ment in the road network and each slot on the road segment,
histograms of the vehicle acceleration and speed are generated
with the historical motion data collected from the vehicles in
operation. Furthermore, a timing profile is used to determine
the probability of the length of time a vehicle will stop on a
particular road based on the empirical evidence. An example is
shown in Fig. 3(a) for a road connecting the two intersections
with real motion data collected from a working mine.

2) Modeling Intersections and Areas: Vehicle behavior at
intersections and other important context areas is less struc-
tured, with a more complex range of potential trajectories in
comparison with on a road. For this reason, it is not feasible to
model the vehicle motion using a speed profile as the motion is
primarily determined by other factors such as the movement of
nearby vehicles. A timing profile is instead used to empirically
determine the probability of the time taken for a vehicle to
traverse a context area. For each path in an intersection or an
area, a timing profile can be built with the statistical distribution
of time taken to cross an intersection or an area. In Fig. 3(b), the
timing profile is shown to be different for each path crossing the



970

Road #116 P(a) (142576 samples)
3000 02
< s
2500 g0 . =
’g [ kI?l.."
E 0.2
2000
0 500 1000 1500
] P(v) (143386 samples)
1500 D 15
1000 500 0 10 .
X (m) g
s P(t) (74 samples) £ .f‘
= 0.02 > 5
2 o.mhM
°
g o - 0
& 0 200 400 600 0 500 1000 1500
time (s) distance (m)

(@)

Fig. 3.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 15, NO. 3, JUNE 2014

Intersection #205 P(t) of path #1 (672 samples)
2200 — T T 0.4
oy
2000 £ 02
Na)
e
1800} =

0
- path 1 0 50 100
E 1600 at | P(t) of path #2 (703 samples)
> 0.2

&

1400 & »0.15
Path #2 ':%‘ 0.1
1200} g
Q &0.05
1000 . 0
600 400 200 0 50 100
x (m) time (s)
(b)

Acceleration, speed, and timing profiles of road #116 and timing profiles of intersection #205. (a) Variations of acceleration and speed distributions

against distance along the road segment in the direction indicated by the arrow. The probability of the length of time a vehicle will stop on the road is determined
by the timing profile in (a). (b) Two paths that can be chosen to cross intersection #205. The timing profiles for these two opposite paths are clearly different.

intersection. Unlike a road segment, a path inside an intersec-
tion or an area is not geographically divided but treated as a
single slot.

3) ASP: The kinematic model for moving vehicles was cre-
ated using an acceleration—speed profile (ASP) for each posi-
tion slot on a road segment, statistically representing the range
of possible vehicle dynamic characteristics given a particular
position. From the kinematic point of view, a strong inter-
relationship exists between acceleration, speed, and position.
Vehicles are likely to speed up on a straight road but slow down
when getting close to a corner. A vehicle driving at a slow
speed could possibly be decelerating in preparation to stop or
preparing to accelerate in order to ramp up to the average speed
for that section of the road. The correlation between vehicle
acceleration a, speed v, and position r has been implicitly built
into the ASP, which describes P(a, v|r).

B. Multiple-Model Motion Prediction

The prediction and tracking problem stated in this paper can
be formulated by multiple-model motion approaches, in which
multiple motion models are matched to different motion states
of the tracked object. Interested readers may find details and
examples on this topic in papers [5], [28]-[30].

A vehicle at time k can be in one of three motion states.
These are defined as moving on roads (MOR), stopping on
roads (SOR), and passing intersections and areas (PIA), i.e.,

Sy € {51 = MOR, s = SOR, s3 = PIA}.

A vehicle may stay in the same motion state or move from
one state to another. Fig. 4 illustrates the motion state machines
and transitions between three states. The state vector for the
vehicle at time k is written as

X}CZ[I{ Vi Tk}T

where 1, € R? is the position of the vehicle at time &, vy € R
is the instantaneous speed of the vehicle, and 7 is the time

Stopping On
Roads

Moving On
Roads

Passing
Intersections
and Areas

Fig. 4. Motion state machines. A vehicle may stay in a motion state or transit
from a state to another when conditions are fulfilled.

remaining for the vehicle to be stopped on a road or to pass
through an intersection or an area. 73 has a positive value for
Sk € {s2, 83} states, and it is constantly O for vehicles in Sy, =
S state.

The transition function represents the probability that a vehi-
cle motion state transits from an initial state s; to a final state
s; at time k. Thus

A

Ps;j(k) = P(Sk = 5j[Sk-1 = 8i,&k-1) (1
where £, is an additional condition for the state transition.
This condition varies for different pairs of initial and final
states. For example, a vehicle has a nonzero probability to
transit from MOR to SOR state when it is moving on a road,
and as soon as the stopping time 73, runs out, the state changes
back from SOR to MOR. Every possible situation for transitions
between motion states is considered and dealt with in the
transition function presented in (1). For more details on the
transition function, please refer to our previous work in [5].

The vehicle dynamics is described by a set of motion models.
Each transition of states corresponds to a motion model written as

A
Pmi*}j = P(Xk|xk,1, Sk = 5j, Sk,1 = Si).

©))
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update stage. In (a), the position information from vehicle V3 was known to V2 from a previous V2V interaction. The information was then forwarded to V1 when
V1 and V2 were in communication range, as shown in (b). Lastly, in (c), data collection point C1 receives a delayed update for V2 and V3 through communication
with V1, and the position estimates for all three vehicles are evaluated. (2) tnow—m—n- () thow—n- (€) tnow-

The prediction stage of the multiple-model motion tracking
for vehicle v), is written as

P (x5 87|21 )

1:k—1
3 3
=S [P P 0P (S 2 ) i
i=1 j=1
3)
Up

where 7,7, _, is an observation vector holding all available ob-
servations (e.g., position measurements) with regard to vehicle
vp up to time k — 1.

So far, the estimation of the vehicle position relies only on the
motion prediction. In the following sections, we will propose
the observation harvesting mechanism to collect observations
and use these to update estimates of vehicles’ states.

IV. OBSERVATION HARVESTING

Observation harvesting refers to the mechanism in which
vehicles returning to the communication range of fixed infras-
tructure (data collection points) provide delayed observations of
other vehicles that were encountered during a trip. The central-
ized base station will update the estimates of vehicle position
using direct observations from the vehicles that are currently
in communication range (V2I), as well as the egocentric obser-
vations collected from interactions between vehicles (V2V) in
other areas of the site that do not have direct communication
with the base station. The observation harvesting mechanism
involves the collection of the second-hand (or third, fourth, etc.)
information through V2V communication.

A typical vehicle tracking example demonstrating the obser-
vation harvesting process is depicted in Fig. 5: Three vehicles

Obs = {pos, neg}

Obs = {neg, neg}

(a)

(b)

Fig. 6. Positive and negative information scenarios with fixed data collection
points C1 and C2. (a) Positive information. Vehicle V1 is detected near collector
C1. The location of V1 is constrained to the coverage area of C1, excluding the
possibility that V1 is outside the area of C1. (b) Negative information. V2 is
outside the coverage area of both C1 and C2, reducing the probability that V2
is close to collectors C1 and C2.

V1, V2, and V3 equipped with GPS are moving in an area
with two fixed data collection points C1 and C2. The base
station (not shown in the figure) tracks these vehicles with
information acquired from each fixed data collection point,
which has a limited communication range to adjacent vehicles.
Vehicles close to C1 or C2 can be accurately tracked with direct
communication of the vehicle state information. Position esti-
mation for vehicles in between these areas relies on the long-
term motion model. The mechanism of observation harvesting
allows interactions between vehicles to be carried back to the
fixed data collectors and used as updates to the position filter.

With observation harvesting, a direct connection between
a vehicle and a fixed data collection point is not required to
update the position estimate. Each vehicle that returns to a fixed
data collector acts as an information carrier for the vehicles that
do not return. In addition, when a vehicle is not detected by
a data collection point, it is considered negative information.
This assists in constraining the possible vehicle location in the
absence of new observations.
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A. From Information to Observations

Information collected from vehicles in the field is classified
according to the information source, usage, method of trans-
mission, and reception. We define the following information
categories.

1) Vehicle egocentric observations

Egocentric observations for the absolute egocentric
position of each vehicle are obtained from an onboard
GPS sensor. This state is dependent only on the vehi-
cle itself. Conventionally, the likelihood function of an
absolute egocentric GPS observation for vehicle v, is
mathematically represented by

P (zf" ‘X:p) .

These observations are broadcast between vehicles us-
ing V2V communication, which are stored and forwarded
to other vehicles and data collection points using the
observation harvesting method described in this paper.

2) Data collection point observations

A data collection point has a known fixed absolute
referenced position. The relative information whether
a vehicle is nearby can be converted into an absolute
referenced observation since the communication range
and the location of the collection point are deterministic.
When a vehicle establishes V2I communication with a
data collection point, it is considered a positive detection,
which indicates the presence of the vehicle within the
detection area of the collection point. The detection area
around the data collection point where V2I communica-
tion is possible is bounded and represented by a circle
centered at the collection point covering the potential
communication range.

On the other hand, if the data collector does not
communicate with a vehicle for a period of time, it is
considered negative absolute referenced information. The
inference from this is that the vehicle is likely to be
somewhere outside the detection area. It is important to
note that this allows some level of localization if the base
station does not have available GPS information for the
vehicle. There are two examples demonstrated in Fig. 6,
one showing positive information and the other negative.

Provided with an absolute referenced observation from
a data collection point ¢, located at (z.,, ¥, ), the likeli-
hood function for the position of a vehicle v,, relative to
the data collection point is represented by

P (z;}pﬁcﬂxf’),rcq = [z, ycq]T) .

3) Real-time and time-delayed observations

The absolute referenced observations from the infras-
tructure (i.e., data collection points) are considered real-
time information, which becomes available to the base
station as soon as it is generated. This includes positive
(vehicle is detected) or negative (vehicle not detected)
information about the likelihood of a vehicle being in the
area around the data collection points.

The egocentric position observations broadcast using
V2V communication are shared between vehicles and
eventually flow to a data collection point. The relaying

TABLE 1
OBSERVATIONS FROM INFORMATION IN FIG. 5(C)

Information Description at ¢, \ Observation Type

Cl1 obtains the position of V1 | real-time'
through direct communication
C1 acquires from V1 the position | time delayed

of V3 m + n seconds ago

C1 detects V1 within communica-
tion range

real-time, positive

C2 does not detect VI, V2 or V3 ‘ real-time, negative

! The position of V1 generated directly from the GPS
at tpow is collected by C1 immediately.

of the position observations is defined in this paper as
observation harvesting, which is the process where vehi-
cles that are not in contact with the infrastructure can still
have position updates transmitted back to the central base
station. There is potential for the harvested observations
to have significant time delay (potentially on the order
of minutes for large environments); thus, the localization
filter at the base station must consider both real-time and
delayed observations.

There is a special case where a vehicle egocentric
position observation is considered real-time information.
When a vehicle is within the communication range of
any data collection point, its egocentric observations are
immediately known by the base station through V2I
communication. This is the best case in the observation
harvesting process as the time delay is zero.

For the illustrative example in Fig. 5(c), information col-
lected by the base station is converted into observations, which
can be used to constrain estimates of vehicles’ states. Table I
shows a summary of some examples.

B. Observation Harvesting Algorithm Overview

The proposed observation harvesting algorithm allows ego-
centric position updates from vehicles, with some time delays,
to be shared and harvested by the base station. The most infor-
mative information is kept in every vehicle and synchronized
when a pair of vehicles are in communication range. When
a vehicle passes a data collection point (fixed infrastructure),
observations collected by the vehicle are downloaded and used
to track all vehicles. Within the base station, real-time V2I
observations generated by data collectors distributed in the
field are also used in the tracking process. An overview of the
observation harvesting algorithm is shown in Fig. 7.

To summarize, the information conveyed in every vehicle is
composed of the following:

1) BZ”: local egocentric observation pool, which is aug-
mented over time with new observations based on new
sensor information;

2) LZ” : most informative observation vector (MIOV), which
refers to an aggregation of the most informative obser-
vations about the vehicle itself and others. The MIOV
information in a vehicle is extracted at every new time
step from its local egocentric observation pool, i.e.,

T
(z2)" )]

Ly = ()"
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Fig. 7. Overview of the observation harvesting algorithm.

where each element is the most informative observation
regarding every vehicle.

The base station keeps the information harvested in the
following form:

1) Q,‘C/: global egocentric observation pool, where egocen-
tric observations collected (harvested) from all N, vehi-
cles in the field are merged together;

2) Q,‘c/_’l : global V2I observation pool, which keeps real-
time observations from all IV, data collectors distributed
in the field observing each vehicle.

The proposed observation harvesting algorithm with MIOV
is capable of operating in a low-bandwidth P2P network. It
provides a simple but effective way to gain the best position
knowledge of all vehicles running in the field. To prevent
overloading the available communication bandwidth, only the
most informative observations are exchanged in a data syn-
chronization process between a pair of vehicles. Among all
observation sets with absolute observations available, the most
informative observation usually has the time stamp closest to
the present time.

C. Synchronization Process

The synchronization process of the MIOV occurs when two
vehicles meet. This process involves bidirectional exchange of
data between the two vehicles. After this process, the MIOVs
in each of the two vehicles are expected to be identical.

Between two vehicles v, and v, the whole synchronization
process fsync(-) is as described in Table II. The process begins
with extracting and comparing time profiles of MIOVs (defined
as TZ”, TZ“) of the two nodes. In order to minimize the
bandwidth, only the information in the MIOV with a newer time
stamp is transferred from one node to the other. This essentially
means that each vehicle shares the best information they have
about all other vehicles they have been in communication

TABLE II
SYNCHRONIZATION PROCESS

L = Ly fopne (L5 1y7)

1.  extract Tz” from LZ”

2:  extract T,? from L}

3: fori=1to N, do

4. if T,:,’;l in TZ" > T,:,"vl in TZ" do

5: replace z¥ in L} by z% in L,”

6: else if T,ffvi in TZ" > T,f‘; in TZ" do
T replace z% in L,” by z% in L;*

8: end if

9:  end for

10:

Vp _yVp Vg _ 1%
L, =L and L;%, =L,

with. After the synchronization process, the local egocentric
observation pool is updated with the new information received.

The amount of data transferred in the synchronization pro-
cess is no larger than the size of MIOV, i.e., N, absolute
observations. With only a small amount of data exchanged, the
synchronization process provides a simple, short, and effective
method to disseminate the most informative information among
all vehicles in the field.

D. Updating the Global Observation Pool

We define a contribution process, whereby each vehicle
uploads (contributes) observations in the local egocentric
observation pool to the base station when in communication
with a fixed data collection point. The data transmission in
the process is unidirectional. A description on the contribution
process feont(+) could be found in Table III.

The last contribution time T:(fn?l is kept in each vehicle to
minimize the communication bandwidth requirements. When
the process occurs between a vehicle v, and the base station,
only the information in the local egocentric observation pool

of vehicle v, with a time stamp later than the last contribution
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TABLE III
CONTRIBUTION PROCESS

v vp—1 V pv vp—1
Qk+#Tc<§)rLt — fcon,t (Qk kap‘rTcopnt

1: fort=T"7,"+1tokdo
2: for i =1to N, do
3: vehicle v, transmits z{* in B,” to £}/
4: end for
5: end for
6 Tl =k
7 QY =9
TABLE IV

MAXIMUM AND MEAN BANDWIDTH COSTS ON P2P COMMUNICATION

Quantity of Obs. Transmitted/Received
Maximum ‘ Mean

V2V | N, -1 | Ny/2
V2l | Nyt | 7021+ (N, —1)n

. p—1 . . .
time 7.7 " is transferred to the global egocentric observation
pool. After the contribution process, the last contribution time

is updated to the present time.

E. Cost Analysis of Communication Bandwidth

Define
1) 77V as the average communication time interval be-
tween vehicles;

2) 7v»~1 and 7Ur as the communication time interval
between a vehicle v, and the infrastructure and its average
value, respectively;

3) interval ratio n =T , which means that, on
average, the vehicle v, meets another particular vehicle
7 times during the time interval 79» /.

Regardless of the communication intervals, the maximum
intervehicle communication bandwidth is constant with a value
of N,, — 1 absolute observations. Table IV also suggests that the
maximum V2I bandwidth is proportional to the time elapsed
since the last contribution time. Increasing either the quantity
of data collection points or the communication range would
reduce the V2I communication interval and the requirements
for V2I communication bandwidth. Alternatively, optimization
on the bandwidth cost could be achieved by introducing a
sliding time window into the filter, which is elaborated in
Section V-E.

—1

vpal/f_VaV

V. TRACKING WITH DELAYED OBSERVATIONS

A. V2I Proximity Detection

As detailed before, we assume that one or more data collec-
tion points are distributed in the field to operate as observers.
In this paper, V2I observations come from proximity detection
between vehicles and the data collection points. Specifically,
the wireless transceiver mounted at a fixed data collection point
provides a binary connectivity observation when a vehicle is
able to either communicate with it or not. As the signal coverage
range of a wireless transceiver is limited up to only a few
hundred meters, this paper considers both positive and negative
information from the data collection points, as also described in
[31] and [32].

TABLE V
LIKELIHOODS FROM INFORMATION IN FIG. 5(C)

Observer (at t = t,,00)

Target | V1 V2 V3 Cl c2

ViU NA L NA L gYIOl gy
V2 NA  UY2 NA pY2oOl gli2oe2
V3 N/A N/A \Pyii \111\6/34»(71 \IJ;/SACZ

A probabilistic approach is adopted with a purpose of mod-
eling realistic V2I proximity detection given connectivity mea-
surements. Connectivity is a binary quantization of received
signal strength intensity measurement [33], without considering
signal propagation models. The measurement could be either
positive connectivity (PC) or negative connectivity (NC), where
NC of two nodes is considered a piece of negative information.

Provided that the position of a data collector ¢, is a Dirac
delta function at (z._,¥y.,). the likelihood function given an
absolute referenced connectivity observation between a vehicle
vp, and the data collector at time ¢ is represented by

\P:pacq é P (Z;zp—)cq‘xvp7rcq _ [xcq ycq]T) )

where 2,7 “ € [PC,NC] is a V2I connectivity observation. A
PC event is observed when the data collection point receives a
packet from vehicle v,; otherwise, an NC event occurs. Fig. 6
gives examples of the binary connectivity observation.

B. Egocentric Observations From Vehicles

The likelihood function for an absolute (GPS-based) egocen-
tric observation of vehicle v,, at time ¢ is denoted by

Uyr 2 P (27 %)) . )

Although an absolute egocentric observation could be ei-
ther real time (as in Table I) or time delayed, the likelihood
functions are considered the same for convenience. A real-time
observation is considered as a special case of the time-delayed
observation with zero delay.

Continuing the example shown in Fig. 5(c), Table V inter-
prets observations gathered by the base station at time ¢,,oy in
the form of likelihood functions defined in (4) and (5).

Note that although vehicles communicate with each other,
V2V relative position measurements are not yet considered in
the fusion stage. This is because it requires the consideration of
cross correlations between vehicles.

C. Bayesian Estimation

Traditional approaches based on sequential Bayesian esti-
mation only consider observations conditional on the present
state. They are, therefore, of low performance in tracking prob-
lems with delayed observations. Instead, the filtering algorithm
adopted in this paper maintains the full history of vehicle states.
With historical states maintained in the filter, information from
delayed observations is able to be fused.

We make the following definitions.

1) Define QZT,:_ 11 as a set of new real-time V2I observations

from the infrastructure at time k.
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2) QZTk—l is defined to be a collection of the delayed ego-
centric observations of vehicle v, most recently received
by the base station at time k.

Information contained in these two observation sets will be
fused into the filter in its update stage. They are obtained by
relative complement operations of global observation pools at
two successive time steps. Respectively, we have

sz’jll o vaﬁl \Q’Up*)I

_ [_vp—cC1 Vp—rCq vp—enT
= ['?fukz ... Zk .. Zk :I
— P

QL =00\ 9

where QZ”_)I holds all relative vehicle v, to infrastructure
observations up to time k in the global V2I observation pool
Q,‘;‘” , whereas QZ” keeps every egocentric observation of
v, up to time k, which are stored in the global egocentric
observation pool 2} . Note that £ K1 could be empty.

To track vehicles with delayed egocentric observations, the
filter keeps full historical state information for each vehicle. At
time k, the full states of vehicle v, are represented as

Vp Vp vp—1 Vp
P(XO:k’SO:klﬂk 82 )

The prediction stage presented in (3) and the update/fusion
stage can be combined together to yield

Vp Vp vp—1 Vp
P (XO:k’SO:k|Qk - 82 )

N. N
H \I/Zpﬁcq H \I/:p
! sireall

X ZZ / Pmi_,;Psi_;(k)
i=1 j=1

x P (Xok 1’S0k 1|QUPHI inl)' (6)

D. Particle Filtering Algorithm

Gaussian-based tracking algorithms are not appropriate due
to non-Gaussian properties of the speed and timing profiles in
the vehicle motion model. In addition, the vehicle prediction/
tracking problem presents nonlinearities in motion state tran-
sitions and dynamics models. For this reason, particle filtering
is well suited for the type of problem discussed in this paper.
So far, it has been widely used in vision-based traffic features
recognition/detection approaches to track vehicles [34], pedes-
trians [35], lanes [36], or traffic signs [37].

In the proposed algorithm, each vehicle running in the field
is tracked by a separate particle filter maintained on a central
base station, which uses k + 1 sets of particles to keep track of
the complete history states of the vehicle up to time k.

Define a particle base keeping k + 1 collections of particles,
which correspond to £k + 1 states of the vehicle v, i.e.,

i i L
{X6756’w6}i:1 P (x¢",S7)
{xi, St i, ~ P (xS o)

Vp
P(xz.s

1)p _
0," =

; ; Y L v vp—1 v
7 3 7 P p P
{Xk’Sk7wk}i:1 e 1T,y )

TABLE VI
PARTICLE FILTERING WITH DELAYED OBSERVATIONS

@k < Farticle_filter <@k 1 k 1791,;"792"_”)

1:  calculate Qk‘k L=\,
2: if Qk‘k_l is not empty do
3: Ty = fruin (QZ“’,C%)
4. else do
5: T, =k
6: end if
7:  load particles {x}, _;, S5 _;,wi, 4}, from ;"
8 fort="T,t0k do
9: for i =1 to L do
10: propagation: draw S} ~ P (S|S{_y, & 1)
11: draw xth(xt|xt 158 St )
12: update weight with V2I observations:
wi _ (I—INC \Ilv,,—mq) w,ti .
13: update welght with egocentric observation:
\I!t wi if \IJ exists
14: end for
15: normalize weights {wi}}
16: it Nojp < Ny, do
17: resample with replacement L particles from
{xt, Si, witE | according to {wi}E
18: end if
19: replace {x{, S{,wilE  in ©  ift <k
20:  end for
21: O Ok
T i S

where x! is further factorized to xi, = [(r})T ol 7i]T.

Information in both the global V2I observation pool and the
global egocentric observation pool is fused in the filter in a
nonsynchronous mode. Without the availability of egocentric
observations received from vehicles, the filtering continues with
prediction and updates with real-time V2I measurements from
fixed data collection points. The filtering is then restarted from
a historical state on arrival of delayed observations. The earliest
time stamp Ty in the new received egocentric observations
Qka_l at time k determines the time from which the particle
filter restarts.

The particle filtering algorithm is initialized by drawing L
particles to represent the initial state

= [{xh Shout} o, ~ P (i 5i7)]

The algorithm for each vehicle is presented in Table VI
in the form of a pseudocode. To prevent weight degeneracy,
resampling is adopted in the algorithm when the effective
particles quantity Neﬁ‘ is below a threshold Niy,,.

E. Computational Complexity and Optimization

The proposed particle filter is of higher computational cost
than conventional sequential approaches, which have a time
complexity of O(L) for each vehicle in each iteration. We have
found that the motion prediction step in the proposed approach
is the major contributor of the computational burden as it
deals with complicated transitions of vehicle states and multiple
vehicle models. Consequently, the computational complexity
mainly depends on the number of steps the filter rewinds back
during an iteration. In the worst case, the proposed particle

filter restarts from the last contribution time 707" . ! Thus, the
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Fig. 8.

Haul trucks running in a mining field.

restart point T, as shown in Table VI, could be a value between
E—7v~T £ 1 and the present time k, which means that the
time complexity of the proposed particle filter is no more than
O(7%» 1 L) for a vehicle vy,. 7°»~! was previously defined as
the time elapsed since the last contribution time of the vehicle.
The actual time complexity varies depending on the V2V and
V2I communication activities in the field (see Section VI-D for
detailed discussions).

The algorithm can be optimized by introducing a time sliding
window with which only historical states within 7}, seconds
before the present time k are kept. With T then constrained
by [k — Ty + 1,k], the maximum time complexity in an it-
eration is reduced to O(7,, L), where 7, = min(7%»~{ T,).
Therefore, by setting the maximum allowable time delay for
vehicle observations in the use of the time sliding window, the
computational cost of rerunning the filter is bounded. As obser-
vations with delay time larger than the time window T, would
be discarded, the choice of the time window length is essentially
a tradeoff between estimation accuracy and computational cost.

The communication bandwidth cost between vehicles and
infrastructure will also be bounded by introducing the time
sliding window, as observations out of the window are not
transmitted. Consequently, the maximum amount of observa-
tions transmitted or received in a single V2I transaction will be
reduced to N, 7y,.

VI. EXPERIMENTAL VALIDATION
A. Experiment Setup

Real data from a working mine operation (see Fig. 8) were
used to demonstrate the vehicle tracking algorithm presented.
The vehicle state information collected includes vehicle posi-
tions and speeds taken from GPS sensors. Postprocessing was
performed to evaluate stopping probability on roads, time taken
to resume running, and the length of time a vehicle spent on
an area or an intersection. The acceleration, speed, and timing
profiles are evaluated for each road segment, intersection, and
area based on historical data of 25 days (600 h) collected from
five vehicles. During the experiment, the wireless transceiver
mounted on each vehicle was enabled so that the vehicles could
communicate when in proximity.

B. Entropy of Target Agent(s)

Entropy is adopted as a metric to measure the performance
of the estimation algorithm. As an indicator of the uncertainty
contained in position estimates of the target vehicle, the entropy
for a single mobile agent at time k is calculated by

n
H(xp) = — mek(s) log, pmy,(s)

s=1

where pmy,(s) is the probability mass of position slot s from
total n slots along the vehicle’s route at time k. A path inside
an area/intersection is considered as an individual position slot.

The probability mass on position slot s could be calculated
by summing up all weights of particles on the slot, i.e.,

pmy(s) = ) w}.
ries
When analyzing multiple agents cases (for example, N,
vehicles), fleet entropy is used by adding up the entropy of each

agent in the fleet. A brief description of the fleet entropy could
also be found in [20]. Thus

N,
H(X) =Y H (<)
whereXk:[(xZI)T (XZP)T (XZN)T]T.

C. Experimental Results

Although the algorithm was run with a number of vehicles,
we use a subset to show the results in a more clear manner. In
this case, we selected three vehicles (V1, V2, and V3) that were
moving in the area of operation with two fixed data collection
points (C1 and C2) installed [see Fig. 10(a) for the detailed lay-
out and routes on the field map]. The road map is automatically
generated and continuously updated using raw GPS data that
are collected as part of the everyday operation of the vehicles in
the field. The approach for automated map building is described
in [27] and in earlier work, namely, [26] and [38]. According
to Fig. 9, which depicts the relative distance and interactions
between two vehicles, events at some important time points are
summarized in chronological order as follows:
the last communication time between V1 and C1;
the last communication time between V2 and C2;
the last time V3 observed V1;
the last time V1 observed V3;
the first communication time between V3 and

e Tyiscn:

e Tya oo

e Tyiovs:

e Tyz v

e Tyzcn:

Cl;

e Ty1_vo: the last time V2 observed V1;

e Tyo_,vi: the last time V1 observed V2;

e Ty1_.c9: the first communication time between V1 and

C2.

To describe the sequence of events, V1 left the communica-
tion range of C1 at time 7%/;_,c1 and drove south, whereas V2
left C2 at time T2, c2 and drove north. V1 passed V3 followed
by V2 during this trip. V3 drove to CI1 at time 753_,¢1, after
having passed V1 and collected its most informative position
information up to time 731, v3 through V2V synchronization.
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Interactions in V2V and V2I. (a) and (b) Change in relative distance in each of three vehicles pairs (V2V) with time and between vehicles and data

collection points (V2I), respectively. Troughs in distance lines represent physical proximity points of two nodes. In (c) and (d), which plot V2V and V2I
communication activities, respectively, blue denotes that the successful communication between nodes was achieved and blank otherwise. More specifically,
TV3~>V1 = 111s, TV1~>V3 =108, TV1~>V2 = 183 s, and TV2~>V1 = 189sin (C) For V2I communication in (d), Tvlﬁcl =45sand TVQ%CQ =107s,

whereas Ty3_,c1 = 162 s and Ty1_,c2 = 213 s.

The data collector C1 captured the time-delayed position update
from V3, and the base station used this to improve the estimate
of the position of V1. This is illustrated in Fig. 10(c) at the time
marked Tv3_>(31.

Similarly, V1 provided the base station with its egocentric
observations and a position update for V2 after arriving at C2
at time 73/1c2. The position information from V2 that was
harvested by V1 resulted in an improvement in the position
estimate of V2, as illustrated in Fig. 10(f), at the time marked
TV1—>CZ-

Tracking results without V2V communication enabled are
shown for comparison in Fig. 10(b) and (e). These figures
demonstrate the significant benefits of introducing intervehi-
cle communication and the associated observation harvesting
mechanism presented in this paper. The position tracking of V3
does not show any difference with V2V enabled or disabled.
This is because V3 provides a direct position update to the base
station before any of the other vehicles. Without observation
harvesting (V2V disabled), the results are the same as in our
previous work [5].

In terms of estimation errors and entropies, Fig. 11 compares
the tracking performance with V2V disabled and enabled,
clearly illustrating the improvements with the incorporation of
V2V communication. The tracking with V2V communication
enabled is represented with blue lines. It can be seen that
after some time, it outperforms the tracking with V2V disabled
(denoted by green lines). This is true in both individual and fleet
estimation errors and entropies.

D. Discussion

The motion prediction model proposed in this paper provides
an accurate and consistent long-term prediction of vehicle
positions in the absence of observations. The road model was
built from the data collected from five vehicles in operation on
site, resulting in 25 days worth of data. We found that there was
no significant difference to the results when the road model was

generated using only half of the available vehicle data (approx-
imately two weeks). Based on this, it appears that the model
generalizes well to new instances of vehicle movements, as the
models for each separate half of the data were very similar.

The accuracy of the GPS obtained position information can
be degraded in certain conditions due to signal interference,
multipath, poor satellite configuration, and so forth. The track-
ing accuracy from the base station position estimates, however,
is not heavily influenced by this as the position uncertainty of
each vehicle is generally an order of magnitude higher than the
GPS error after several minutes with no updates. Fig. 10 shows
how the position uncertainty of each vehicle grows to the order
of hundreds of meters in minutes when the base station is not
provided with new position information. This indicates that the
potential GPS error (on the order of 10 m) is not significant to
the overall tracking performance.

Negative information contributes to improve the estimation
performance in the absence of available positive observations.
Vehicles that are not in direct communication with data collec-
tors are able to be tracked with delayed observations brought
back by returning vehicles.

Since information becomes less useful (or “diluted’) as time
goes on, tracking accuracy could be improved by reducing the
delays in observations. This can be achieved by shortening the
“blind time,” i.e., the average time interval between the base
station receiving observations about the same vehicles. The
approaches can include the following:

* increasing quantity/density of data collection points: to
shorten the time taken for a vehicle to move from a data
collection point to another;

e optimizing layout of data collection points: they are rec-
ommended to be placed at regions with heavy traffic and
high timing uncertainty, such as special context areas and
intersections, so that vehicles are detected by the data
collectors more of the time.

For example, for a duration of almost 1 min in the experi-
ment, i.e., between time points 7Ty2,c2 (107 s) and Tv3-c1
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Fig. 10. Tracking results of the multiple vehicles scenario. In (a), three vehicles were running in a field with two data collection points installed near intersection
#203 and area #208. Each data collection point established a signal circle with a radius of 250 m. (a) also shows the vehicle routes on the map. The vehicles were
operating between intersections #203 and #205 and area #208. V1 began a trip on the road near area #208, V2 began on a road adjacent to intersection #203, and
V3 began near intersection #205. (b) and (c) show the tracking of V1 with V2V disabled and enabled, respectively. (c) demonstrates a more accurate position
estimate of V1 from time 753, 1 (162 s) onward after a position update was delivered to the base station by V3. In (f), an improved position estimate for V2 is
shown with V2V enabled from time 731, c2 (213 s) onward in comparison with the tracking results with V2V disabled in (e). This is a result of V1 delivering a
position observation from V2 to the base station as a delayed observation. (d) Tracking V3 (same results with V2V enabled and disabled). There were no delayed
updates provided for V3, meaning that the results are identical with or without V2V communication.

(162 s), the infrastructure could not detect any of the vehicles, The blind time can also be reduced by the following:

and the position estimation of all three vehicles had to rely on

the motion prediction alone. In this case, the blind time could be * increasing the density of vehicles: to increase the fre-
reduced by either deploying additional data collection point(s) quency of V2V communication between vehicles, which
somewhere between the two existing ones or relocating C2 near consequently increases the sharing of information between
intersection #205, where vehicles generally take more time to vehicles. This will happen naturally in operations with a

traverse. large number of vehicles, potentially making the proposed
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Fig. 12.  Communication bandwidth cost in V2V and V2I. (a) V2V communication bandwidth. Vehicles communicate and synchronize position data with each
other when in range. (b) V2I communication bandwidth. Vehicles contribute observations to the base station when they are within communication range of a data

collection point.

algorithm very close to a solution using full communica-
tion coverage.

* increasing the communication range of V2I and/or V2V:
to increase time duration that a vehicle stays observable to
data collection points and other vehicles.

e optimizing the routes of vehicles: with vehicle density
unchanged, an increased frequency of V2V communica-
tion could be achieved by planning the vehicles’ routes to
increase the number of interactions.

The algorithm additionally benefits from a shorter time delay
of observations as the computational expense of the algorithm
is to some extent determined by the length of blind time. The
particle filter rewinds back to a historical point once new de-

layed observations are received; the number of steps to rerun
depends on the oldest observation in the received observations
set S'ZZ“”]C?1 and are ultimately bounded by the sliding time win-
dow size T, as previously discussed in Section V-E. All in all,
the fundamental idea in optimizing any implementation of the
tracking approach proposed in this paper is to minimize the
blind time.

The V2I bandwidth requirements from the experimental
results were dominated by two major transactions illustrated
in Fig. 12(b). V3 transmitted 169 absolute position observa-
tions at time Ty3 .c1 (162 s) and V1 transmitted 223 ob-
servations at Ty1_co (213 s). This was much less than the
maximum V2I bandwidth cost predicted by N,7%»~*!. This
was because in a large environment, moving vehicles generally
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are only in communication range for a relatively short pe-
riod of time. The observations indirectly collected from other
vehicles are transmitted to the base station together with the
vehicle’s own egocentric observations in a single transaction.
The maximum V2I bandwidth cost would be reached in cases
where a vehicle is in communication range with another
vehicle for a long period before the transaction occurs, as
would happen in a parking lot or when vehicles travel close
together.

For V2V communication, the bandwidth cost is negligible
and is bounded by N, — 1, according to Table IV. In a scenario
containing three vehicles, the maximum V2V bandwidth cost
is two absolute observations per iteration, as validated by the
experimental results shown in Fig. 12(a).

The observation harvesting mechanism substantially in-
creases the robustness of vehicle tracking in large environments
with only a small bandwidth cost. A fast network connection
time is crucial when a sparse collection of vehicles are moving
in a large environment. Communication in a global wireless net-
work can easily be interrupted by vehicle motion, as the signal
propagation path between moving vehicles is constantly chang-
ing. The observation harvesting approach uses a store-and-
synchronize concept to deal with intermittent communication
and aims to disseminate data in an opportunistic manner. With-
out the additional overheads that come with packet routing, the
fast and lightweight P2P communication makes the observa-
tion harvesting mechanism an effective approach for sharing
observations among mobile vehicles and fixed infrastructure in
applications where a global network is not feasible.

The main characteristic of observation harvesting is that
every vehicle keeps the latest information for as many vehicles
as possible in its local observation pool. The temporary failure
of some vehicles, or even the majority of vehicles in the
network, will not result in the failure of the entire network. This
is a particularly attractive characteristic for applications where
safety is strongly emphasized.

VII. CONCLUSION AND FUTURE WORK

This paper has presented a probabilistic algorithm to track
multiple vehicles in a large area with delayed observations.
The algorithm is based on a vehicle model that incorporates
the properties of the surrounding environment. Environmen-
tal properties are built into acceleration, speed, and timing
profiles using real historical data collected. The observation
harvesting concept is proposed for effective and robust data
dissemination among vehicles and fixed infrastructure without
requiring global communication. The most informative posi-
tion information is shared among vehicles moving around a
site and forwarded to the base station via returning vehicles.
The estimation of vehicle positions relies mainly on the long-
term motion prediction algorithm in the base station, when
no direct observations are available to reduce the uncertainty
of the vehicle position estimate. This paper has presented a
particle filter approach capable of dealing with delayed ob-
servations. The base station updates vehicle position estimates
with absolute position information gathered from returning
vehicles, together with V2I observations from fixed data col-

lection points distributed in the area. Negative information is
also incorporated at the fusion stage in addition to positive
observations.

The results presented in this paper show that it is possible
to obtain consistent position estimates for multiple vehicles
over long periods of time. V2V communication combined
with a limited number of data collection points was used to
demonstrate large-scale multiple vehicle tracking without a full
coverage communication network. The experimental results
clearly showed the improvement from incorporating V2V com-
munication with the modeling constraints and using positive
and negative information. This is a significant contribution
since it paves the way for the implementation of resource
optimization algorithms when full coverage networks are not
available or feasible. This facilitates another area of research
regarding resource planning incorporating vehicle uncertainty
due to discrete positioning information. It is of fundamental
importance to optimize the utilization of vehicle resources in
industrial applications. Current fleet monitoring and dispatch
systems require full network coverage to facilitate the planning
of vehicle operations. The algorithm presented in this paper
will provide an estimate of vehicle position with associated
uncertainty at all times. This will enable the development
of a new set of optimization algorithms to implement fleet
monitoring and vehicle dispatching without the infrastructure
and maintenance expenses of a full coverage communication
network.

The future work will focus on cooperative tracking incorpo-
rating relative V2V observations, potentially using a mixture
of absolute observations and relative distance measurements.
In addition, for future work, the optimization of locations for
data collection points and other mechanisms for increasing
the availability of harvested information will be further exam-
ined. This is expected to lead to a reduced or a potentially
bounded position estimation error for the fleet of vehicles,
which would enable other productivity-related tasks such as
dispatching.
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