
ar
X

iv
:1

30
4.

39
49

v2
 [

cs
.S

Y
]

 1
2

M
ay

 2
01

3

Dynamic vehicle redistribution and online price

incentives in shared mobility systems

Julius Pfrommer Joseph Warrington Georg Schildbach

Manfred Morari

May 15, 2013

Abstract

This paper considers a combination of intelligent repositioning decisions and dy-

namic pricing for the improved operation of shared mobility systems. The approach

is applied to London’s Barclays Cycle Hire scheme, which the authors have simulated

based on historical data. Using model-based predictive control principles, dynamically

varying rewards are computed and offered to customers carrying out journeys. The aim

is to encourage them to park bicycles at nearby under-used stations, thereby reducing

the expected cost of repositioning them using dedicated staff. In parallel, the routes

that repositioning staff should take are periodically recomputed using a model-based

heuristic. It is shown that it is possible to trade off reward payouts to customers against

the cost of hiring staff to reposition bicycles, in order to minimize operating costs for

a given desired service level.

1 Introduction

Public Bicycle Sharing (PBS) schemes offer the rental of bicycles as a means of public

transportation in urban areas. They allow registered users to pick up a bicycle from one of

many docking stations throughout the entire city, without any prior notice. The bicycle is

returned to another station, after which the user’s intended destination is usually reached

on foot. Short journeys are encouraged by charging users only a small fee for a short rental

period (typically less than one hour), but then ramping up the cost significantly for longer

use.

Such schemes have been introduced in major cities as an alternative to often slow and

crowded mass transportation. Many have grown considerably in size in recent years [1, 2],

and are becoming a major component of their cities’ public transportation systems. In 2008,

for example, 120,000 daily journeys were being made using shared bicycles in Paris [3].

1

http://arxiv.org/abs/1304.3949v2

Most PBS schemes are still unable to recoup their full operational and investment costs

solely from customer fees. According to [4], capital costs can be up to $4,500 per bicycle,

and annual operational costs up to $1,700 per bicycle. Sometimes additional revenues from

advertising can be used to mitigate this cost gap. However, in almost all cases additional

funding from public sources is required [1, 5].

One of the major contributors to operational costs is the need to operate staffed trucks

for manual relocation of bicycles, in order to balance the difference between supply and

demand at various stations. If this effort were not made, the arrival and departure of

customers would cause many stations to run full or empty, and the customer service rate

would drop below acceptable levels [6, 7]. Since this redistribution of bicycles entails costs,

a trade-off for the desired service level needs to be made.

The goal of this paper is to show how the system performance could be optimized by

trading off two complementary methods. Firstly, we devise an algorithm to optimize the

dynamic route-planning of multiple trucks for bicycle relocation. Secondly, on top of this

manual repositioning, we propose a scheme that offers users price incentives based on the

current and predicted state of the system, in order to encourage them to change the endpoint

of their journeys. These incentives are set to shift bicycle drop-offs away from stations that

are overfilled, and towards nearby stations that may have empty spaces. The price incentives

are independent of the usual rental fees, which we assume to be a sunk cost for the user.

This paper’s main contributions can be summarized as follows:

1. A tailored routing algorithm that plans how trucks will be used to redistribute bikes

amongst stations. Redistribution is performed in the dynamic setting, i.e. while the

system is in operation. The heuristic chooses the actions of multiple trucks, with the

aim of enabling as many extra journeys as possible to take place.

2. A dynamic incentives scheme where customers are encouraged to change their target

station in exchange for a payment. Changes to journey length may be inconvenient,

and we assume customers accept or reject such incentives based on the value of their

time and the payment offered.

Both the truck routes and the price incentives are recomputed online at periodic time in-

stances. For both components, a predictive model of the expected near-future evolution

of the system state is used to optimize their actions over a finite, receding horizon. The

optimization goal is to maximize the number of additional journeys enabled via reposition-

ing, taking into account available resources and cost trade-offs. At each re-optimization

step, up-to-date information on the current state of the system is used to plan all future

operational decisions. This is shown schematically in Fig. 1.

We evaluate the trade-off between these two methods using a Monte Carlo model of

the London Cycle Hire PBS scheme, constructed from detailed historical usage information.

2

1. Measure

current system

state

2. Apply (new)

truck routing

decisions

3. Re-plan and

issue user price

incentives

Wait 10 minutes

before re-planning

Figure 1: Schematic of the online optimization scheme presented in this paper. In step 2,

truck routes are planned based on a model of how the bike movements will evolve from the

current state, and if necessary new orders are issued. In step 3, the current system state

and the future truck actions are taken into account, and new price incentives for users are

computed, based on a trade-off between payouts and system performance.

Our results suggest that service level improvements may be attained using price incentives

alone, and that increases in either the customer payouts or the number of repositioning

trucks deliver diminishing returns to service levels. Unsurprisingly, higher service levels can

be reached on weekends in comparison to weekdays.

The paper is organized as follows. In Section 2 we explain how a model of the London

PBS scheme was derived using historical data. In Section 3 we develop a metric for the

utility of repositioning actions based on the expected ability to serve additional future

customers. The results are used in Section 4 to develop a heuristic for determining the routes

of repositioning trucks. In Section 5 we develop a model-based controller for computing the

price incentives offered to customers. The two approaches for repositioning are compared

using a Monte Carlo simulation framework in Section 6. Section 7 draws conclusions on the

performance of the scheme.

2 System model

2.1 Historical data

The PBS system model used in this paper is based on London’s Barclays Cycle Hire scheme.

For modeling, we used three data sets made publicly available by the Transport for London

authority:1

1. 1.42 million rides spanning a period of 97 days (examples in Table 1),

2. Size and location of 354 stations actively used during the recorded period (examples

in Table 2),

1http://www.tfl.gov.uk/businessandpartners/syndication/default.aspx

3

http://www.tfl.gov.uk/businessandpartners/syndication/default.aspx

Table 1: Ride information samples

bike-id start (date, station-id) end (date, station-id)

3340 {2010-07-30 06:00:00, 47} {2010-07-30 06:22:00, 47}

3870 {2010-07-30 06:00:00, 234} {2010-07-30 06:14:00, 203}

1627 {2010-07-30 06:01:00, 149} {2010-07-30 06:29:00, 293}

1695 {2010-07-30 06:02:00, 152} {2010-07-30 06:06:00, 324}

Table 2: Station information samples

id name position (lat, lon) size

1 River St, Clerkenwell {51.5291, -0.1099} 18

2 Phillimore Gardens, Kensington {51.4996, -0.1975} 34

3 Christopher St, Liverpool St {51.5212, -0.0846} 33

4 St. Chad’s Street, King’s Cross {51.5300, -0.1200} 22

3. An initial station fill level recorded during nighttime when all bicycles were docked.

In total, we estimate that the system contained 3708 bikes at the time for which

historical data is available.

Analysis of the historical journeys reveals regular daily flow patterns, with a substantial

difference between weekdays and weekends. Journeys are allowed between 6am and mid-

night. As expected, many customers commute to the city center in the morning and ride

back to the outer districts in the late afternoon. This pattern, absent on weekends, causes

two spikes in daily rental activities that are illustrated in Fig. 2.

6 8 10 12 14 16 18 20 22

Hour

D
e
p
a
rt

u
re

s

0
2
0
0

4
0
0

6
0
0

8
0
0

Figure 2a: Average departure rates on

weekdays

6 8 10 12 14 16 18 20 22

Hour

D
e
p
a
rt

u
re

s

0
2
0
0

4
0
0

6
0
0

8
0
0

Figure 2b: Average departure rates on

weekends

4

Duration in minutes

J
o
u
rn

e
y
s

0
2
0
0
0
0

6
0
0
0
0

1 5 9 13 18 23 28 33 38 43 48

Figure 3a: Distribution of the journey du-

ration in the historical data

Speed in km/h

J
o
u
rn

e
y
s

0
2
0
0
0
0

6
0
0
0
0

0 2 4 6 8 10 12 14 16 18

Figure 3b: Journey speed distribution (Eu-

clidean station distances)

2.2 Model parameters

In our model, we define a set S containing all stations s ∈ S. Time t is assumed to

be discrete and indexed on a one-minute level where Thist denotes all time steps of the

observed period. We distinguish between workdays and days on weekends by the binary

variable w ∈ {weekday, weekend} and split every day into 72 slices k ∈ K of 20 minutes

each. Time is mapped to day-type and timeslice using w(t) and k(t), respectively. All

customer departure and arrival events are counted in matrices of dimension |S| × |S|. The

sum of departing customers going from station i to j in a timeslice k and on a day w is

Di,j(k, w); similarly the sum of customers who arrive at station j coming from i is Ai,j(k, w).

The average number of such arrival events Λi,j(t) and departure events Mi,j(t) at time t in

the historical data can thus be expressed as

Mi,j(t) =
Di,j (k(t), w(t))

|{t′ ∈ Thist : k(t′) = k(t), w(t′) = w(t)}|
, (1)

Λi,j(t) =
Ai,j (k(t), w(t))

|{t′ ∈ Thist : k(t′) = k(t), w(t′) = w(t)}|
. (2)

Here, the denominator gives the duration of the recorded history for a given timeslice and

day-type indicated by t.

Based on these average numbers of events happening per time step, customer departures

are exponentially distribution with time-varying parameter Mi,j(t). This parameter fit is

based on the following implicit assumptions:

• 100% service rate for departures in the historical data. Potential customers who could

not rent a bicycle due to an empty station are excluded, as they are not recorded in

the historical data. This assumptions is justified to some degree by the considerable

repositioning effort made by the operator of the London PBS scheme [8].

5

• Independence of customer arrival. Departure of customers vary with time and type of

the day, but do not depend on other departures. As a caveat, this does not accurately

model customer groups, for example tourists.

• Effects of season, weather, events, etc. are disregarded, but could easily be included

in a more detailed model.

If a customer has departed at a station, the probability distribution of his destinations is

given by their relative frequency in the historical data, as recorded in Λi,j(t).

The total expected departure µs(t) and arrival λs(t) at each station and the net change

of fill level ηs(t) during time step t is therefore

µs(t) =
∑

s̃∈S

Ms,s̃(t), λs(t) =
∑

s̃∈S

Λs,s̃(t), (3)

ηs(t) = λs(t)− µs(t). (4)

In order to simulate the system, the following assumptions about the behavior of customers

are needed, in addition to their arrival rates:

• Customers who want to depart from a station that turns out to be empty leave without

starting a journey. They do not wait for a bicycle to be returned, nor do they walk

on to a neighboring station.

• The travel time between any two stations i and j is always equal to the average travel

time extracted from the historical data. Figure 3 depicts the historical distribution of

travel speeds and journey durations.

• Customers who arrive at their target station wanting to return their bicycle when

the station is full ride on to one of the neighboring stations (chosen according to his

perceived utility, as described in Section 2.3). If this station is also full, a customer

will go on to the next station, but he does not return to any station already visited.

2.3 Customer decision model

In order to investigate the effects of offering price incentives, a model of how the customer

reacts is required. We assume all customers place a value on the additional time they would

spend travelling if they were to accept an incentive. This is equivalent to penalizing a longer

travel distance. The additional distance a customer has to travel if he changes his target

station consists of the additional distance he has to bike, plus an additional walking distance

to his final destination. We assume this final destination lies at the center of mass of the

Voronoi region around each station (Figure 4). The Voronoi region is the polytope that

contains all points closer to a given station than to any other.

Let the center of mass of the Voronoi region around each station si be denoted by mi,

and let deucl be the Euclidean distance on the map. Assuming that the walking speed is half

6

����������	�����

�����������

Figure 4: Voronoi partitioning with centers of mass (CoM) of the London bike sharing

system

the cycling speed, the effective distance d̃i,j between two stations si and sj can be expressed

as

d̃i,j = deucl(si, sj) + 2 · deucl(sj ,mj)− 2 · deucl(si,mi). (5)

The incentives to go to a neighboring station are offered to customers upon their arrival.

Each customer decides whether to take an incentive by maximizing his personal benefit

based on the incentive payout and the customer’s perceived cost of additionally traveled

distance. This implies customer rationality and makes the choice independent from the

original pricing of journeys. For each end station s ∈ S, the set of neighboring stations to

which a price incentive could be offered is Ns, and ps,n denotes the amount of money offered

to from station s to neighbor n ∈ Ns. In addition, let Ñs be the set of stations s̃ which have

s in their neighbor set. The following model of customer reactions is used.

1. The marginal cost of travel c for each arriving customer is drawn from a uniform

distribution C ∼ U [0, cmax], where we have used cmax = £20/km in our simulations.2

2. The customer selects the best offer of maximum value as

n∗ = arg max
n∈Ns

ps,n − ds,nc. (6)

3. If the original target station is full, i.e. the customer cannot return his bike there, he

always chooses the best incentive to go to n∗. If there is space, he takes an incentive

only if the perceived value of the best incentive is positive, i.e. if ps,n∗ − ds,n∗c > 0.

The probability π(s, n, ps) of an arriving customer taking an incentive to neighbor n ∈ Ns

for a given payout vector p depends on the distribution of perceived travel costs c. First,

2Future work could incorporate more detailed models of how customers value their time (see [9, 10]). In

addition, instead of having a single distribution, one could also differentiate between customer types (e.g.

those commuting to work and those riding during leisure times) by introducing a time-varying component.

7

the offering to go to n must have the highest perceived value amongst all incentives offered

to neighboring stations. Second, assuming the station s is not full, the perceived cost for

traveling the additional distance must be lower than the relevant payout ps,n.

π(s, n, ps) = P
(

ps,n ≥ c · d̃s,n ∧ ps,n − (c · d̃s,n)

≥ ps,n′ − (c · d̃s,n′), ∀n′ ∈ Ns

) (7)

3 Utility of changes in station fill level

In this paper, two methods are considered for influencing the distribution bicycles in the

PBS: manual repositioning (Section 4) and price-led repositioning via incentives (Section

5). However, as a basis for both algorithms, it is necessary to estimate any change in the

stations’ fill levels will bring about. Since the system is stochastic, it is not straightforward

to assess these benefits. In this section we introduce a function that estimates the utility of

changes in fill levels for a given station.

Raviv and Kolka [11] have done related work in order to determine the best fill level

of each station in a static repositioning setting. Their approach tracks the probability of

all possible fill levels based on a discrete approximation of the underlying continuous birth-

death process. However, if we were to adopt this method, the dimension of the resulting

optimization problem would significantly increase the computational complexity of the pro-

posed approaches in Sections 4 and 5. Therefore we propose a simpler approach.

We make the simplifying assumption that arrivals and departures are deterministic and

given by the expected net change ηs(t). Furthermore, we define the utility of changes to

a station’s fill level as the difference in the number of customers expected to be served

successfully at that station within a long enough (but finite) time horizon. The benefit of

any repositioning action (adding or taking away bikes at a single station) at the current

time can then be evaluated based on this notion.

For a given station s and starting time t0, we precompute the expected future fill level

f s
t over a time horizon with t = t0, . . . , t0 + Tutil, where Tutil = 24 hours is the look-ahead

period considered. The expected fill level is governed by the following dynamics:

f s
t+1 = max (0,min(f s

t + ηs(t), f
s
max)) , (8)

where f s
max denotes the maximum capacity of the station, and the max and min functions

ensure that the station never becomes “more than full” or “less than empty”. The quantity

ηs(t) is the net arrival rate defined by (4).

Adding or taking away bikes from the station at the current time changes how many

customers can be served later on in the time horizon, since the station will become empty

8

or full at different times in the future. For a current fill level f s
t0

and a change in fill level

∆f to be made at t0, Algorithm 1 computes the utility u(s, t, f s
t ,∆f) by comparing the two

cases of different initial fill level. The algorithm moves through the time horizon forward

in time, and in each time step compares the amount of change ∆ and ∆̃ resulting from the

system dynamics and the station size constraints. If the amount of change is lower in the

original case, a station size constraint is being hit earlier than in the adapted case and vice

versa. The difference between ∆ and ∆̃ is the difference in customers that could be served

successfully in that time period. The procedure aborts if the end of the time horizon has

been reached or if the fill level of the station becomes equal in both cases (e.g. both are full

or empty).

Algorithm 1 Computing the utility of repositioning

Require: s ∈ S, Tutil ⊲ Relevant station and horizon length,

1: f s
max ⊲ Maximum capacity of station s,

2: ηs(t) ⊲ Expected net arrival of customers,

3: f s
t ∀t ∈ {t0, . . . , t0 + Tutil} ⊲ Precomputed fill levels in the original case according to

(8),

4: f̃ s
t0

⊲ Starting fill level in the case with repositioning

5: procedure RepositioningUtility(t, f̃ s
t)

6: if f̃ s
t = f s

t or t ≥ Tutil then

7: return 0

8: end if

9: f̃ s
t+1 ← max(0,min(f̃ s

t + ηs(t), f
s
max))

10: ∆← |f s
t − f s

t+1|

11: ∆̃← |f̃ s
t − f̃ s

t+1|

12: return ∆̃−∆+RepositioningUtility(t+ 1, f̃ s
t+1)

13: end procedure

Although the worst-case time complexity of Algorithm 1 is linear with respect to the

horizon length, it would take too long to use online in the later optimization steps. Storing

the results in a lookup table is intractable, especially if the expected future fill levels are

treated as continuous values. However, fast computation can be achieved by constructing

a simpler function, making use of a lookup table of dimension 2 × |S| × Tutil, from which

this utility can be determined. Figure 5 shows an example of such a utility function for an

empty station, u(s, t, f s
t = 0,∆f). For simplicity, ∆f is also relaxed to be non-integral. The

validity of this parameterisation is now proven.

Theorem 1. For any station s ∈ S at time t, there exist two fill levels f s

t
, f

s

t ∈ [0, f s
max]

9

∆f

u
(0
,∆

f
)

f f

0 fmax

Figure 5: Example for an empty station (f = 0), showing the utility “plateau” between the

fill levels fs

t
and f

s

t . In this case maximum utility results from adding 4 to 8 bicycles at t0,

based on the expected net arrival rate over the time horizon.

independent from the initial fill level f s
t such that for the utility of change in fill level ∆f

∂u(s, t, f s
t ,∆f)

∂∆f
=



















1, if f s
t +∆f < f s

t

0, if f s

t
≤ f s

t +∆f ≤ f
s

t

−1, if f s
t +∆f > f

s

t .

(9)

The utility of no change of the station’s fill level is understood to be zero, u(s, t, f s
t , 0) := 0.

The (possibly empty) interval [fs

t
, f

s

t] of utility is called the “plateau” of constant maximum

utility.

Proof. Assume the station will become full within the time horizon Tutil for initial fill level

f s
t +∆f . Adding δ bicycles to the station implies that δ additional expected customers who

want to return their bicycles have to be rejected. Therefore, the utility u(s, t, f s
t ,∆f + δ)

decreases monotonically with slope -1 for any δ ≥ 0, f +∆f + δ ≤ f s
max.

u(s, t, f s
t ,∆f + δ) = u(s, t, f s

t ,∆f)− δ

A similar case can be made for fill levels where the station is running empty. Only, the

utility decreases when more bicycles are removed with a slope of u equal to 1. It follows

naturally that for a given initial fill level there are thresholds f s

t
, f

s

t , with f s

t
< f

s

t , where the

station first starts to run empty or full within the horizon. Within the interval [f s

t
, f

s

t], the

station’s capacity constraints are not hit and the utility function must therefore be constant,

leading to a “plateau” of the type shown in Fig. 5.

It can be shown that u(s, t, f s
t ,∆f) can be computed for each station using only three

calls to Algorithm 1. Sections 4 and 5 will make use of this characterization of station fill

10

utilities in order to choose how trucks reposition bikes and price incentives can be offered

to customers.

The system dynamics (8) are based on deterministic net arrival of customers. This

results in a coarser model than for example the probabilistic approach of [11]. However, this

simple parameterization is attractive in that it leads to tractable optimization problems, as

will be seen in Sections 4 and 5.

4 A dynamic truck-routing algorithm

This section describes an algorithm for intelligent operation of a fleet of R trucks, which

move bikes between stations as needed. Their objective is to increase the system utility (as

defined in Section 3), and hence ultimately the system’s service level, as much as possible.

The problem of manual relocation of vehicles in shared vehicle systems is not new. It

originated in pilot car-sharing projects, such as the French Praxitèle [12,13], Intellishare [14]

and Honda ICVS [15]. However, the repositioning algorithms used in car-sharing projects do

not translate directly to the public bicycle-sharing scheme considered in this paper. Firstly,

each of these algorithms exhibits certain characteristics that are specific to its corresponding

vehicle-sharing system, for example charging times of electric vehicles. Secondly, car-sharing

systems tend to be much smaller in their network size than the PBS considered in our paper,

and the proposed algorithms cannot easily be scaled to several hundred stations.

Intelligent repositioning in bicycle-sharing schemes has also received prior attention in

the literature [1]. The proposed approaches can be separated into static and dynamic

approaches.

In the static repositioning approach, an optimal route is computed in order to attain

a predefined fill level for each station, prior to customers interacting with the system (e.g.

during the night). For example, [16] present a solution for the routing of a single truck,

and [17] consider the case of multiple trucks. The advantage of this approach is that there

is ample time to compute a good truck routing solution, and this solution could serve as a

reliable basis for computing the price incentives (Section 5). However, static repositioning

has shown too little flexibility to react to unforeseen variations in the demand pattern,

caused for example by unexpected weather conditions.

In the dynamic repositioning approach, the truck routing is planned in a receding horizon

fashion while the system is in full operation. This allows the planning to react online to

unexpected changes in the system’s state. As such it is a more suitable approach to our

problem. Rair and Miller-Hooks [18] use a stochastic formulation for dynamic repositioning

based on stationary distributions for customer arrivals and departures. However, their

approach is not suitable to the case of our PBS, since these distributions vary considerably

11

according to the distinct daily flow patterns described in Section 1. Contardo et al. [19]

present another dynamic repositioning approach with time-varying, yet deterministic future

flow patterns. But the computational complexity of their approach is prohibitive for our

system, because it is too expensive to simulate the system with multiple trucks over a long

time horizon.

Whilst many PBS schemes redistribute bicycles during the night, nighttime operation is

restricted in London in several key areas [20]. Therefore, this paper considers the dynamic

repositioning case only. It is a variation of the routing problem with pickups and deliveries

for one commodity, taken from [21]. It is illustrated in Figure 6. In order to determine a truck

route, time is discretized into 5-minute intervals and the planning problem is considered

on the time-expanded network (Section 4.1) During each interval, customer behavior is

assumed to be time-varying, but deterministic. A receding planning horizon is considered,

which is the maximum of the truck visiting 4 stations and Ttruck = 40min. The period for

re-optimizing of the truck routes (“implementation horizon”) is chosen as Timpl = 30min,

based on a trade-off between computation time and performance quality. Note that as shown

in Figure 6, the planning horizon is longer than the re-optimization cycle. This improves the

performance of truck journeys beginning shortly before the next re-optimization as these

journey are likely to end within the longer planning horizon where subsequent opportunity

is still considered.

To solve the routing problem for a single truck (Section 4.2) over the finite planning

horizon, we adopt a two-step approach. First, for each truck we construct a tree of “promis-

ing route candidates” using a greedy heuristic. This means that truck routes are extended

by stations that promise high ratios of utility added per time to travel. Second, for each of

the promising routes, the optimal number of bikes to be loaded or unloaded at each stop is

optimized as the complete routes have become known. Then the route providing the highest

utility improvement is selected. Finally, we extend this algorithm in a simple manner to

multiple trucks (Section 4.3).

4.1 Modeling repositioning truck routes on a time-expanded net-

work

We now describe how the truck routes can be modeled as a time-expanded network on a

graph G = (V,A) [15, 19], which is the basis of our truck-routing algorithm. The vertices

V of the graph consist of tuples v = {(s, t), s ∈ S, t ∈ T } ∈ V .3 The (expected future) fill

level f for each vertex v (i.e. station s at time t) is generated according to (8). The arcs

a = (v1, v2) ∈ A of G correspond to possible journeys a truck is able to take.

3The notation s(v) is used to access the component s of the tuple v = (s, t).

12

time
Timpl Ttruck

stations

truck 1

−3

−8

+14

+2

truck 2

+15

−10

−5

+8

Figure 6: Illustration of the dynamic truck-routing algorithm for R = 2 trucks. The time

axis is discretized into 5min-intervals. The planning horizon is the maximum of Ntruck = 4

stations visited by the truck and Ttruck = 40min; the implementation horizon is Timpl =

30min. Each line represents the route of one truck, where journeys are indicated by a solid

line if they start within the implementation horizon (i.e. they are definitely executed) or by

a dashed line if they start with the planning horizon (i.e. they may be subject to change at

future re-plannings). The trucks wait at each stop for 5min in order to to load or unload

bikes. The number of bikes loaded and unloaded at each stop is indicated as well.

In our model, the time it takes for a truck to traverse an arc is discretized to multiples

of 5 minutes. It is computed based on the Euclidean distance (in km) deucl(si, sj) between

two stations si, sj ∈ S, assuming an average speed of 15 km/h for the truck in city traffic.

Including an additional 5min for bicycle handling after reaching the station, the resulting

effective journey time (in time steps of 5 min) for a truck to go from station si to sj is

d̄(si, sj) := ⌈deucl(si, sj)/1.25⌉+ 1. (10)

Note that the dividing factor of 1.25 results from converting distance (in km) into time steps

(of 5 min). The repositioning trucks have limited operation hours during the day, set to

7 am− 10 pm. All trucks are constrained to start at a maintenance depot in the morning,

and also to finish at this depot at the end of the working day. As a consequence, vertices

from which no combination of arcs leads back to the depot on time are excluded from the

graph. An example of a network of stations and a corresponding time-expanded network

are shown in Figures 7 and 8.

13

1 3

Depot

2 4

1

1

2

2

1

1

1 1
2

2

Figure 7: Example station graph, with

arcs weighted according to distance.

t

t+1 t+2 t+3

t+4

(1,t+2)

(3,t+3)(3,t+2)

(1,t+1)

Depot

(2,t+1)

Depot

(2,t+2) (2,t+3)

(4,t+2) (4,t+3)(4,t+1)

(3,t+1)

(1,t+3)

Figure 8: Example time-expanded network.

Dark-grey vertices are marked “dead” due to the

terminal condition.

4.2 Computing single-truck routes

In this Section, we present an algorithm for finding a repositioning route for a single truck

in the dynamic case. The amount of time available for repositioning is assumed to be fixed.

In contrast to the static repositioning case, the goal is not to attain a defined system state

as little resources as possible, but rather to optimally invest the available resources, i.e.

operational hours of the trucks. Thus, based on the utility of fill level changes defined in

Section 3, the ratio of added utility per invested time of a truck r is maximized.

Constructing a tree of promising candidate routes Every truck r ∈ R can hold

a maximum load lmax = 20 bikes and holds lrt ∈ {0, . . . , lmax} bicycles at time t. The

goal is to determine a truck’s repositioning actions ρi = (vi,∆fi, l
r
i) ∈ P : vi ∈ V, li ∈

{0, . . . , lmax}, i ∈ {1, . . . , Ntruck}. The truck load lri is defined as the number of bicycles

after the repositioning action ∆fi performed at the station and time indicated by the vertex

of the time-expanded network v(ρi). In particular, for every pair of actions ρi, ρi+1 there

must exist an arc a ∈ A with

v1(a) = vi ∧ v2(a) = vi+1, ∀i ∈ {1, . . . , Ntruck − 1}. (11)

Moreover, the following consistency constraints for station fill levels and truck loads must

hold:

f
s(vi)
t(vi)

= f
s(vi)
t(vi)−1 +∆fi ∈ [0, f s(vi)

max], ∀i ∈ {1, . . . , Ntruck} (12a)

lri+1 = lri −∆fi+1 ∈ {0, . . . , lmax}, ∀i ∈ {1, . . . , Ntruck − 1} (12b)

Starting from an initial repositioning position ρ1, the possible next steps can be rep-

resented by a tree graph Φ, where each node φ represents a specific repositioning action

and each leaf node determines a unique truck route. The tree of all possible routes has a

branching factor of |S − 1|, since a route could possibly lead to any of the other stations for

14

the next repositioning action. So there are |S − 1|Ntruck−1 possible combinations of stations

for a route of length Ntruck (where the initial position ρ1 is already known). For systems

consisting of several hundred stations it is thus not viable to test every possible combina-

tion. The complexity of the problem is reduced by concentrating on a subset of possible

routes corresponding to the most promising repositioning actions. It works by constructing

a pruned version of the route tree. Starting from the trucks initial position (at the root), the

tree is recursively extended at each of its leaf nodes until it has reached the desired height

of Ntruck (or the journey has a minimum duration of Ttruck):

1. The current leaf node is φ = (vφ,∆fφ, lφ). First, we compute the “value per unit

distance” the truck might bring by going to any of the other stations. The set

Ṽ := {v ∈ V : ∃a ∈ A, v1(a) = vφ, v2(a) = v} contains the vertices of the time-

expanded network the truck would reach by going to any of the other stations. Since

we know the current load of bicycles lrφ, the best action to be performed at ṽ ∈ Ṽ

can be computed with a “greedy” approach as

∆f∗(ṽ, φ) =


















max
(

lrφ − lmax,
⌈

f
s(ṽ)

t(ṽ) − f(ṽ)
⌉)

, if f(ṽ) > f(ṽ)

min
(

lrφ,
⌊

f s(ṽ)

t(ṽ)
− f(ṽ)

⌋)

, if f(ṽ) < f(ṽ)

0, else.

(13)

We choose the K vertices with the best ratio ∆f∗(ṽ, φ)/d̄(vφ, ṽ) and add them as

leaves of φ in the form of route steps. The set of new leaf nodes is Φφ.

2. In addition, we add stations that could serve as an intermittent depot. Going there

may not yield a direct utility. But the possibility to bring or take bicycles may be of

use at other stations of the route. We choose

ṽstore = arg max
ṽ∈Ṽ :s(ṽ) 6=s(vφ)

min
(

ldepot, f
s(ṽ)

t(ṽ) − f(ṽ)
)

d̄ (vφ, ṽ)
(14a)

ṽpick = arg max
ṽ∈Ṽ :s(ṽ) 6=s(vφ)

min
(

ldepot, f(ṽ)− f s(ṽ)

t(ṽ)

)

d̄ (vφ, ṽ)
(14b)

and add them to the set of leafs Φφ with a repositioning action of zero. To prevent

that ṽstore, ṽpick are only set to very large stations, we cap the maximum intermit-

tent depot size considered to some ldepot ≤ lmax. How stations that may serve as

intermittent depots are incorporated into the actions at other steps of the route is

explained in the following.

3. If the depth of the recursive procedure has not yet reached the final depth Ntruck,

it is repeated for every φ′ ∈ Φφ. Before entering the recursive procedure at φ′, the

15

corresponding repositioning action ∆fφ′ is incorporated into the predicted future fill

levels of the time-expanded network. These changes, of course, have to be unwound

between the φ′ ∈ Φφ.

If even more aggressive tree pruning is necessary to comply with computational con-

straints, the similar Beam Search [22,23] can be applied. It leads to linear complexity in the

route length, but at the expense of discarding more potentially optimal solutions. In Beam

Search, a greedy approach is used to determine promising next steps as well. But only K

leaf nodes are added in total to all nodes of the same height. Resorting to Beam Search

was, however, not necessary for the route length horizon used in the sample setting of this

paper.

Refining truck loading actions The repositioning actions ρi, i = 1, . . . , Ntruck of the

promising routes candidates in Φ stem from a greedy heuristic that could not know about

stations visited later in the route. Knowing the complete routes, their respective action

profile should be further refined. As a motivating example, it may be beneficial to pick up

more bicycles than the utility function of a single station u(f,∆f) (see Section 3) originally

indicated. That is, if taking more bicycles has zero utility locally (the fill level remains within

the utility plateau), but a subsequent stations in the route can make use of the additional

bicycles. The problem of choosing optimal actions can be formulated as a manageable

quadratic program (QP).

s(i), t(i) The station and time at the i-th step in the route for i ∈ {1, . . . , Ntruck}.

fi The expected fill level of station s(i) at time t(i).

∆fi The action performed at step i. This is the optimization variable.

f(i), f(i) Beginning and end of the utility plateau of station s(i), as described in

Section 3.

∆f(i),∆f(i) Difference between the new fill level fi + ∆fi and the plateau begin-

ning/end f
s(i)

t(i) , f
s(i)

t(i)
. The difference is defined to grow positively going

outwards from the respective side of the plateau.

∆f ′(i),∆f
′
(i) Auxiliary variables containing the absolute difference from the plateau

beginning ∆f ′(i) = |∆f(i)| or end ∆f
′
(i) = |∆f(i)|. They are correctly

set by the solver minimizing costs within the bounds set in (16d) and

(16e).

l0, lmax Starting fill level of the repositioning truck and the maximum truck load

capacity.

q ≫ 2l2max + 1 Scaling factor for penalizing repositioning actions.

min

Ntruck
∑

i=1

∆f(i) + ∆f ′(i) + ∆f(i) + ∆f
′
(i) +

Ntruck
∑

i=1

∆f2
i /q (15)

16

such that

0 ≤ lrt0−
i

∑

i′=1

∆fi′ ≤ lmax, ∀i ∈ {1, . . . , Ntruck} (16a)

∆f(i) = f(i)− fi −∆fi, ∀i ∈ {1, . . . , Ntruck} (16b)

∆f(i) = −f(i) + fi +∆fi, ∀i ∈ {1, . . . , Ntruck} (16c)

−∆f ′(i) ≤ ∆f(i) ≤ ∆f ′(i), ∀i ∈ {1, . . . , Ntruck} (16d)

−∆f
′
(i) ≤ ∆f(i) ≤ ∆f

′
(i), ∀i ∈ {1, . . . , Ntruck} (16e)

The linear part of the objective function (15) evaluates repositioning actions according

to the utility definition of Section 3. The quadratic part of (15) minimizes the action of the

truck operators (they take the fewest bicycles possible). It is scaled such that actions with

a positive utility will still be performed; However, it prevent actions causing negative utility

at one station and the equal positive utility at another step in the route. This also ensures

that stations will not be pushed outwards from the plateau and actions remain feasible.

Equation (16a) ensures that the fill level of trucks stays within the capacity constraints.

If computation time allows, an integer constraint ∆fn ∈ Z, ∀n can be added to reflect

the discrete number of bikes. This renders the optimization problem into a mixed-integer

quadratic program (MIQP). In our approach, we manually fit the solution to the truck load

constraints based on the relaxed QP solution by clipping any non-integer parts. In test runs

no or only very little differences from the MIQP were observed.

We now determine the best set of repositioning actions for all promising routes and

choose the route that results in the best overall utility increase per unit time.

4.3 Routing multiple trucks

Co-optimized routes for several trucks are too difficult to compute online within the time

constraints of the PBS system. Therefore, we resort to optimizing multiple truck routes

sequentially where actions of prior trucks can be treated as known. These actions are

manifest in the future fill levels stored in the graph of the time-expanded network.

The basic idea is to repeat adding route steps for each truck until it reaches a minimum

number of Ntruck steps, or a journey time of Ttruck. This is performed sequentially, starting

with the truck who has the minimum time-index for the last step in his route and has

not yet reached the required route length. The reason for this sequential procedure is to

prevent the collision of two truck routes, which can be detrimental to the performance of

the algorithm as explained below. Assume, without loss of generality, that the trucks r ∈ R

are ordered according to the current computation of their routes. If truck r chooses to

go to a station s(v) to which a truck r′ < r has already planned to go at a later time

17

t(v′) > t(v), s(v′) = s(v), then r′ has made his choice based on false assumptions about the

station’s fill level. These collisions can be handled by

• Removing all routing steps that were added during the last route-search step from

Ωr′ .

• Removing all but the first routing steps that were added during the last route-search

step from Ωr.

So collisions are prevented and since at least one new routing step is preserved per

detected collision, so our algorithm will eventually reach Ttruck for all trucks.

5 Dynamic price incentives for users

Customers themselves might contribute to the rebalancing of a PBS scheme if offered an

appropriate payment. In this paper we consider how payments could be offered to customers

to change the endpoint of their journey to a nearby station in a way that improves the overall

service level. To this end, we take the model of how customers accept (or choose between)

price offers, as described in Section 2.3, and then form an optimization problem trading off

the expected payouts and the expected improvement in service level. The solution of this

optimization problem is a set of price offers that are presented to any customer arriving at

a given station. It seems reasonable to reduce the complexity of this optimization problem

by limiting the number of prices offered (= decision variables) to 10 per station; i.e. for each

station, only 10 prices are quoted for going to selected neighboring stations.

We assume that means of communicating the price incentives and for making payments

are available. A payment infrastructure is already central to existing systems, like the Oyster

Card for London’s public transport network. New information capabilities could be added to

the kiosk terminals used for rental, and/or the mobile applications many customers already

use.

Using price incentives to induce a desired behavior in the users of shared mobility systems

has been examined in multiple contexts in recent literature. The work of [14] examines user-

based repositioning in a shared mobility system. However, the approach of splitting and

merging rides can only be applied to cars and not to public bike hire schemes. Incentives

for bike sharing schemes are investigated by [24], where users pick two stations at random

and go to the more empty.

In this paper, we propose a novel scheme that is based on Model Predictive Control

(MPC). A short summary of MPC is given in Section 5.1. In Section 5.2 we then show how

the customer reaction model from Section 2 can be linearized in order to obtain a tractable

MPC problem formulation. Finally, Section 5.3 explains the details of the corresponding op-

timization problem that has to be solved in a receding-horizon fashion in order to determine

18

the real-time price incentives.

5.1 Model Predictive Control

Here we provide a short introduction to Model Predictive Control (MPC [25]), giving the

basic explanations required to describe the controller developed in Section 5.3. The funda-

mental idea is to employ a model of a given system in order to optimize the inputs given to

the system over a finite control horizon. Only the first input is then applied to the system,

and the scheme continues by measuring the new state of the system and solving another

finite-horizon optimization problem (“MPC problem”).

The two main aspects of MPC comprise good control decisions for the system with

respect to anticipated future events (by the optimization), and feedback in the case of

unforeseen disturbances or model inaccuracies (by re-optimizing periodically for the control

actions). An important strength of MPC is its ability to incorporate a model of the system

dynamics and to handle constraints on the states and control inputs. For example, in the

case of the PBS this is advantageous because it allows upper and lower bounds to be placed

on the computed price incentives (control inputs) and the stations’ fill levels (system state).

Let the system state at time step t (i.e. a vector containing the fill levels of all stations)

be denoted by x(t). The future state evolves as some function of the current state and the

control inputs u(t) (i.e. a vector of the price incentives offered to the users), so that the

subsequent state is given by x(t + 1) = ft(x(t), u(t)). Here ft represents only a simplified

model of the actual system dynamics, which is subject to model uncertainty and distur-

bances. Note that the function ft depends on the predicted customer interaction and is

therefore time-varying (recall that customer interaction shows time-varying patterns). The

actual deviations from the predicted customer interaction is uncertain, and thus considered

as a disturbance to our model. Moreover, given that the truck routes are known (from

Section 4), the functions ft also contain changes to the system state affected by manual

repositioning.

Assume the current time to be t = 0 without loss of generality. Now we wish to choose a

finite series of inputs u(t) where t = 0, . . . , T − 1 so that the system behaves optimally over

the finite time horizon T , starting from the measured current state x(0). This is done by

solving an optimization problem, trading off the perceived cost of having suboptimal system

states cxt (x(t)), and the cost of applying the control input cut (u(t)):

min
u(0),...,u(T−1)

T
∑

t=1

cxt (x(t)) +
T−1
∑

t=0

cut (u(t)) (17)

such that

x(t+ 1) = ft(x(t), u(t)), t = 0, . . . , T − 1 (18a)

19

u(t) ∈ Ut, t = 0, . . . , T − 1 (18b)

x(t) ∈ Xt, t = 1, . . . , T (18c)

where the functions cxt and cut are called stage costs for the state and input respectively, and

sets Xt and Ut represent any constraints that may be present on the state and input.

Although solving problem (17) gives a series of inputs u(t), t = 0, . . . , T − 1, only u(0)

is applied to the system. In the next time step, a new measurement of the current state

is made, and a new series of planned control inputs are determined by resolving the MPC

problem in light of the new information. For this reason, MPC is also known as “Receding

Horizon Optimal Control”.

To make problem (17) tractable, the system model must often be simplified. In partic-

ular, non-linear dynamics ft(x(t), u(t)) make the problem non-convex. For many systems,

though, good control performance can still be achieved if the model is linearized.

5.2 Simplified model of customer behavior

We now derive an approximate model of customer behavior that can be used in the context

of MPC. Customer behavior means their response to price incentives, as described in (7) and

therefore enters into the system dynamics ft(x(t), u(t)). However this response is nonlinear,

which as described in the preceding section leads to a non-convex MPC problem (17).

We first explain the origin of this nonlinearity. Consider two neighbor stations n′, n′′ ∈

Ns with equal distance to s, for which the incentives offered from station s are equal,

ps,n′ = ps,n′′ . If there are customers equally willing to go to n′ or n′′, an infinitesimally

small increase in ps,n′ would cause all those customers to choose n′ if we assume they act

totally rationally. The customer reaction to incentives is thus discontinuous in the prices,

and the true behavior model (7) will not lead to a tractable optimization problem.

To formulate a tractable MPC problem we approximate π(s, n, ps) in a linear fashion and

choose a convenient set Ns of N nearby neighbors for each station, so that |Ns| = N . The

linearization π̄(s, n, ps) is computed using Algorithm 2, which creates samples of customer

reactions to random incentive offers (to all neighboring stations) and a performs a least-

squares fit between observed behavior and the linear model. The linear dependency on

offered incentives, where customers reject station s and go to neighbor n instead, is defined

by vectors π̃s,n of size N , for each s ∈ S, n ∈ Ns.

π̄(s, n, ps) = π̃⊤
s,nps (19)

20

Algorithm 2 Fitting the linear customer behavior model

Require: s ∈ S,

1: Ns, ⊲ |Ns| = N nearest neighbours around station s

2: taken incentive(s,Ns, p), ⊲ Neighbor chosen by the customer as described in

Section 2.3

3: pmax, ⊲ Maximum payout

4: P ≫ 0, ⊲ Number of generated payout vectors (samples)

5: C ≫ 0, ⊲ Number of customer behavior samples

6: Ω ⊲ Set of samples. Each sample is a tuple of two vectors: The offered payouts p to the

N neighbours and the percentage of customers taking a certain incentive δ.

7: for i = 1 to P do

8: p← pmax · rand(N) ∈ [0, pmax]
N ⊲ Payout vector

9: e← {0}N ⊲ Initialize behavior count

10: for c = 1 to C do

11: n′ ← taken incentive(s,Ns, p) ∈ {N+, ∅}

12: en′ ← en′ + 1

13: end for

14: δ ← e/C ⊲ Fraction taking a certain incentive

15: Ω(i)← (p, δ)

16: end for

17: for n = 1 to N do

18: π̃s,n ← arg min
π

∑

i∈{1,...,P}

(

π⊤Ω(i)p − Ω(i)δ,n
)2

19: end for

21

5.3 Computing dynamic price incentives

In this subsection we formulate an MPC problem, the solution of which gives the price

incentives ps(t) that should be offered to customers for t = 0, . . . , T − 1, where ps(0) are the

prices to be issued immediately, and ps(1), . . . , ps(T − 1) are prices planned for subsequent

steps.

The number fs(t) of bikes present at station s at time t evolves according to the original

arrival rate λs(t) and net change ηs(t) described in Section 2, along with a modification

γ(s, λs(t), ps(t)) due to customers taking price incentives and another, ∆fs(t) due to trucks

adding or taking away bikes from the stations. Ñs denotes the set of stations having s as

one of their nearest neighbors.

γ(s, λs(t), ps(t)) =
∑

ñ∈Ñs

π (ñ, s, pñ(t)) · λñ(t)

−
∑

n∈Ns

π (s, n, ps(t)) · λs(t)
(20)

fs(t+ 1) = fs(t) + ηs(t) + γ (s, λ(t), p(t)) + ∆fs(t). (21)

Note that
∑

s∈S γ(s, λs(t), ps(t)) = 0 since the total number of bikes in the system must

be constant. Also, the controller assumes that customers who take an incentive go from

their originally intended destination to the new one within the same time step. We do this

to make the MPC problem easier to solve, and assume it does not distort predictions of

customer actions too much.

We now specify the components of MPC problem (17). Using the linearized model of

customer reactions to incentives from Section 5.2, and defining quadratic stage costs cxt

and cut , the MPC problem becomes a quadratic program. Under the assumption of a linear

customer response to prices, the expected payouts are a quadratic function of the prices, and

the input cost in the MPC problem represents a real monetary cost to the system operator.

The state cost aims to penalize loss of customer service. The resulting MPC problem is a

quadratic program (QP) and can be stated as follows:

min
p(t)

Tprice
∑

t=1

S
∑

s

Qs(t)f̃s(t)
2 +

Tprice−1
∑

t=0

S
∑

s

Rs(t)ps(t)
2 (22)

such that

f̃s(t) = fs(t)−
1
2

(

f s

t
+ f

s

t

)

, ∀s ∈ S, ∀t (23a)

fs(t+ 1) = fs(t) + ηs(t) + ∆fs(t)

+
∑

ñ∈Ñs

(

π̃⊤
ñ,spñ(t)

)

λñ(t)

22

−
∑

n∈Ns

(

π̃⊤
s,nps(t)

)

λs(t), ∀s ∈ S, ∀t (23b)

∑

n∈Ns

π̃⊤
s,nps(t) ≤ 1, ∀s ∈ S, ∀t (23c)

0 ≤ ps,n(t) ≤ pmax,
∀s ∈ S, ∀t,

n ∈ {1, . . . , N}
(23d)

The cost weights Qs(t) and Rs(t) in the cost function (22) are used to penalize deviation

f̃(t) from the optimal state 1
2 (f

s

t
+ f

s

t), and the cost caused by the incentives payout,

respectively. A weighting factor α is used to adjust the relative costs associated with having

stations deviate from their optimal point of operation in the middle of the utility plateau

(which we assume to lead to a lower service level), and cash payouts:

Qs(t) = 1/(f
s

t − fs

t
), (24)

Rs(t) = α
∑

n∈Ns

π̃⊤
s,nλs(t). (25)

A lower value of α leads to a lower relative penalty for paid incentives, likely leading to

higher price incentives applied.

Equation (23a) transforms the number of bikes at each station to a quantity measured

relative to the “best” fill level, the middle of the station’s utility plateau. The predicted

system states within the horizon are defined by (23b). It includes the expected arrival and

departure rates as well as the linearized model of customer behavior. Equation (23c) limits

the payouts such that no more than 100% of arriving customers take an incentive to one of

the neighbours, and (23d) ensures that payouts are at most pmax.

6 Simulation

6.1 Simulation setting

Based on the assumptions and the system model developed in Section 2, a Monte-Carlo

simulation is used to compare the two approaches for bike repositioning. It is important

to note that although simplified models of the system are used to choose truck actions

and prices, we use the full model derived from historical data as described in Section 2

to simulate the actual behavior of customers. We simulate first a sequence of weekdays,

then a sequence of weekend days, bearing in mind that demand patterns differ significantly

between the two. Every simulation run consists of a 24h burn-in period starting from the

initial system configuration, in order to reduce the dependence of our results on this initial

configuration. Then, three consecutive days are simulated, for which the statistics gathered

23

0

5

10

0

2000

4000

6000
0.7

0.75

0.8

0.85

0.9

0.95

Number of trucksIncentives payout in Pound

S
er

vi
ce

 le
ve

l

Figure 9a: Service level for weekdays, as a

function of number of trucks and total pay-

outs.

0

5

10

0

2000

4000

6000
0.84

0.86

0.88

0.9

0.92

0.94

0.96

Number of trucksIncentives payout in Pound

S
er

vi
ce

 le
ve

l

Figure 9b: Service level for weekend days,

as a function of number of trucks and total

payouts.

are presented below. In accordance to [20], redistribution with trucks is performed during

8am–10pm.

6.2 Simulation results

The resulting service level is computed as follows:

Service level =
Potential customers−No-service events

Potential customers
(26)

When simulating three consecutive weekdays, about 49,800 potential customers are gener-

ated on average, and for three consecutive weekend days (e.g. a Bank Holiday weekend)

about 29,900. The number of total no-service events is the sum of customers who could not

rent a bike at an empty station and customers who wanted to return their bike at a full

station.

We varied number of trucks used for repositioning and the level of price incentives given

out (via the choice of state cost weight α in the price controller). Figure 9 shows how the

service level reported by the simulations varied as a result.

As expected, adding more trucks as well as paying out more in incentives has a posi-

tive effect on the service level. However, with increasing service level, adding trucks and

incentives payouts becomes less efficient. Comparing the two simulations, it appears that

the usage peaks caused by commuters were responsible for most of the service shortfalls

observed. Most events where a customer could not be served were concentrated on only a

few stations.

Figures 10 and 11 show the split of no-service events into “empty events” (where cus-

tomers wanting to rent a bike arrive at an empty station) and “full events” (where customers

24

0 2 4 6 8 10

Number of repositioning trucks

N
o
−

s
e
rv

ic
e

e
v
e
n
ts

Figure 10a: No-service events for different

numbers of repositioning trucks (no incen-

tives) for three consecutive weekdays

0 2 4 6 8 10

0
1
0
0
0

3
0
0
0

Number of repositioning trucks

N
o
−

s
e
rv

ic
e

e
v
e
n
ts

Figure 10b: No-service events for different

numbers of repositioning trucks (no incen-

tives) for three consecutive weekend days

0 1000 2000 3000 4000 5000

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

Incentives payout in £

N
o
−

s
e
rv

ic
e

e
v
e
n
ts

Figure 11a: No-service events during sim-

ulations for weekdays with 0 repositioning

trucks. Over the course of 72h ca. 49,800

potential customers arrive.

0 200 400 600 800 1000 1200

0
1
0
0
0

3
0
0
0

Total incentive payouts in £

N
o
−

s
e
rv

ic
e

e
v
e
n
ts

Figure 11b: No-service events during simu-

lations of weekend days with 0 repositioning

trucks. Over the course of 72h ca. 29,900

potential customers arrive.

25

wanting to return a bike arrive at a full station). Since the number of full events is consid-

erably lower than the number of empty events, it seems plausible that adding more bikes

could have a positive effect on the service rate.

7 Conclusions

This paper considered how a Public Bicycle Sharing scheme could be managed using a

combination of intelligently routed repositioning trucks and redistribution incentives for

customers. The truck routes and price incentives were computed using model-based receding

horizon optimization principles, which took account of expected future customer behavior.

As the number of trucks was increased, diminishing gains to service level were reported

for added trucks and customer incentive payouts. Customer payments were shown to be

a means of reducing service shortfalls, particularly when few repositioning trucks were in

operation.

Our results suggest that price incentives are viable for repositioning bicycles in a PBS

when the commuting rush hour is less prominent. For the London PBS, price incentives

alone were shown to be enough to keep the service level above 87% on weekends without

the use of staff. On weekdays however, when many customers use the PBS to commute to

work, price incentives alone are not sufficient to lift the service level substantially.

The price control algorithm could be developed further in several ways. Firstly, a field

trial could be used to improve the accuracy of the customer decision model upon which our

controller is based. This would reveal the range of price elasticities customers exhibit, and

also indicate to what extent customer responses to prices are irrational. Secondly, some

simplifying assumptions (for example deterministic customer arrival, linearized customer

reaction to incentives) could be replaced by more detailed models. However, it is unsure

how much performance can be gained here, as the prediction horizon for optimization might

have to be shortened considerably to account for the increase in computational complexity.

References

[1] S. Shaheen, S. Guzman, and H. Zhang, “Bikesharing in europe, the americas, and

asia,” Transportation Research Record: Journal of the Transportation Research Board,

vol. 2143, no. -1, p. 159–167, 2010.

[2] P. DeMaio and L. MetroBike, “Bike-sharing: History, impacts, models of provision,

and future,” Journal of Public Transportation, vol. 12, no. 4, p. 41–56, 2009.

26

[3] S. Erlanger, “A new fashion catches on in paris: Cheap bicycle rentals,” in July 13,

2008. The New York Times, 2008.

[4] P. Midgley, “Bicycle-sharing schemes: enhancing sustainable mobility in urban areas,”

United Nations, Department of Economic and Social Affairs, Tech. Rep., 2011.

[5] S. Wang, J. Zhang, L. Liu, and Z. Duan, “Bike-sharing-a new public transportation

mode: State of the practice & prospects,” in Emergency Management and Management

Sciences (ICEMMS), 2010 IEEE International Conference on. IEEE, 2010, pp. 222–

225.

[6] P. Vogel and D. Mattfeld, “Modeling of repositioning activities in bike-sharing systems,”

in World Conference on Transport Research (WCTR), 2010.

[7] OBIS, “Optimising bike sharing in european cities - a handbook,” 2011.

[8] A. Stannard, “Building the best public cycle hire scheme in the world,”

http://www.scribd.com/doc/104443894, Accessed in August 2012, 2011.

[9] P. Mackie, S. Jara-Dıaz, and A. Fowkes, “The value of travel time savings in evaluation,”

Transportation Research Part E: Logistics and Transportation Review, vol. 37, no. 2,

pp. 91–106, 2001.

[10] S. Hess, M. Bierlaire, and J. W. Polak, “Estimation of value of travel-time savings using

mixed logit models,” Transportation Research Part A: Policy and Practice, vol. 39,

no. 2, pp. 221–236, 2005.

[11] T. Raviv and O. Kolka, “Optimal inventory management of a bike-sharing station,”

IIE Transactions, no. just-accepted, 2013.

[12] M. Dror, D. Fortin, C. Roucairol et al., “Redistribution of self-service electric cars: A

case of pickup and delivery,” INRIA, Tech. Rep., 1998.

[13] C. Duron, M. Parent, J. Proth et al., “Analysis of the balancing process in a pool of

self-service cars,” INRIA, Tech. Rep., 2000.

[14] M. Barth, M. Todd, and L. Xue, “User-based vehicle relocation techniques for multiple-

station shared-use vehicle systems,” in Transportation Research Board 80th Annual

Meeting, 2004.

[15] A. Kek, R. Cheu, Q. Meng, and C. Fung, “A decision support system for vehicle

relocation operations in carsharing systems,” Transportation Research Part E: Logistics

and Transportation Review, vol. 45, no. 1, p. 149–158, 2009.

27

http://www.scribd.com/doc/104443894

[16] M. Benchimol, P. Benchimol, B. Chappert, A. De La Taille, F. Laroche, F. Meunier,

L. Robinet et al., “Balancing the stations of a self service “bike hire” system,” RAIRO

- Operations Research, vol. 45, no. 01, pp. 37–61, 2011.

[17] T. Raviv, M. Tzur, and I. A. Forma, “Static repositioning in a bike-sharing system:

models and solution approaches,” EURO Journal on Transportation and Logistics, pp.

1–43, 2012.

[18] R. Nair and E. Miller-Hooks, “Fleet management for vehicle sharing operations,” Trans-

portation Science, vol. 45, no. 4, p. 524–540, 2011.

[19] C. Contardo, C. Morency, and L. Rousseau, “Balancing a dynamic public bike-sharing

system,” Cirrelt, Montréal, Tech. Rep., 2012.

[20] Transport for London, “Freedom for information re-

quest: Barclays bicycle redistribution,” 2012. [Online]. Available:

http://www.whatdotheyknow.com/request/barclays bicycle redistribution

[21] G. Berbeglia, J. Cordeau, and G. Laporte, “Dynamic pickup and delivery problems,”

European Journal of Operational Research, vol. 202, no. 1, pp. 8–15, 2010.

[22] B. Lowere, “The harpy speech recognition system,” Ph.D. dissertation, Carnegie Mellon

University, 1976.

[23] P. S. Ow and T. E. Morton, “Filtered beam search in scheduling†,” The International

Journal Of Production Research, vol. 26, no. 1, pp. 35–62, 1988.

[24] C. Fricker and N. Gast, “Incentives and regulations in bike-sharing systems with sta-

tions of finite capacity,” Arxiv preprint arXiv:1201.1178, 2012.

[25] J. M. Maciejowski, Predictive control : with constraints. Prentice Hall, 2002.

28

http://www.whatdotheyknow.com/request/barclays_bicycle_redistribution

	1 Introduction
	2 System model
	2.1 Historical data
	2.2 Model parameters
	2.3 Customer decision model

	3 Utility of changes in station fill level
	4 A dynamic truck-routing algorithm
	4.1 Modeling repositioning truck routes on a time-expanded network
	4.2 Computing single-truck routes
	4.3 Routing multiple trucks

	5 Dynamic price incentives for users
	5.1 Model Predictive Control
	5.2 Simplified model of customer behavior
	5.3 Computing dynamic price incentives

	6 Simulation
	6.1 Simulation setting
	6.2 Simulation results

	7 Conclusions

