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Autonomous Vehicle Public Transportation System:
Scheduling and Admission Control

Albert Y.S. Lam, Yiu-Wing Leung, and Xiaowen Chu

Abstract—Technology of autonomous vehicles (AVs) is getting
mature and many AVs will appear on the roads in the near future.
AVs become connected with the support of various vehicular
communication technologies and they possess high degree of
control to respond to instantaneous situations cooperatively with
high efficiency and flexibility. In this paper, we propose a new
public transportation system based on AVs. It manages a fleet
of AVs to accommodate transportation requests, offering point-
to-point services with ride sharing. We focus on the two major
problems of the system: scheduling and admission control. The
former is to configure the most economical schedules and routes
for the AVs to satisfy the admissible requests while the latter is
to determine the set of admissible requests among all requests to
produce maximum profit. The scheduling problem is formulated
as a mixed-integer linear program and the admission control
problem is cast as a bilevel optimization, which embeds the
scheduling problem as the major constraint. By utilizing the
analytical properties of the problem, we develop an effective
genetic-algorithm-based method to tackle the admission control
problem. We validate the performance of the algorithm with
real-world transportation service data.

Index Terms—Autonomous vehicle, admission control, bilevel
optimization, smart city.

I. INTRODUCTION

HUMAN mobility is largely supported by public transport.
Many people rely on public transport to move from

one place to another when the destinations of their journeys
are not within walkable distances. To transform a city with
limited room for large-scale infrastructure into a smart city, its
public transportation system may need to be further upgraded
mainly from the existing road networks. Representatives of
road-based public transport are buses and taxis, each type
of which has its pros and cons. In general, buses follow
fixed routes offering shared ride so that more passengers can
be served on each single journey. On the other hand, taxis
offer private services and run on flexible dedicated routes
based on the passengers’ requests. Nevertheless, no single
one type can support high throughput and flexibility at the
same time. The efficiency and capacity of the whole public
transportation system may be enhanced if there exists a new
public transport which can accommodate many people in a
short period of time and concur high mobility. It may maintain
flexibility by offering point-to-point services while enhancing
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efficiency by supporting shared ride. Such kind of public
transport requires several characteristics which may not be
possessed by a typical public transport. To develop such a
public transport, the vehicles need to cooperate to take up
customers’ requests instead of cruising around the city for
random offers. To enhance the efficiency and cooperativeness,
a control center can be employed to coordinate all the vehicles,
manage all the service requests, and assign the vehicles to
serve the requests. Moreover, the vehicles should follow the
routes and carry out the travel plans instructed so as to achieve
system-wise objectives. Recently, autonomous vehicles (AVs)
have been undergone active research and we can expect
many AVs running on the roads in the near future. The
AV is a good candidate possessing most of the requirements
mentioned above. Hence AVs can be adopted to construct a
new smart public transportation system with high efficiency
and flexibility.

In this paper, we introduce an intelligent AV-based public
transportation system. It manages a fleet of AVs to accommo-
date transportation requests, offering point-to-point services
with ride sharing. We focus on two important problems in
the system: scheduling and admission control. The former is
about how to assign the designated vehicles to the admissible
transportation requests, and when and where the vehicles
should reach to provide services with the lowest cost. The
latter is to determine the set of admissible requests among
all requests to achieve maximum revenue. As a whole, the
contributions of this paper include:

• proposing the AV public transportation system;
• improving the model for scheduling proposed in [1], such

that the formulation developed in this paper can now
support both directed and undirected graphs;

• developing distributed scheduling;
• formulating the admission control problem;
• introducing the concept of admissibility and the related

analytical results;
• designing an effective method to solve the admission

control problem; and
• validating the performance of the solution method with

real-world transportation service data.

The rest of this paper is organized as follows. Related work is
given in Section II and we present various system components
and their operations in Section III. The scheduling problem
is discussed in Section IV. In Section V, we formulate the
admission control problem and provide the related analytical
results. We propose a genetic-algorithm-based solution method
for admission control and develop distributed scheduling in
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Section VI. Section VII evaluates the system performance with
real-world transportation service data. Finally we conclude this
paper in Section VIII.

II. RELATED WORK

The concept of AVs was raised in the 1920’s and the
research thereof has started for more than thirty years. An
AV is equipped with many sensors, which provide the vehicle
with full sensing ability so as to adapt to the neighborhood
environment and realize fully automated control. In 2007,
the DARPA Urban Challenge boosted the awareness of AVs
capable of being driven in traffic and performing complex
maneuvers [2]. In 2010, VisLab carried out the experiment
that several driverless vehicles successfully traveled 13,000 km
from Italy to China [3]. Google demonstrated an AV prototype
in 2011 [4]. By the end of 2013, several states in the United
States, including Nevada, Florida, California, and Michigan,
had passed the law to allow AVs running on public roads
[5]. The first self-driving shuttle on sale was from NAVIA
[6]. Other automotive manufacturers, like Mercedes-Benz [7],
BMW, and Audi [8], have invested in self-driving technologies
and include AVs in their production plans.

Most research work on AVs mainly focused on the con-
trol and communication aspects. Mladenovic and Abbas [9]
proposed a self-organizing and cooperative control framework
for distributed vehicle intelligence. Hu et al. [10] studied lane
assignment strategies for connected AVs and proposed a lane
changing maneuver to balance the tradeoff between efficiency
and safety. Petrov and Nashashibi [11] developed a feedback
controller for autonomous overtaking without utilizing road-
way marking and inter-vehicle communication. Li et al. [12]
presented a multi-level fusion-based road detection system for
driverless vehicle navigation to ensure safety in various road
conditions. All these show that AV is a promising technology
with the support from governments, high-tech companies, and
car manufacturers.

Vehicles can communicate with each other and fixed infras-
tructure via various vehicular wireless communication tech-
niques [13]. Nowadays vehicular communications are mostly
deployed over satellite, cellular networks, and vehicular ad-
hoc networks (VANETs) [13]. VANET is a mobile ad-hoc
network where vehicles act as the mobile nodes [14] and it
can improve the communication capacity and organization of
AVs constituting an intelligent transportation system. Furda et
al. [15] introduced a wireless communication framework for
driverless vehicles. It facilitated vehicle-to-vehicle and vehicle-
to-infrastructure communications and improved the safety and
efficiency of vehicles. Alsabaan et al. [16] made use of traffic
light signals and vehicle-to-vehicle (V2V) communications
to help vehicles adapt their speeds and avoid unnecessary
stop, acceleration, and excessive speed. Gomes et al. [17]
designed a driver-assistance system which allowed a vehicle
to collect real-time camera images from other vehicles in the
neighborhood over V2V communications. In this way, AVs
become connected and can communicate with the control
center.

Shareability of taxi services has been studied recently.
Santi et al. [18] investigated the tradeoff between passenger

TABLE I
CONTRIBUTIONS TO THE SYSTEM.

Technology/
Example Contributions Ref.

feature

Hardware

VisLab Demonstrate the feasibility
of AVs

[3]

Google Show the confidence of the
industry in AVs

[4]

Mercedes-
Benz, BMW,
Audi, NAVIA

Guarantee supply of AVs
for the system

[7], [8], [6]

Software

Mladenovic &
Abbas

Enhance self-organizing and
cooperative control of AVs

[9]

Hu et al. Balance the efficiency and
safety of AVs

[10]

Petrov &
Nashashibi

Enhance self-control of AVs [11]

Li et al. Improve safety of AVs [12]

Law
Nevada,
Florida,
California,
and Michigan

Demonstrate the support of
governments

[5]

Cottingham Introduce the vehicular
wireless communications
available to be used in the
system

[13]

Dahiya &
Chauhan

Improve the communication
capacity and organization of
AVs

[14]

CommunicationsFurda et al. Enhance the communica-
tions between AVs and the
control center

[15]

Alsabaan et al. Improve the comfort of AVs [16]
Gomes et al. Collect data for the system

to estimate traffic conditions
[17]

Ridesharing
Santi et al. Confirm the ridesharing

functionality of the system
[18]

Ma et al. [19]
AV public
transporta-
tion
system

Lam et al. Provide a proof of concept [1]
Lam et al. Investigate the scheduling

and admission control prob-
lems

This work

inconvenience and collective benefits of sharing and concluded
that a small increase in discomfort could induce the significant
benefits of less congestion, less running costs, less split fares,
less polluted, and cleaner environment. Ma et al. proposed
a taxi ridesharing system called T-Share in [19], where the
dynamic taxi ridesharing problem was studied. For a dataset
of taxi services in Beijing, it showed that 25% additional
taxi users could be served with saving of 13% of total travel
distance. These studies confirmed that ridesharing is beneficial
but they mostly focused on taxi services. In this paper, we
focus on AVs, which have a key intrinsic property hardly
found in the standard taxis: the direct control of vehicles
does not involve any human factors. In other words, AVs can
completely follow the instructions from the control center in
the sense that they neither undertake any unassigned requests
nor reject any assigned requests. We can see that AVs can
fully cooperate to achieve the system objective but it may not
be the case for human-driving taxis.

The AV public transportation system is uniquely designed
and it can help improve the capacity and flexibility of the
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future transportation system. To further demonstrate its feasi-
bility, we show how the existing work discussed above may
contribute to the system in Table I.

The scheduling problem has been introduced in [1] and it
can be considered as a variant of the Dial-A-Ride Problem
(DARP) [20]. However, in our AV scheduling problem, we
allow modifying the previously assigned but not yet served
requests at desirable times to achieve system-wise performance
goal. When the system evolves, the AVs appear at different
locations at different time instants. It may happen that a
particular request can be better served by a different AV at
different times. Consider an example with two AVs, I and
II. At a paricular time, AV-I is in the neighborhood of a
location while AV-II is not. A request originated from this
location may be better served by AV-I. After some time,
AV-I may have gone away but AV-II may have come into
the neighborhood. Then the request may be better served by
AV-II instead. As the AVs are connected through appropriate
vehicular communication technologies, the schedules of AVs
can be revised from time to time. We consider this in our
formulation making our scheduling problem different from
DARP. As the system involves a number of AVs, determining
their schedules in a distributed manner can undoubtedly speed
up the process. Distributed scheduling has been advanced in
many engineering disciplines, e.g., communication networks
[21], [22]. As a new system, we will dedicatedly design a
distributed methodology for the scheduling thereof.

Admission control generally refers to a validation process
in communication systems for quality-of-service assurance. It
determines which new connection or service request can be
granted with resources for subsequent operations. For example,
[23] designed an admission control mehanism to add or drop
session requests in 4G wireless networks and [24] discussed
various admission control algorithms for multi-service IP
networks. We adopt this idea in the transportation system
and design an admission control mechanism to differentiate
the transportation service requests for maximizing the total
profit. There are many methods to facilitate admission control.
Genetic Algorithm (GA) is one of them and it has been
successfully utilized to design admission control mechanisms,
e.g., [25] and [26]. Based on the special formulation of the
admission control problem (to be discussed in Section V), we
will also adopt GA to solve the problem.

III. SYSTEM MODEL

In this section, we design the architecture for the system
which can manage a fleet of AVs to serve customers for
transportation services. In the following, we first introduce
the system components and then describe the operations
characterizing their interactions.

A. System Components

1) Network Structure: A graph is employed to model
the region being served by the system. It characterizes the
locations and the road connections necessarily to describe
movements of the AVs, origins and destinations of the service
requests, and other required facilities. It is a directed graph

denoted by G(V, E), where V is a set of locations and E
refers to the road segments connecting the locations so that
we can completely describe the routes of AVs with G. For
i, j ∈ V , each edge (i, j) ∈ E is associated with an operational
cost cij and a travel time tij , which is an estimation of time
for an AV to traverse from i to j based on historical data.
Depended on the system objective, cij typically represents the
distance of the road segment (i, j) as the operational cost of
AVs is usually measured by the fuel consumption which is in
turn characterized by the travel distance. If the system aims
to optimize the total service duration, we can set cij = tij for
all (i, j)’s. We allow cij 6= cji and tij 6= tji to account for
the asymmetry of road segments. Moreover, refuel stations are
located in some locations specified by Ṽ ⊂ V and each AV
ends its journey at any one of these refuel stations (reasons
explained in Section III-B1). Based on the nature of the AVs,
Ṽ ⊂ V will be the locations of charging (gas) stations if
the AVs are electric (conventional) vehicles. For the case of
electric vehicles, Ṽ ⊂ V can be determined based on the
charging demand and the connectivity of the charging station
network according to [27].

2) Transportation Requests: Customers request services in
the form of transportation requests, which are collectively
denoted by R. Each r ∈ R is represented by the 5-tuple
〈sr, dr, Tr, [er, lr], qr〉. sr ∈ V and dr ∈ V represent the
customer pickup and dropoff locations, respectively. Tr is the
maximum ride time, an exceedance of which will lead to
customer dissatisfaction. [er, lr] refers to the service starting
time window, where er and lr are the earliest and latest service
starting times, respectively. qr stands for the number of seats
needed in the request r.

3) Vehicles: The system coordinates a fleet of AVs de-
noted by K. Each k ∈ K is represented by the 5-tuple
〈ak, t0k, T̃k, Qk,Rk〉. ak ∈ V is the first location where k
will visit from the current position of k while t0k is the time
required to reach ak from its current position. It is possible
that, at the time of scheduling, the AV is in the middle
of a road segment heading to ak. ak and t0k can be easily
estimated by submitting its current position to the system. T̃k
denotes the maximum remaining operation time that k can
continue to provide services without refueling.1 Qk is the
passenger capacity that k can accommodate simultaneously.
Rk = R̃k ∪ Rk ∈ R is the set of requests previously
assigned to k. Rk can be further categorized into two types;
R̃k contains those currently being served by k while Rk was
assigned to k at a previous schedule but the services have
not been implemented yet. For the former, some seats have
already been taken by the customers from R̃k. On the contrary,
seats have only been reserved but no actual seats have been
taken from Rk. We will handle R̃k and Rk differently when
performing scheduling in Section IV.

Without loss of generality, we assume that the number of
seats required in any request is no larger than the capacity of
any vehicle, i.e.,

qr ≤ Qk,∀r ∈ R, k ∈ K. (1)

1The maximum remaining operation time of k can be converted from its
corresponding remaining fuel level.



4

time

Data collection 
sub-interval

Duty assignment 
sub-interval

Interval i Interval i+1

Data collection 
sub-interval

(a few minutes) (a few seonds)

Fig. 1. Operating intervals in the system.

Receive 
transportation 

requests

Merge requests

Providing 
services

Unserved 
requests

Acquire vehicle 
statuses

Admission 
control

Scheduling

Data collection
Sub-interval

Duty 
assignment
Sub-interval

D
u

ty
 a

ss
ig

n
m

en
t

Fig. 2. Operation flow of the system.

We can always split those requests violating (1) into multiple
requests so that this condition always holds.

B. Operations

The system is managed and operated by a control center
whose main duties are to collect all the required information
and assign the AVs to serve the transportation requests. The
system operates in a fixed time interval basis and each time
interval is divided into data collection and duty assignment
sub-intervals (see Fig. 1). In each interval, the control center
first collects transportation requests and vehicle statuses in
the data collection sub-interval. Then the AVs are assigned to
serve the transportation requests in the duty assignment sub-
interval. On one hand, the duration of each interval should
be long enough such that the communication delays will not
result in any data missing from the customers and vehicles
for scheduling. On the other hand, it should be short enough
such that the collected data can reflect the current situation
happening in that interval. In practice, the data collection sub-
interval is longer than the duty assignment one. The former
may last for a few minutes while the latter may takes a few
seconds.

Fig. 2 illustrates the operation flow of the system with re-
spect to an operating interval. As powered by various wireless
vehicular communication technologies, all AVs are connected
and can communicate with the control center instantaneously.
In this way, the control center can collect the necessary
vehicle statuses, e.g., current locations of AVs, confirmation
of serving requests, traffic congestion information, etc., in the
data collection sub-interval. Customers can also submit their
requests to the control center by any appropriate means, e.g.,

phone calls, mobile apps, etc. After the data collection sub-
interval, all the data required to perform duty assignment are
ready at the control center.

In the duty assignment sub-interval, the control center
processes the collected data and computes the duty assignment.
There may exist some unattended requests incurred from some
previous intervals because of their unsuitability in the previous
system conditions. They are merged with the newly submitted
requests and then all these requests are considered en masse.
The duty assignment further consists of two processes: admis-
sion control and scheduling. Admission control checks all the
outstanding requests and determines which requests are going
to be admitted in the current interval. The unadmitted requests
will be reserved for consideration in the next interval again.
Any invalid or inappropriate requests are also permanently
excluded in the admission control process. We compute the
travel schedules of the AVs to serve the admitted requests in
the scheduling process. If a vehicle is assigned with a request,
its schedule settled by the control center needs to satisfy the
following requirements:

1) Complete route specification: Since the vehicle is un-
manned, we need to specify the exact route so that the vehicle
can follow the route to pick the passengers of the assigned
requests up and to drop them off at the required destinations.
Moreover, the route should be short enough so that it has
sufficient fuel to complete the route. The vehicle should end
up at a refuel station to avoid breaking down in the middle of
any road segments. This can guarantee that the vehicle must
be able to refuel after completing all the assigned services.

2) Time constraints: The vehicle should be able to pick the
passengers up at a time within the service starting time window
specified in the request. Moreover, the actual ride time should
be no longer than the maximum value stated in the request.

3) Capacity constraints: When the vehicle arrives at the
pickup location, there should always be enough free seats
available to accommodate all the passengers of the request.

Admission control and scheduling are inter-related and we
will discuss their details in the subsequent sections. After
determining the result, the control center then distributes the
assignments to the corresponding AVs, which provide services
to the customers.

IV. SCHEDULING

Scheduling involves determining the following:
• the assignment of AVs to the requests;
• the routes of AVs to accomplish the assigned requests;

and
• the times by which the AVs should reach particular

locations.
Here we assume that all requests being scheduled are ad-
missible, where the admittability of a request is handled by
admission control. Thus all requests will be served by appro-
priate vehicles after scheduling. When discussing admission
control in Section V, we will explain the relationship between
admission control and scheduling.

To facilitate scheduling, we assume that all vehicles are
connected and can communicate with the control center with
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reasonably short delays. This ensures that no apparent changes
in positions happen to the AVs in each interval given in
Fig. 1. With the support of modern advanced communication
technologies, this assumption can go through. In our model,
we require that the computation of scheduling can be done in a
short period of time. This ensures the validity of the traffic data
when the vehicles traverse along their assigned routes. There
are basically two types of traffic data: the distances and travel
times of road segments. The former is time-invariant while
the latter usually changes gradually. In other words, significant
changes in travel times only take place in a timespan much
longer than the time interval.

A. Preprocessing

We schedule the AVs to accomplish the transportation
requests to achieve the minimum total operational cost in
terms of fuel costs, which are in turn measured by the total
distance traveled. The distance between any pair of locations
is invariant and we transform G(V, E) to G′(V ′, E ′) with any
shortest path algorithm, e.g., Dijkstra’s algorithm [28], where
V ′ ⊂ V is the set of locations at which we need to determine
the arrival times of the assigned AVs in order to configure
their travel schedules. V ′ includes the first locations visited
by all the vehicles (i.e., ak’s), the sources and destinations
of the requests (i.e., sr’s and dr’s, respectively), and the
locations of the refuel stations (i.e., i ∈ Ṽ). E ′ is defined
as {(i, j)|i, j ∈ V ′} such that there exists a shortest path from
i ∈ V to j ∈ V in G. For (i, j) ∈ E ′, the associated cij and
tij are the sums of costs and times, respectively, of all the
edges constituting the corresponding shortest path in G. In
the subsequent computation, we focus on G′(V ′, E ′) instead
of G(V, E). The reasons why we adopt this transformation
are two-fold: First, the number of variables needed in the
formulation can be dramatically reduced. The set V\V ′ are not
important as all conditions confining to the locations specified
by the vehicles and requests are restricted to V ′ only. In this
way, the efficiency of solving the scheduling problem can be
improved significantly. Second, this can improve the flexibility
of the schedules. Consider that AV k goes from vertices 1
to 4 and there exist two paths connecting them as, Path 1:
1→ 2→ 4, and Path 2: 1→ 3→ 4. Suppose that vertices 1
and 4 belong to V ′ but vertices 2 and 3 do not. To satisfy the
requirements imposed on k, we need to determine the times by
which k should arrive at vertices 1 and 4 only, i.e., tk1 and tk4 . If
vertices 2 and 3 are also included in the formulation and Path 1
is finally chosen, tk2 will be specified by solving the scheduling
problem and thus k needs to arrive at the vertices by tk1 , tk2 , and
tk4 , respectively. If not, only tk1 and tk4 are specified and we can
give flexibility to k of arriving at vertex 2. tk2 can be any time
between tk1 and tk4 as long as the required travel times spent on
(1, 2) and (2, 4) have been considered. This flexibility gives
room for k to respond to any instantaneous traffic incidents
which may disturb its original travel plan. This also allows k
to change to Path 2, if needed, without altering the original
travel plan.

Note that the preprocessing step can be skipped if the
scheduling problem constructed directly from G(V, E) can be

solved efficiently. However, if the preprocessing is required
to simplifiy the scheduling problem, it can be considered as
a number of result lookups. As cij’s generally refer to the
travel distances which are invariant, the results of the shortest
path computations are also invariant. In fact, before the system
operates, we can first compute the shortest path for every pair
of locations in V . When the preprocessing is triggered in an
interval, we just need to look up the pre-computed shortest
path results. Hence, the time cost of preprocessing can be
considered negligibly small.

B. Problem Formulation

We formulate the scheduling problem based on G′(V ′, E ′).
The given data for the problem parameters include the graph
G′(V ′, E ′) with costs cij’s and travel times tij’s, the set of
transportation requests R, and the set of AVs K. We define
several variables for the problem. Binary variables xkij’s are
used to indicate which connections will be traversed by the
vehicles, as

xkij =

{
1 if vehicle k traverses (i, j),
0 otherwise.

We define binary variables ykr ’s for the assignment of the
vehicles to the requests, as

ykr =

{
1 if vehicle k is assigned to request r,
0 otherwise.

For i ∈ Ṽ , binary variables gki ’s are utilized to indicate the
refuel stations at which the vehicles end their routes, as

gki =

{
1 if vehicle k ends its route at vertex i ∈ Ṽ ,
0 otherwise.

We need to specify the times and occupancy conditions at
various locations along the routes. Let tki be the time by which
k should arrive at vertex i and fki be the number of passengers
in k right before it leaves i.

We aim to construct economical schedules for the AVs and
thus we minimize the total operational cost with the objective
function as ∑

i,j∈V,k∈K

cijx
k
ij . (2)

We define a set of constraints to confine the scope of the
variables so that the requirements discussed in Section III-B
are satisfied. Each transportation request can only be served
once and thus we have∑

k∈K

ykr = 1,∀r ∈ R. (3)

Each AV will end at one of the refuel stations if it is assigned
to a request. This is specified by∑

i∈Ṽ

gki ≤ 1,∀k ∈ K. (4)

If AV k is not assigned to any request, we do not need to
determine a path for k so as the final stopping refuel station
for k. Thus it is possible to have

∑
i∈Ṽ g

k
i = 0 for some k.
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Let N+(i) and N−(i) be the sets of incoming and outgoing
neighbors of vertex i, i.e., N+(i) = {j ∈ V ′|(j, i) ∈ E ′}
and N−(i) = {j ∈ V ′|(i, j) ∈ E ′}. We model a path with a
network flow model. A path starting at ak and ending at i ∈ Ṽ
can be defined with the following:

0 ≤
∑

i∈N−(ak)

xkaki −
∑

i∈N+(ak)

xkiak ≤
∑
r

ykr ,∀k ∈ K, (5)

0 ≤
∑

j∈N+(i)

xkji −
∑

j∈N−(i)

xkij ≤ gki ,∀i ∈ Ṽ, k ∈ K, (6)

∑
j∈N+(i)

xkji =
∑

j∈N−(i)

xkij ,∀i ∈ V ′ \ Ṽ ∪ {ak|k ∈ K}. (7)

Eq. (5) defines for the starting vertex of k, where a starting
vertex has one unit of net outgoing flow.

∑
r y

k
r specifies if a

path needs to be defined for k. If there are no requests assigned
to k,

∑
r y

k
r becomes zero and ak is not the starting vertex of

any paths for k. Similarly, (6) defines for the destination vertex
of k and the exact vertex i ended by k is indicated by gki . If k
ends at i ∈ Ṽ , (6) will allow i to have one unit of net incoming
flow for k. For other vertices, (7) sets the conversation of flow
by equalizing the corresponding incoming and outgoing flows.

If request r is assigned to vehicle k, k needs to pass through
the pickup location sr of r. It is equivalent to having positive
outgoing flow for k at sr as∑

i∈N−(sr)

xksri ≥ y
k
r ,∀r ∈ R, k ∈ K. (8)

Similarly, k needs to pass through the dropoff point dr of
request r when r is served by k. This requires positive
incoming flow for k at dr as∑

i∈N+(dr)

xkidr ≥ y
k
r ,∀r ∈ R, k ∈ K. (9)

Note that specifying incoming flow for sr is not sufficient as it
is possible to have zero incoming flow when k begins its path
at sr exactly. Similarly, it is not sufficient to specify outgoing
flow for dr as it is possible to have zero outgoing flow when
k ends its path at dr.

No matter where vehicle k goes, it cannot travel continu-
ously longer than its operational time limit specified by T̃k.
Moreover, it needs to take at least t0k in order to reach the
initial vertex of its path. Hence we have

t0k ≤ tki ≤ T̃k,∀i ∈ V ′, k ∈ K. (10)

Let M be a sufficiently large positive number. When vehicle
k traverses edge (i, j), the time at j should be larger than or
equal to the time at i together with the travel time on (i, j),
i.e., tij . This can be specified by

tkj ≥ tki + tij −M(1− xkij),∀k ∈ K, i, j ∈ V ′. (11)

When vehicle k is assigned to request r, the actual ride time
to reach dr from sr should be no larger than the maximum
ride time Tr specified by r, i.e.,

tkdr − t
k
sr ≤ Tr +M(1− ykr ),∀r ∈ R, k ∈ K. (12)

If request r is served by vehicle k, k should arrive at sr
within the service starting time window [er, lr] specified by r.
This can be expressed as

er −M(1− ykr ) ≤ tksr ≤ lr +M(1− ykr ),∀r ∈ R, k ∈ K.
(13)

Passengers being served occupy seats and the capacity limits
of all vehicles should be satisfied at all times. So we have

0 ≤ fki ≤ Qk,∀i ∈ V ′, k ∈ K. (14)

At ak, some passengers induced from R̃k may get off k
and new passengers may get on k from other requests. The
occupancy conditions of the AVs at their initial vertices ak’s
are given by

fkak ≥
∑

r|sr=ak

qry
k
r −

∑
r|dr=ak

qry
k
r ,∀k ∈ K. (15)

When k traverses from i to j along (i, j), vertex j may be
the pickup locations of some requests and dropoff locations of
some other requests. The relationship between the occupancy
conditions of AV k at i and j can be specified as

fkj ≥ fki −M(1− xkij) +
∑

r|sr=ak

qry
k
r −

∑
r|dr=ak

qry
k
r , (16)

∀i, j ∈ V ′, k ∈ K.

When an AV reaches a refuel station, all requests assigned
to it should have been settled and no passenger should be
accompanied to the end of the route. This is described by

fki ≤M(1− gki ),∀i ∈ Ṽ , k ∈ K. (17)

Recall that there are two kinds of requests which have
already been assigned to the AVs before the current scheduling
interval, i.e., Rk = R̃k ∪ Rk. As a (nearly) real-time appli-
cation, with updated information, we may further improve the
system performance by revising the already assigned requests.
For those requests currently being served, e.g., r ∈ R̃k with
the passengers sitting in k, we can consider those r’s as
“new” requests starting the service at the the starting node
ak by setting sr = ak and affirming ykr = 1. As k has been
serving r by following a previously determined schedule, we
can update its Tr by shortening the elapsed time. The service
starting time window is no longer important and thus we set
er = −∞ and lr = +∞. There is no change to qr. For
those requests Rk’s which have been previously assigned to
k but not yet been served, we may reschedule r ∈ Rk with
other AVs if it can result in lower cost. As the passengers do
not concern about which vehicle would eventually provide the
service, it may be more efficient to re-allocate those r’s in
Rk to other more appropriate vehicles with lower operational
cost. This enhances the flexibility of the system. As a whole,
the scheduling problem is defined as

Problem 1 (Scheduling):

minimize (2)
subject to (3)− (17)

over xkij ∈ {0, 1}, ykr ∈ {0, 1}, gkl ∈ {0, 1}, tki ∈ R+,

fki ∈ Z+,∀i, j ∈ V ′, l ∈ Ṽ, r ∈ R, k ∈ K.
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Problem 1 has a linear objective function and linear equality
and inequality constraints. Some of its variables are binary
while the rest are real. Thus the scheduling problem is a
mixed-integer linear program (MILP). Although the prepro-
cessing step discussed in Section IV-A helps simplify the
problem, the numbers of variables and constraints also grow
with the sizes of R and K. As those invalid requests have been
removed by admission control (discussed in Section V), this
MILP is always feasible and all requests must be served. As
long as all cij’s are positive, the solution of Problem 1 does
not result in zero cost and the schedule without serving any
requests will never be a solution.

C. Complete Schedule Construction

Since the vehicles are unmanned, we need to provide
complete instructions about the paths and schedules so that
they know when and where they should go in order to
provide services to the customers. Solving the MILP gives the
solutions for xkij’s, ykr ’s, bk’s , tki ’s, and fki ’s. As being binary
variables, the results of xkij’s and ykr ’s are unambiguous. The
latter tells which vehicles are assigned to the requests. The
former explains the route of each k in G′ starting at ak and
ending at one of the refuel stations. The paths determined
in G′ in turn infer the corresponding complete routes in G.
Recall that we have determined the shortest path from i to
j in G corresponding to the edge (i, j) ∈ E ′ . By inserting
the shortest paths for every pair of adjacent vertices along the
paths based on G′, the complete routes in G can be derived
accordingly.

Note that (10)–(13) define the scope of tki ’s in the form
of inequality. The resulting tki ’s make feasible time schedules
but may not be specific enough leading to ambiguity. For
example, if the arrival of k at location i at any moment in
[t′, t′′] is feasible, a reasonable way is to set tki = t′ and this
enhances the flexibility for the later scheduling intervals. To
construct the schedule of k, we examine the path computed
from xkij’s. For the first vertex, we set tkak = t0k. For any
subsequent vertices, says from i to j, we can add the travel
time on edge (i, j) to the settled time at i to obtain the settled
time at j, i.e., tkj = tki + tij . If vertex j induces a request, we
need to fulfill its service starting time window and thus we
have tkj = max{tki + tij , er}.

Similarly, (14)–(17) also confine the occupancies of the
vehicles at various locations with inequalities. The exact seat
conditions cannot be told from the resulting fki ’s. Usually, we
only concern about the seat conditions at the customer pickup
and dropoff points, i.e., sr’s and dr’s. We can examine the
route computed from xkij’s again and determine the occupancy
conditions. For example, k goes from i to j on (i, j). If j is
the service starting location of request r, we add the number
of seats required for r to the occupancy of k at i to get its
occupancy at j, i.e., fkj = fki +qr. If j is a service destination
location instead, we subtract the seats taken by r from the
occupancy of k at i to get its occupancy at j, as fkj = fki −qr.
In this way, the complete schedules of the vehicles with duty
assigned can be determined and the vehicles just need to follow
the schedules to accomplish the services.

V. ADMISSION CONTROL

Recall that, in Section IV, all requests submitted for
scheduling are assumed to be admissible and need to be served.
In this section, we investigate the admission control problem.
We first formulate the problem and then study the variations in
the presence of traffic congestion and no-show of passengers.

A. Problem Formulation

Admission control is responsible for determining a set of
requests suitable for scheduling. In other words, after admis-
sion control, we will produce a subset Ř ⊂ R for subsequent
scheduling, where R is the set of all available requests and Ř
will be settled by appropriate AVs in scheduling. However, to
judge if a particular request r is admissible, we need to check
not only its feasibility but also its profitability, i.e., whether
serving r will induce a positive net profit. Determining the
net profit from r involves its induced cost, which is regulated
through scheduling. Hence there is no clear precedence rela-
tionship between scheduling and admission control and these
two processes should be considered simultaneously.

We can interpret the requests and AVs as the demand and
supply of transportation services, respectively, and then the
constraints of Problem 1 define the scope of matching between
the demand and supply. The constraints can be satisfied more
easily with larger K and smaller R. Practically, the size of K
is generally fixed as the system would not suddenly employ
more AVs into the fleet or many AVs become out of service all
of a sudden. However, the requests submitted are absolutely
external from the system; the system can neither forbid the
customers from submitting requests nor modify the attributes
in the requests to match the conditions of AVs. In fact, just
a single inappropriate request (e.g., a request with very short
tolerable ride time) can make Problem 1 infeasible and the
scheduling collapse. To avoid this, the system should perform
admission control by screening out any inappropriate requests
before undergoing the scheduling (see Fig. 2). Consider that
entertaining a request results in revenue. Although the sys-
tem cannot modify the submitted requests, it has the right
to dismissing any requests by sacrificing the corresponding
revenue. Admission control manipulates R with the following
objectives: 1) Produce a subset of requests Ř ⊂ R so that the
scheduling process can be performed, i.e., Problem 1 is made
feasible with Ř; 2) Maximize the profit incurred.

Consider that we admit Ř for scheduling with Problem 1,
which can be re-written as

minimize φ(α) (18a)

subject to α ∈ Z(Ř), (18b)

where α , {xkij} ∪ {ykr } ∪ {gki } ∪ {tki } ∪ {fki }, φ(α) ,∑
i,j∈V,k∈K cijx

k
ij , and let Z(Ř) be the feasible region of

Problem 1 with respect to Ř. Let ρr be the revenue made
when admitting r ∈ R and define

zr =

{
1 if we admit r ∈ R for scheduling,
0 otherwise.

We also define the admission function σ(R, [zr]r∈R) which
returns Ř ⊂ R based on zr such that r ∈ Ř if zr = 1. The
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total profit is the difference between the total revenue and total
cost, i.e.,

∑
r∈R ρrzr−φ(α). Then we formulate the admission

control problem as
Problem 2 (Admission Control):

maximize Φ(R, [zr]r∈R) =
∑
r∈R

ρrzr − φ(α) (19a)

subject to Ř = σ(R, [zr]r∈R), (19b)
zr = 1,∀r ∈ Rk, k ∈ K, (19c)

α ∈ arg min{φ(α) : α ∈ Z(Ř)}, (19d)

over α, Ř ∈ R, zr ∈ {0, 1},∀r ∈ R, (19e)

where (19c) ensures that those requests admitted in the previ-
ous operating intervals will still be admitted in the current
interval. We cast admission control as a bilevel optimiza-
tion problem, which consists of an upper- and a lower-level
optimization. Φ is the upper-level objective function with
upper-level variables Ř and zr’s. φ represents the lower-level
objective function with lower-level variable α. Eq. (19d) is
in fact (18), and thus, we cast Problem 1 as a constraint
of Problem 2. The upper-level optimization is to manipulate
the whole set of requests R and determine Ř such that Ř
can maximize the total profit. The lower-level optimization is
to schedule the AVs to serve the set of admissable requests
Ř so that the retained cost is the lowest. The two levels
of optimization are inter-related; the upper level requires the
result of the lower level, i.e., α, in order to get Ř, while the
lower level needs the result from the upper level, i.e., Ř, in
order to output α. Note that if the upper level produces Ř
which makes Z infeasible, the resulting α will return +∞ for
the objective function of (19d), which will in turn make the
objective function (19a) retain −∞.

Bilevel optimization is in general difficult to solve. A bilevel
problem with a linear objective function and linear constraints
is NP-hard [29]. As seen from (19), we are manipulating
discrete variables in the problem. As classical methods for
bilevel optimization usually assume smoothness or convexity
[30], those classical methods are not applicable to Problem 2.
As inspired by [31], [32], we decide to tackle the problem with
an evolutionary heuristic approach. Evolutionary approaches
are commonly applied to bilevel optimization problems in
transport science. For example, in [33], Differential Evolution
(DE) is employed to address the optimal toll problem, which is
about setting polls to control congestion, and the road network
design problem, which determines the capacity enhancements
of network facilities. In [34], GA is applied to the transit
road space priority problem, which optimizes the system by
reallocating the road space between private car and transit
modes. We will design a GA-based algorithm to solve Problem
2. Before discussing the details of the algorithm, we define
admissibility and give some analytical results for Problem 2,
which can help design the algorithm in the next section.

Definition 1 (Admissibility): A set of requests Ř is admis-
sible if [zr]r∈R produces Ř, which results in finite profit, i.e.,
Φ(R, [zr]r∈R) > −∞.

Theorem 1: We have the following results for admissibility:
1) Consider that a subset of requests Ř ⊂ R are admissible.

Let P(Ř) be the power set of Ř. Any Ř′ ∈ P(Ř) is also

admissible.
2) For any singleton {r} ⊂ R, if {r} is not admissible, any

superset Ř ⊃ {r} are also non-admissible.
3) Consider subsets of requests, Ř1, Ř2 ⊂ R, and subsets

of vehicles Ǩ1, Ǩ2 ⊂ K. Suppose Ǩ1 ∩ Ǩ2 = ∅. If Ř1

and Ř2 are admissible by Ǩ1 and Ǩ2, respectively, then
Ř1 ∪ Ř2 are also admissible.
Proof: For Statement 1, Constraint (19b) defines Ř,

which is an input of Constraint (19d). It is sufficient to show
that the removal of any r ∈ Ř will not make (19d) infeasible if
the participating AVs can serve all the requests in Ř. Suppose
that r is removed from Ř and AV k would have assigned to
serve r if r had been admitted. k can still follow the path as
if r is present. Hence (19d) is still feasible for Ř \ r.

For Statement 2, a non-admissible r means that it is
impossible to arrange an AV to entertain r. We will never
be able to provide services to a set of requests containing r
as its component r can never be served.

For Statement 3, we can represent Ř1 ∪ Ř2 by three non-
overlapping sets Ř1\(Ř1∩Ř2), Ř2\(Ř1∩Ř2), and Ř1∩Ř2.
Since Ǩ1 and Ǩ2 are mutually exclusive, Ř1 \ (Ř1∩Ř2) and
Ř2 \ (Ř1 ∩ Ř2) can be served by Ǩ1 and Ǩ2 simultaneously.
Each r ∈ Ř1 ∩ Ř2 can be admitted by either k ∈ Ǩ1 or
k ∈ Ǩ2.

Lemma 1: The system will not make negative profit. That
is, for any R, Problem 2 must have at least one feasible
solution whose objective function value is non-negative.

Proof: We separate R into the previously admitted and
newly received requests, i.e., {Rk} and R \ {Rk}.

For the newly received requests, we can always set zr =
0,∀r ∈ R\{Rk}. Then (19b) gives Ř = ∅. Eq. (19d) returns
α with φ(α) = 0 as no requests need to be served and thus
no AVs have been used to provide service. Hence we have∑
r∈R\{Rk} ρrzr − φ(α) = 0.
For the previously admitted requests, since they are admitted

in some previous admission control processes, they must incur
non-negative profit when they were admitted as new requests
before. Otherwise, we would not have admitted them at the
first place.
Lemma 1 implies that Problem 2 must be feasible.

Theorem 2: Consider two subsets of requests Ř and Ř′
with Ř ⊂ Ř′ ⊂ R. If both Ř and Ř′ are admissible, then
Ř′ will not be less profitable than Ř, i.e., sup Φ(Ř, {zr|r ∈
Ř}) ≤ sup Φ(Ř′, {zr|r ∈ Ř′}).

Proof: Suppose sup Φ(Ř, {zr|r ∈ Ř}) >
sup Φ(Ř′, {zr|r ∈ Ř′}). We write Ř′ = Ř ∪ (Ř′ \ Ř). Then
we have

sup Φ(Ř′, {zr|r ∈ Ř′})
= sup Φ(Ř, {zr|r ∈ Ř}) + sup Φ(Ř′ \ Ř, {zr|r ∈ Ř′ \ Ř}).

By Lemma 1, sup Φ(Ř′ \ Ř, {zr|r ∈ Ř′ \ Ř}) has a value
larger than or equal to zero. This induces a contradiction.
Theorem 2 implies that entertaining more requests will not
reduce the amount of profit made.

B. Variations
Here we investigate how traffic congestion and no-show

of paasengers impact on admission control (and scheduling).
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Basically, we will see that under these circumstances, the
proposed admission control and scheduling mechansims can
still be applied but we may need some additional minor
arrangements to handle various situations.

1) Traffic Congestion: Traffic congestion has direct impact
on the travel time tij for some (i, j) ∈ E and subsequently
affects the admissibility of requests. Recall that the system
operates in a fixed-interval basis and each interval generally
lasts for a few minutes (see Section III-B). We basically
assume that, within an interval, the parameters, including the
travel times, are constant or with very small changes such that
the results of admission control completed for that interval
are still valid. If the travel times are relatively fast changing,
we need to shorten the duration of the intervals to make
the assumption valid. On the other hand, if the travel times
are slowly varying, we may lengthen the durations to reduce
the computation burden. Hence, the duration of the operating
intervals depends on the traffic conditions of the deployed
service area.

Now consider that tij in the current interval has been
updated such that its value is different from that used in
the previous interval. There are three cases for the possible
influence: (i) tij does not involve in Rk for all k; (ii) tij
involves in Rk for some k; and (iii) tij involves in R̃k for
some k. For Case (i), since tij has not been used to serve any
requests, its change does not affect the schedules of any AVs.
Hence, nothing needs to be done solely based on tij . For Case
(ii), although tij has been used to determine the schedules of
some AVs, the involved requests have not been served yet.
We can simply consider these requests as newly submitted
requests and perform admission control and scheduling with
them again. For Case (iii), tij affects those schedules which are
being implemented by some AVs. In the subsequent intervals,
the scheduling process will see if the road segment (i, j) can
be avoided by determining other shortest paths. If not, as
the passengers are being served, it may not be appropriate
to ask them to shift to other vehicles for their journeys and
nothing can be done further operationally. However, we may
compensate the passengers in the marketing perspective, e.g.,
by issuing cash coupons for future rides.

2) No-show of Passengers: No-show refers to the situation
that some or all passengers of a paricular request are absent
at the scheduled pickup time. If a passenger cannot arrive at
the pickup location on time, this will be considered as no-
show. If some but not all passengers are absent, the schdule
of the designated AV is unaffected but fewer seats are required.
These unused seats can be released to serve other appropriate
requests in the later intervals. If all passengers are absent, the
“resources” allocated to the request can be released in the
subsequent intervals right after its original pickup time. This
gives the AV more flexibility in time and occupancy to serve
future requests. In the business perspective, there may exist
some penalty policies to discourage such activities.

VI. GENETIC-ALGORITHM-BASED SOLUTION METHOD

In this section, we propose a solution method to tackle
Problem 2. We adopt a GA-based framework to structure the

method. Some of its components are designed based on the
analytical results discussed in Section V.

A. Working Principle of Evolutionary Algorithms

Evolutionary Algorithms (EAs) refer to a class of opti-
mization algorithms, whose designs are inspired by various
natural phenomena. Examples include GA [35], DE [36], and
Chemical Reaction Optimization (CRO) [37]. Different EAs
generally have similar working principles: An EA samples the
solution space of the problem iteratively and tries to locate a
global optimum after examining a limited number of candidate
solutions in the solution space. In each iteration, with some
operators, it generates a population of candidate solutions
based on those obtained from the previous iterations and their
corresponding objective function values. It tends to converge to
the global optimum along the iterations and it terminates when
a stopping criterion is matched. Different EAs have different
designs of their operators. For example, GA is designed based
on the ideas of natural selection in genetics while CRO mimics
the nature of chemical reaction processes. Unlike most of the
traditional optimization approaches, EAs require the problem
to be neither convex nor differentiable. In each algorithm run,
they only need to sample a number of candidate solutions and
evaluate their solution qualities with the objective function.
Hence, a search with an EA usually incurs many objective
function calls. As discussed, EAs have been shown effective
in solving bilevel optimization problems in transport science.
We are going to adopt the well-established GA framework
to facilitate the design of a method which can return good
solutions for Problem 2 in a practical sense.

B. Distributed Scheduling

When an EA is employed to address Problem 2, many
candidate solutions will be generated. To evaluate the quality
of a particular candidate solution, we need to compute (19a)
once, which also needs to examine (19d) one time. In other
words, a single run of EA requires to solve Problem 1
many times. When the lower-level optimization is simple,
the computational burden of solving it many times may still
be acceptable. However, this is not the case for Problem 1,
where the required numbers of variables and constraints grow
exponentially with the quantities of transportation requests and
serving AVs. This implies that we need to a more effective way
to solve Problem 1, in order to tackle Problem 2.

Consider that Řk ⊂ R is the subset of requests assigned
to vehicle k. Suppose that we know the distribution of the
requests to the vehicles, i.e., Řk for all k. Since each request
is only served by one vehicle, we have Řk ∩ Řl = ∅, for any
k, l ∈ K, k 6= l, and

⋃
k∈K Řk = R. When given Řk, we

consider the following problem:
Problem 3 (Scheduling Subproblem for vehicle k):

maximize
∑
i,j∈V′

cij x̊
k
ij (20a)

subject to
∑
i∈Ṽ

g̊ki ≤ 1, (20b)
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0 ≤
∑

i∈N−(ak)

x̊kaki −
∑

i∈N+(ak)

x̊kiak ≤
∑
r

ẙkr ,

(20c)

0 ≤
∑

j∈N+(i)

x̊kji −
∑

j∈N−(i)

x̊kij ≤ g̊ki ,∀i ∈ Ṽ,

(20d)∑
j∈N+(i)

x̊kji =
∑

j∈N−(i)

x̊kij ,∀i ∈ V ′ \ Ṽ ∪ {ak}

(20e)∑
i∈N−(sr)

x̊ksri ≥ ẙ
k
r ,∀r ∈ Řk, (20f)

∑
i∈N+(dr)

x̊kidr ≥ ẙ
k
r ,∀r ∈ Řk, (20g)

t̊0k ≤ t̊ki ≤ T̃k,∀i ∈ V ′, (20h)

t̊kj ≥ t̊ki + t̊ij −M(1− x̊kij),∀i, j ∈ V ′ (20i)

t̊kdr − t̊
k
sr ≤ Tr +M(1− ẙkr ),∀r ∈ Řk, (20j)

er −M(1− ẙkr ) ≤ t̊ksr ≤ lr +M(1− ẙkr ),∀r ∈ Řk,
(20k)

0 ≤ f̊ki ≤ Qk,∀i ∈ V ′, (20l)

f̊kak ≥
∑

r|sr=ak

qrẙ
k
r −

∑
r|dr=ak

qrẙ
k
r , (20m)

f̊kj ≥ f̊ki −M(1− x̊kij) +
∑

r|sr=ak,r∈Řk

qrẙ
k
r

−
∑

r|dr=ak,r∈Řk

qrẙ
k
r ,∀i, j ∈ V ′, (20n)

f̊ki ≤M(1− g̊ki ),∀i ∈ Ṽ , (20o)

over x̊kij ∈ {0, 1}, ẙkr ∈ {0, 1}, g̊kl ∈ {0, 1}, t̊ki ∈ R+,

f̊ki ∈ Z+,∀i, j ∈ V ′, l ∈ Ṽ, r ∈ Řk. (20p)

Solving Problem 3 only allows us to obtain the serving path,
the schedule to reach various locations along the path, and
the capacity conditions of vehicle k for serving the requests
indicated by Řk. Problem 3 looks similar to Problem 1 but
indeed much simpler. It does not contain (3) and it manipulates
fewer variables as those related to vehicles other than k are
not included. It also possesses fewer constraints because of
fewer variables.

For simplicity, similar to (18), we also write the solution,
objective function, and the solution space of Problem 3 as α̊k,
φk(α̊k) and Zk, respectively.

Theorem 3: When given Řk ⊂ R,∀k ∈ K, such that Řk ∩
Řl = ∅, for any k, l ∈ K, k 6= l, and

⋃
k∈K Řk = R, solving

Problem 3 for all k ∈ K is equivalent to solving Problem 1,
i.e.,

inf
α∈Z

φ(α) =
∑
k∈K

inf
α̊k∈Zk

φk(α̊k),

and xkij = x̊kij , y
k
r = ẙkr , gkl = g̊kl , tki = t̊ki , and fki = f̊ki ,

∀i, j ∈ V ′, l ∈ Ṽ, r ∈ Řk, k ∈ K.
Proof: When given such Řk ⊂ R,∀k ∈ K, we can

construct ykr ,∀r ∈ R, k ∈ K, such that (3) holds. In this
way, we can remove (3) from Problem 1. Without Constraint
(3), the objective function and the rest of the constraints of

Problem 1 become separable in terms of k: (2) gives the sum
of costs spent on the vehicles; Eqs. (4)–(9) specify the paths
traversed by the vehicles, each of which are independent; Eqs.
(10)–(13) confine the time requirements at various locations
along the vehicular paths; Eqs. (14)–(17) limit the passenger
capacity conditions along the vehicular paths. If we group the
terms of (2) and the constraints (4)–(17) for each k, we will
have |K| problems, each of which is given by (20).

Theorem 3 states that when the assignment of requests to
the vehicles is known, solving the |K| individual schedul-
ing subproblems distributedly can retain the solution of the
original scheduling problem. Note that this result is dedicat-
edly developed based on some characteristics of the problem
formulations and it generally cannot be applied to the other
scheduling problems. Unlike general distributed optimization
[38], [39], our result here does not require techniques like
message-passing. As a result, the |K| subproblems can be
solved by |K| computing units distributedly. Assuming that
the vehicles are connected through advanced vehicular com-
munication technologies at all times, an obvious option of
the computing unit is the AV. Thus, by Theorem 3, if we
can assign each vehicle with the requests it needs to serve,
each vehicle can determine a feasible path per se to serve
the assigned requests with the lowest cost by solving Problem
3 concurrently. However, when the communications between
a particular AV and the control center are interrupted, the
corresponding subproblem can be delegated to an unoccupied
computing unit at the control center or even to the cloud
instead. The computed scheduling result can be returned to
the AV when its communications have been resumed.

C. Algorithmic Components
Since GA is one of the most popular EAs, we adopt a

GA-based design to address the admission control problem.
GA generates a sequence of candidate solutions using opera-
tions inspired by natural evolution, e.g., inheritance, selection,
crossover, and mutation. Here we introduce various algo-
rithmic components before discussing the overall algorithmic
design:

1) Chromosome: A chromosome specifies a candidate so-
lution of Problem 2. While the lower-level optimization is
handled by a standard MILP method, our GA approach
is mainly used to handle the upper-level optimization. A
chromosome is represented by a 1 × |R| binary vector
z = [z1, . . . , zr, . . . , z|R|], together with a vehicle assignment
vector κ = [κ1, . . . , κr, . . . , κ|R|], where κr represents the
vehicle assigned to r if zr is of unity. Note that the introduction
of κ is the trick to carry out distributed scheduling discussed
in Section VI-B. Although κ can be determined in (19d) if we
apply the original formulation of scheduling (18), there is no
harm in manipulating κ together with z in the chromosome
level. This makes distributed scheduling feasible and the
benefit of computation time saving will be clear in Section
VII-A. During the course of search, we maintain a population
of Npop chromosomes.

2) Fitness Evaluation: We evaluate the fitness of each
chromosome in a distributed manner. The fitness evaluation
process is illustrated in Fig. 3 and it consists of five steps:
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(1) Grouping requests in Řk: Each chromosome i contains
zi and κi. For those r’s with zir = 1, based on κi, at
the control center, we can divide R into |K| groups, i.e.,
Řk,∀k ∈ K.

(2) Request information distribution: For each k, the control
center transmits Řk to AV k, e.g., via VANET.

(3) Distributed scheduling: Modern vehicles are generally
equipped with computers and thus each k can solve the
individual Problem 3 simultaneously with other vehicles.
Those AVs with empty Řk assigned can skip the com-
putation.

(4) Individual cost return: The individual vehicles transmit
the computed costs of scheduling to the control center,
e.g., via VANET.

(5) Fitness computation: Based on Theorem 3, the cost
associated to the chromosome is the sum of the ob-
jective function values of Problem 3 determined by the
individual AVs, i.e., φ(α) =

∑
k∈K φk(α̊k|κr = k).

Then the fitness of the chromosome can be computed
as Φ(z, κ) =

∑
r∈R ρrzr −

∑
k∈K φk(α̊k|κr = k).2

Note that Φ(z, κ) becomes −∞ if and only if any request r
with zr = 1 is non-admissible. The advantages of undergoing
the above process are three-fold:

(i) The computation time can be dramatically reduced.
Among all the computation components in the algorithm,
scheduling is the most computationally demanding. If
each vehicle can compute their own schedules, all the
individual scheduling subproblems can be solved simul-
taneously.

(ii) All entities need to manage the necessary data only. ρr
is the result of the deal between the customer and the
control center. With distributed scheduling, the usage of
ρr is restricted to the control center and no vehicles are
involved. Moreover, after a vehicle solves its scheduling
subproblem, its computed schedule is stored in that
vehicle only, but not the control center nor any other
vehicles.

(iii) The amount of communications keeps minimal. In each
evaluation, the only data needed to be communicated
between the control center and the vehicles are the re-
quests assigned to the individual vehicles (in Step 2) and
the computed scheduling costs (in Step 4). The system
does not require a sophisticated communication system
to satisfy the communication requirements.

3) Tabu List: We construct a tabu list τr for each request
r to reduce the size of the search space. τr contains those
vehicles k which cannot serve r. As implied by Theorem 1, if a
request r is not admissible by k, any set of requests containing
r will also not be admissible by k. In other words, we will
never need to consider those k in τr when configuring κr.
Unlike Tabu Search [40], we do not need to update the tabu

2By abuse of notation, we write Φ(z, κ) = Φ(R, [zr]) to emphasize the
structure of the chromosome.

... ...
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Fig. 3. Fitness evaluation process.

lists during the course of search.3 τr’s are only constructed in
the initialization phase of the algorithm and utilized in both
initial population generation and mutation.

4) Selection: In each generation, a fraction Xrate of Npop
survives and the rest of (1 − Xrate) will be replaced by the
children bled in the processes of crossover. We apply weighted
random pairing [41] to select the survived chromosomes to
perform crossover.

5) Crossover: Crossover is an operator in GA to achieve
intensification. In each operation, it manipulates two parent
chromosomes to breed two offspring. The offspring inherit
the merits from their parents and thus they tend to have better
fitness values, i.e., higher objective function values of (19a).
By Theorem 2, a larger set of requests will improve the fitness.
Also based on Statement 3 of Theorem 1, we manipulate
the chromosomes with crossover as follows. Parents i and
j reproduce offspring i′ and j′. i′ admits all those r’s as i
does with the same set of vehicles. If there is any k which
is adopted in j but not in i, we randomly adopt one such k
in i on those r’s which are not admitted in its parent i. We
produce an offspring j′ dominantly inherited by the parent j
similarly. In this way, the offspring are likely to admit more
requests resulting in higher fitness.

6) Mutation: Mutation exhibits diversification to prevent
the algorithm from getting stuck in local optimums and we
basically follow [41] to design mutation. We control the
amount of mutation with a mutation rate µ ∈ [0, 1]. We
apply elitism to the chromosome with highest fitness in the
population and only the rest undergo mutation. A mutation
occurs on bit zir of chromosome i and the number of mutations

3As discussed in Section III-B, admission control is completed in the duty
assignment sub-interval once in each operating interval. Such sub-interval is
short so that it is unlikely to have great changes to the positions of the AVs.
Thus the tabu lists can be assumed to be static throughout the admission
control process happened in each interval. However, the tabu lists may need
to be updated in the next interval as the vehicles may have moved to other
positions.
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taken place in each generation is µ× (Npop− 1)× |R|. If we
perform mutation on zir, we toggle zir. If zir is changed from
0 to 1, we randomly assign κr a k which is not in the tabu
list τr. If zir is changed from 1 to 0, we set κr = 0. To
further enhance diversification, besides the elite chromosome,
each chromosome has a probability of γ to be replaced by a
random chromosome.

D. Algorithmic Design

We basically follow [41] to design the algorithm, which
consists of three stages: initialization, iterations, and the final
stage. The flow chart of the algorithm is given in Fig. 4. We
maintain the chromosomes with feasible candidate solutions
during the whole course of search.

1) Initialization: In initiation, we define all the system
parameters, e.g., Npop and Xrate, and construct the tabu
list τr for each r. Then we create the initial population of
chromosomes, each of which is assigned with one random
request r associated with a vehicle not in its tabu list τr. This
can ensure all chromosomes are initially feasible. We evaluate
the fitness of the initial chromosomes before the iterations
start.

2) Iterations: In each iteration (or called generation), we
manipulate the candidate solutions held by the chromosomes.
Before any modification, we back up the feasible candidate
solutions stemmed from the previous generation. Then we
perform selection, crossover, and mutation to manipulate the
chromosomes, followed by fitness evaluations. If any chromo-
some possesses an infeasible solution, we retain its original
feasible one from the backup. We check the stopping criteria to
see if we continue with the next iteration or proceed to the final
stage. One commonly used stopping criterion is termination
after undergoing a certain number of generations.

3) Final Stage: We output the best solution found in this
stage.

In general, the solution method is implemented in a central
manner at the control center. When evaluating the fitness of

the chromosomes, the scheduling tasks are distributed to the
vehicles based on distributed scheduling.

VII. PERFORMANCE EVALUATION

We perform a series of simulations to evaluate different
aspects of the algorithm. We consider a set of real taxi service
data from [42], containing the pickup and dropoff times, and
pickup and dropoff locations of a number of taxi trips served
in the City of Boston. We sample 100 trip data whose pickup
times happened within a period of 30 minutes in a day of
2012 as the transportation request pool. Since no existing
transport can offer flexible shared-ride services as our system
does, we adopt the data for our system as follows: the earliest
service starting time as the pickup time of the data, the latest
service starting time as the pickup time plus 15 minutes, the
maximum ride time as the actual trip time times 1.5, random
seat occupancy in the range of [1, 5], and 50% of the actual
taxi fare as the charges. The driving distance and travel time
between any two locations are determined through the Google
Maps API. Based on [43], we assume that the fuel cost is
16 cents per mile. We select five gas stations in Boston as
the refuel stations for AVs. Each vehicle is assumed to be
equipped with five seats and we randomly place the vehicles
in the city.

We perform the simulations on a computer with Intel Core
i7-2600 CPU at 3.40 GHz and 32 GB of RAM. They are
conducted in the MATLAB environment, where the scheduling
problem is addressed with YALMIP [44] and CPLEX [45].
We follow [41] to set the GA parameters: Npop = 16,
Xrate = 0.5, and µ = 0.15, and we set γ = 0.5. Recall
that, to operate the system for a period of time, we need
to do admission control for each operating interval within
the period. To perform admission control for an interval, we
need to undergo a number of scheduling processes. We try to
evaluate the performance of the algorithm incrementally from
the smallest module. First we evaluate the computation time
for scheduling. In the second test, we evaluate the performance
of the algorithm on solving the admission control problem. At
last, we examine the profits made when the system operates
continuously for a period of time.

A. Computation Time for Scheduling

As Problem 1 is an MILP, we assume that CPLEX can
return the optimal solution if the problem is tractable. So we
focus on the computation time. When we look at Problem
1, the numbers of variables and constraints grow exponen-
tially with the problem size in terms of the quantities of
transportation requests and vehicles. Hence the computation
time for scheduling grows very fast with the problem size. For
demonstrative purposes, we focus on small problem instances.
We randomly generate 9 cases from the Boston dataset: three
cases with three requests, three with four requests, and three
with five requests. All the cases are served with five vehicles.
Recall that we have two main ways to address the scheduling
problem: (1) by solving Problem 1 as a whole and (2) by
solving a number of Problem 3 collectively. For the latter,
we can further arrange the subproblems to be solved (2.1)
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Fig. 5. Data processing, communications, and computation of the three
approaches in scheduling.

en masse at the control center or (2.2) separately at the
individual vehicles. Thus, there are three approaches in total
and we call (1), (2.1), and (2.2) the centralized, cumulative,
and distributed approaches, respectively. The data processing,
communications, and computation of the three approaches
are depicted in Fig. 5. For the centralized and cumulative
approaches, all data need to be collected and gathered at the
control center from the passengers and vehicles for processing.
After scheduling, the computed schedules will be distributed
to the corresponding vehicles. For the distributed approach,
the vehicular data are only maintained at the problem solv-
ing agents, i.e., that vehicles per se, before and after the
corresponding subproblems being solved. After scheduling,
the resulting costs are transmitted back to the control center
for the subsequent scheduling. When different numbers of
vehicles are involved, the computation time can be noticeably
different. To see this, for each of Cases I-IX, we examine all
possible combinations of z and κ (i.e., candidate solutions
for chromosomes) and check their computation times for
scheduling. We consider the time spent on communications
negligible as it is usually much smaller when compared with
the computation time. Fig. 6 shows the average computation
times for feasible schedules with different numbers of vehicles
involved in each case. Since the computation time of the
centralized approach grows too fast (e.g., 8.30 s, 69.25 s,
and 6.72 × 103 s for 3–5 requests, respectively), the time
changes for the cumulative and distributed approaches would
have become indistinguishable if the centralized data had also
been displayed. For clearer representation, we skip the results
for the centralized approach in Fig. 6. In Fig. 6, some bars
are missing because no feasible schedule can be computed
with particular numbers of vehicles involved. For example,
one request in Case III cannot be scheduled with any vehicle,
and thus, no results are shown for three vehicles for Case
III. Generally, for the cumulative approach, the computation
time grows linearly with the number of vehicles involved
as more subproblems with similar size need to be solved.
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Fig. 6. Computation times for scheduling.

For the distributed approach, the computation times with
different vehicle sizes are more or less similar because the
involved subproblems can be handled at different vehicles
simultaneously. While the computation time of the centralized
approach grows exponentially with the number of requests,
that of the cumulative approach increases at a much slower rate
and that of the distributed approach is approximately steady.
Hence, it is not feasible to adopt the centralized approach. If
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the vehicles have sufficient communication and computation
capabilities, we suggest the distributed approach. Otherwise,
we can only endorse the cumulative approach for scheduling.

B. Admission Control in an Operating Interval

Next we investigate the performance of the algorithm to
address admission control for an operating interval. Each
fitness evaluation involves solving the scheduling problem
once and the computation time for each fitness evaluation is
dominated by that for scheduling. Moreover, the computation
time of the algorithm depends on the number of fitness
evaluations needed. Since the population size is fixed in every
generation, the run time of the algorithm can be estimated
from the number of generations taken place and the results
determined in Section VII-A. Hence here we focus on the
solution quality instead.

We run the algorithm for Cases I-IX. As we have examined
all candidate solutions, we can acquire the optimal solutions
of these cases. We repeat running the algorithm 20 times for
each case. Fig. 7 shows the average objective function value
computed during the course of search for 40 generations. As
absolute values do not help reveal the performance of the
algorithm, the objective function values are instead normalized
with the corresponding optimal values to standardize the
presentation.4 For each data point, we also provide the error
bars for the maximum and minimum values computed in the
20 repeats. The performance of the algorithm in each case
is similar. The algorithm starts with relatively low quality
solutions and then converges rapidly to the global optimal in
a few generations. The gap between the error bars diminishes
after more generations have been taken place and this further
confirms the convergence of the algorithm. When the problem
size increases, it takes slightly more generations to have the
algorithm converged. We can conclude that our algorithm is
very effective in solving the admission control problem.

We further investigate the total profits gained for the test
cases with different AV population sizes. We perform the
simulations with the same settings and repeat each test 20
times. Fig. 8 shows the average results with respect to 5, 10,
15, and 20 vehicles. Since the resultant profit highly depends

4An optimal solution has the normalized objective function value equal to
one.

Fig. 9. Cumulative total profits.
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Fig. 10. Cumulative numbers of admitted requests.

on the parameters of the respective requests and vehicles,
the total profits gained from different cases are not directly
comparable. Instead for each case, we show the percentage
change of profit by normalizing the results with the profit made
with 5 AVs. Since all cases show similar trends, for clearer
presentation, we give the results for Cases I, IV, and VII in
Fig. 8 only. In general, the more vehicles available, the higher
profit can be made. However, the increase of profit is marginal;
when compared with 5 AVs, the increase is just 1−2% in the
presence of 20 AVs. The reason is that more available vehicles
may result in more economical routes but the total distance
travelled would not be shortened significantly.

C. Admission Control in Consecutive Operating Intervals

Here we consider operating the system consecutively for a
period of time to entertain the 100 requests in the transporta-
tion request pool. We consider two cases of different operating
interval durations. In Case 1, there are 10 intervals, in each of
which 10 random requests from the pool are to be scheduled.
If a request is successfully admitted in an interval, it will be
eliminated from the pool. Otherwise, it will be considered
again in the subsequent intervals. The setting for Case 2 is
similar but we consider total 20 intervals with 5 requests being
processed in each interval. Five vehicles are arranged to serve
the requests in both cases and we apply our algorithm to each
interval for admission control. In other words, we perform
10 and 20 admission control processes in Cases 1 and 2,
respectively.
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Fig. 7. Evolutions of the algorithm in solving admission control.

Fig. 9 shows the profit accumulated along the intervals, in
which we consider the duration of one interval for Case 1
is that of two intervals for Case 2. Note that the cost is the
actual expense on gas based on the traversed distance and the
revenue gained from serving each request is the discounted
result of having 50% off from the real fare as if the request
would be served by a normal taxi in Boston. The discount
is used to compensate for the inconvenience of ride sharing
and possibly longer ride time. This discount rate may be
already attractive to many people to adopt our system instead
of the normal taxi service. Hence the profit shown can be
projected to a real business running in a similar scale. Fig. 10
provides the numbers of successfully admitted requests along
the same interval horizon as in Fig. 9. We can see that Case
2 can produce more profit by successfully admitting more
transportation requests. With the same number of vehicles in
service, the smaller the number of requests to be scheduled in
an interval, the higher the success rate of admission control is.
In real situation, we normally cannot dramatically increase the
size of the AV fleet and we would not intentionally reduce the
number of AVs in service. On the other hand, it is much easier
to adjust the number of requests to be scheduled each time by
controlling the duration of each operating interval. In general,
the shorter the interval, the smaller number of requests there
are. Therefore, we would suggest to set the operating interval
shorter, resulting in fewer requests to be scheduled each time
and higher profits. Moreover, this will make the scheduling
problem smaller by requiring shorter computation time to run
the algorithm.

VIII. CONCLUSION

With advancements in technologies, AVs become feasible
and can run on the roads. Various vehicular wireless communi-
cation technologies allow AVs to be connected and respond co-
operatively to instantaneous situations. This constitutes a new
form of public transport with high efficiency and flexibility.
In this paper, we propose the AV public transportation system
supporting point-to-point services with ride sharing capability.
The system manages a fleet of AVs and accommodates a
number of transportation requests. We focus on two major
problems in the system: scheduling and admission control.
The former is to configure the most economical schedules and
routes for the AVs in order to satisfy the admissible requests.
The latter is to determine the set of admissible requests
among all requests so as to produce maximum profit. We
formulate the scheduling problem as an MILP. The admission
control problem is cast as a bilevel optimization problem,
in which the scheduling problem is set as a constraint. We
propose a GA-based solution method to address admission
control. We perform a series of simulations with a real taxi
service dataset recorded in Boston and the simulation results
show that our solution method is effective in solving the
problem. By shortening the operating intervals, the system
can curtail the computation time required to solve the problem
by limiting the quantity of the submitted requests and it can
also produce higher profit cumulatively. To summarize, our
contributions in this paper include: (i) designing the AV public
transportation system, (ii) formulating the scheduling problem,
(iii) developing distributed scheduling, (iv) formulating the
admission control problem, (v) introducing the concept of
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admissibility and deriving the related analytical results, (vi)
proposing an effective method to solve the admission control
problem, and (vii) validating the performance of the solution
method with real-world transportation service data.
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