
1

Deep Multi-task Learning
for Railway Track Inspection

Xavier Gibert, Student Member, IEEE, Vishal M. Patel, Member, IEEE, and Rama Chellappa, Fellow, IEEE

Abstract—Railroad tracks need to be periodically inspected
and monitored to ensure safe transportation. Automated track
inspection using computer vision and pattern recognition meth-
ods have recently shown the potential to improve safety by
allowing for more frequent inspections while reducing human
errors. Achieving full automation is still very challenging due
to the number of different possible failure modes as well as the
broad range of image variations that can potentially trigger false
alarms. Also, the number of defective components is very small,
so not many training examples are available for the machine to
learn a robust anomaly detector. In this paper, we show that
detection performance can be improved by combining multiple
detectors within a multi-task learning framework. We show that
this approach results in better accuracy in detecting defects on
railway ties and fasteners.

Index Terms—Railway track inspection, Multi-task Learning,
Deep Convolutional Neural Networks, Material Identification.

I. INTRODUCTION

MONITORING the condition of railway components is
essential to ensure train safety, especially on High

Speed Rail (HSR) corridors. Amtrak’s recent experience with
concrete ties has shown that they have different kind of
problems than wood ties [1]. The locations and names of
the basic track elements mentioned in this paper are shown
in Figure 1. Although concrete ties have life expectancies of
up to 50 years, they may fail prematurely for a variety of
reasons, such as the result of alkali-silicone reaction (ASR) [2]
or delayed ettringite formation [3]. ASR is a chemical reaction
between cement alkalis and non-crystalline (amorphous) silica.
This forms alkali-silica gel at the aggregate surface. These
reaction rims have a very strong affinity with water and
have a tendency to swell. These compounds can produce
internal pressures that are strong enough to create cracks,
allowing moisture to penetrate, and thus accelerating the rate
of deterioration. Delayed Ettringite Formation (DEF) is a type
of internal sulfate attack that occurs in concrete that has been
cured at excessively high temperatures. In addition to ASR and
DEF, ties can also develop fatigue cracks due to normal traffic
or by being impacted by flying debris or track maintenance
machinery. Once small cracks develop, repeated cycles of
freezing and thawing will eventually lead to bigger defects.

Fasteners maintain gage by keeping both rails firmly at-
tached to the crossties. According to the Federal Railroad
Administration (FRA) safety database1, in 2013, out of 651
derailments due to track problems, 27 of them were attributed
to gage widening caused by defective spikes or rail fasteners,
and another 2 to defective or missing spikes or rail fasteners.

1http://safetydata.fra.dot.gov

Le#	  Rail	   Right	  Rail	  

Ballast	  

Fasteners	  

Cross3e	  

Field	  side	   Field	  side	  Gage	  side	  

Track	  Gage	  
(1,435	  mm)	  

Fig. 1. Definition of basic track elements.

Also, in the United States, regulations enforced by the FRA2

prescribe visual inspection of high-speed rail tracks with a
frequency of once or twice per week, depending on track
speed. These manual inspections are currently performed by
railroad personnel, either by walking on the tracks or by riding
a hi-rail vehicle at very low speeds. However, such inspections
are subjective and do not produce an auditable visual record. In
addition, railroads usually perform automated track inspections
with specialized track geometry measurement vehicles at inter-
vals of 30 days or less between inspections. These automated
inspections can directly detect gage widening conditions.
However, it is preferable to find fastening problems before
they develop into gage widening conditions.

Recent advances in CMOS imaging technology, have re-
sulted in commercial-grade line-scan cameras that are capable
of capturing images at resolutions of up to 4,096×2 and line
rates of up to 140 KHz. At the same time, high-intensity LED-
based illuminators with life expectancies in the range of 50,000
hours are commercially available. This technology enables
virtually maintenance-free operation over several months.
Therefore, technology that enables autonomous visual track
inspection from an unattended vehicle (such as a passenger
train) may become a reality in the not-too-distant future. In
previous works [4], [5] we showed that it is possible to
automatically inspect the condition of ties and fasteners. In
this paper, we extend these techniques and integrate them
in a multi-task learning framework. This combined system
achieves better performance than learning each task separately.

249 CFR 213 – Track Safety Standards

ar
X

iv
:1

50
9.

05
26

7v
1 

 [
cs

.C
V

] 
 1

7 
Se

p 
20

15



2

A. Organization of the paper

This paper is organized as follows. Related works on inspec-
tion of railway tracks using computer vision are discussed in
section II. The problem addressed in this paper is described in
section III. Overall approach and system architecture is pre-
sented in section IV. Material classification, segmentation and
tie assessment algorithm is described in section V. Fastener
detection and assessment algorithm is described in section VI.
Experimental results are presented in section VII, and section
VIII concludes the paper with a brief summary and discussion.

II. RELATED WORKS

A. Railway Track Inspection

Since the pioneering work by Trosino et al. [6], [7], ma-
chine vision technology has been gradually adopted by the
railway industry as a track inspection technology. Those first
generation systems were capable of collecting images of the
railway right of way and storing them for later review, but they
did not facilitate any automated detection. As faster processing
hardware became available, several vendors began to introduce
vision systems with increasing automation capabilities.

In [8], [9], Marino et al. describe their VISyR system,
which detects hexagonal-headed bolts using two 3-layer neural
networks (NN) running in parallel. Both networks take the 2-
level discrete wavelet transform (DWT) of a 24×100 pixel
sliding window (their images use non-square pixels) as an
input to generate a binary output indicating the presence of
a fastener. The difference is that the first NN uses Daubechies
wavelets, while the second one uses Haar wavelets. This
wavelet decomposition is equivalent to performing edge detec-
tion at different scales with two different filters. Both neural
networks are trained with same examples. The final decision
is made using the maximum output of each neural network.

In [10], [11], Gibert et al. describe their VisiRail system
for joint bar inspection. The system is capable of collecting
images on each rail side, and finding cracks on joint bars
using edge detection and a Support Vector Machine (SVM)
classifier that analyzes features extracted from these edges. In
[12], Babenko describes a fastener detection method based
on a convolutional filter bank that is applied directly to
intensity images. Each type of fastener has a single filter
associated with it, whose coefficients are calculated using
an illumination-normalized version of the Optimal Tradeoff
Maximum Average Correlation Height (OT-MACH) filter [13].
This approach allowed accurate fastener detection and local-
ization and achieved over 90% fastener detection rate on a
dataset of 2,436 images. However, the detector was not tested
on longer sections of track. In [14], Resendiz et al. use texture
classification via a bank of Gabor filters followed by an SVM
to determine the location of rail components such as crossties
and turnouts. They also use the MUSIC algorithm to find
spectral signatures to determine expected component locations.
In [15], Li et al. describe a system for detecting tie plates
and spikes. Their method, which is described in more detail
in [16], uses an AdaBoost-based object detector [17] with a
model selection mechanism that assigns the object class that
produces the highest number of detections within a window

of 50 frames. Table I summarizes several systems reported in
the literature.

B. Convolutional Neural Networks

The idea of enforcing translation invariance in neural net-
works via weight sharing goes back to Fukoshima’s Neocog-
nitron [27]. Based on this idea, LeCun et al. developed the
concept into Deep Convolutional Neural Networks (DCNN)
and used it for digit recognition [28], and later for more
general optical character recognition (OCR) [29]. During the
last few years, DCNNs have become ubiquitous in achieving
state-of-the-art results in image classification [30], [31] and
object detection [32]. This resurgence of DCNNs has been
facilitated by the availability of efficient GPU implementations
and open source libraries such as Caffe [33] and Torch7 [34].
More recently, DCNNs have been used for semantic image
segmentation. For example, the work of [35] shows how a
DCNN can be converted to a Fully Convolutional Network
(FCN) by replacing fully-connected layers with convolutional
ones.

C. Multi-task Learning

Multi-task learning (MTL) is an inductive transfer learning
technique in which two or more learning machines are trained
cooperatively [36]. It is a generalization of multi-label learning
in which each training sample has only been labeled for
one of the tasks. In MTL settings there is a mechanism
in which knowledge learned for one task is transferred to
the other tasks [37]. The idea is that each task can benefit
by reusing knowledge that has been learned while training
for the other tasks. Backpropagation has been recognized as
an effective method for learning distributed representations
[38]. For instance, in multitask neural networks, we jointly
minimize one global loss function

Φ =

T∑
t=1

λt

Nt∑
i=1

Et (f(xti), yti) , (1)

where T is the number of tasks, Nt is the number of training
samples for task t, yti is the ground truth label for training
sample xti, f is the the multi-output function computed by the
network, and Et is the loss function for task t. This contrasts
with the Single Task Learning (STL) setting, in which we
minimize T independent loss functions

Φt =

Nt∑
i=1

Et (ft(xti), yti) , t ∈ {1 . . . T}. (2)

In MTL, the weighting factor λt is necessary to compensate
for imbalances in the complexity of the different tasks and
the amount of training data available. When using back-
propagation, it is necessary to adjust λt’s to ensure that all
tasks are learning at optimal rates.

D. One-shot Learning

To achieve good generalization performance, traditional
machine learning methods require a minimum number of



3

TABLE I
EVOLUTION OF AUTOMATED VISUAL RAILWAY COMPONENT INSPECTION METHODS.

Authors Year Components Defects Features Decision methods
Stella et al. [9], [18], [19] 2002–09 Fasteners Missing DWT 3-layer NN

Singh et al. [20] 2006 Fasteners Missing Edge density Threshold
Hsieh et al. [21] 2007 Fasteners Broken DWT Threshold

Gibert et al. [10], [11] 2007–08 Joint Bars Cracks Edges SVM
Babenko [12] 2008 Fasteners Missing/Defective Intensity OT-MACH corr.
Xia et al. [22] 2010 Fasteners Broken Haar Adaboost

Yang et al. [23] 2011 Fasteners Missing Direction Field Correlation
Resendiz et al. [14] 2013 Ties/Turnouts – Gabor SVM

Li et al. [15] 2014 Tie plates Missing spikes Lines/Haar Adaboost
Feng et al. [24] 2014 Fasteners Missing/Defective Haar PGM

Gibert et al. [25] 2014 Concrete ties Cracks DST Iterative shrinkage
Khan et al. [26] 2014 Fasteners Defective Harris-Stephen, Shi-Tomasi Matching errors
Gibert et al. [4] 2015 Fasteners Missing/Defective HOG SVM
Gibert et al. [5] 2015 Concrete ties Tie Condition Intensity Deep CNN

training examples from each class. This is necessary for
the machine to learn a model that can handle variations in
image appearance that result from changes in illumination,
scale, rotation, background clutter, and so on. However, the
occurrence of each type of anomaly is very infrequent, so in
anomaly detection settings it is only possible to find one or a
few number of examples from which to learn from. If we try
to learn a complete model for a new class using such a limited
number of examples, this model would overfit and would
not be able to generalize to new data. However, if we reuse
knowledge that has been learned while learning other related
classes, we can learn better models. This is known as one-
shot learnig [39]. We pose this one-shot learning problem as a
special case of multi-task learning, in which one task consists
of learning the abundant classes, while the other task learns
the uncommon classes. Both tasks share a common low-level
representation because all fasteners are built with common
materials. In this paper, we train an auxiliary network on a
5-class fastener classification using more than 300K fasteners
for the sole purpose of learning a good representation that
regularizes the broken fastener detector.

III. PROBLEM DESCRIPTION

The application described in this paper consists of inspect-
ing railroad tracks for defects on crossties and rail fasteners
using single-view line-scan cameras. The crossties may of
different materials (e.g. wood, concrete, plastic, or metal), and
the fasteners could be of different types (e.g. elastic clips,
bolts, or spikes). We have posed this problem as two detection
problems: object detection (good, broken, or missing fastener),
and semantic segmentation (chips and crumbling concrete ties
and other material classes).

A. Dataset

The dataset used to demonstrate this approach comprises
85 miles of track in which the bounding boxes of 203,287
ties have been provided. This data is very challenging to work
with. The images were collected from a moving vehicle and
although there was artificial illumination, there are significant

variations in illumination due to sun position and shadows.
To reduce friction between rails and wheels and prolong
their usable lives, railroads may lubricate them using special
equipment mounted along the tracks. At locations near these
lubricators, tracks get dirty and the accumulation of greasy
deposits significantly change the appearance of the images.
There are also some spots in which the tracks are covered
by mud being pumped through the ballast during heavy
rainfall. Moreover, there are also places in which the ballast is
unevently distributed and pieces of ballast rock cover the ties
and fasteners being inspected. Also, leaves, weeds, branches,
trash and other debris may occlude the track components being
inspected.

B. Data Annotation

Due to the large size of this dataset, we have implemented
a customized software tool that allows the user to efficiently
visualize and annotate the data (see Figure 2 for a screenshot).
This tool has been implemented in C++ using the Qt frame-
work and communicates with the data repository through the
secure HTTPS protocol, so it can be used from any computer
with an Internet connection without having to set up tunnel
or VPN connections. The tool allows assigning a material
category to each tie as well as its bounding box. The tool
also allows defining polygons enclosing regions containing
crumbling, chips or ballast. The tool also allows the user to
change the threshold of the defect detector and select a subset
of the data for display and review. It also has the capability
of exporting lists of detected defects as well as summaries of
fastener inventories by mile.

IV. APPROACH

A. Overall Architecture

Our design is a Fully Convolutional Network [35] based
on the architecture that we introduced in [5]. That network
was trained with 10 classes of materials and produces feature
maps with 10 different channels. In this paper, we extend that
architecture by adding two additional branches to the network.
The first one is a coarse-level fastener classifier trained on a



4

9	  

9	  

1	  

48	  
64	  

256	  

10	  

stride	  2	   pooling	  

5	  

5	  
5	  

5	  

1	  
1	  

relu	  
pooling	  

relu	  
drop	  
pooling	  

input	  
conv1	   conv2	  

conv3	  

conv4_t	  

512	  

conv4_f	  

5	  

5	  

5	  

1	  
1	  

conv5_f	  

Shared	  network	  

Material	  net	  

Fasteners	  
Shared	  features	  

relu	  
drop	  
pooling	  

Training	  
Batch	  size	  

128	  

Training	  
Batch	  size	  

16	  

Fastener	  
Mul8class	  

32	  

conv5_fastVsBg	  
Fastener	  
Binary	  
SVMs	  

conv5_fastVsFast	  
Training	  
Batch	  size	  
32	  x	  1	  

Fig. 3. Network architecture.

Fig. 2. GUI tool used to generate the training set and to review the detection
results.

large number of examples. The second branch produces 32
binary outputs. These outputs correspond to the same binary
SVMs that we used in our previous version of the detector [4]
described in more detail in section VI.

The implementation is based on the BVLC Caffe framework
[33]. For the material classification task, we have a total of 4
convolutional layers between the input and the output layer,
while for fastener detection tasks we have 5 convolutional
layers. The first three layers are shared among all the tasks.
The fasteners task is, in turn, divided in two subtasks: coarse-
level and fine-grained classification (see section VI for more
details). The network uses rectified linear units (ReLU) as non-

linear activation functions, and overlapping max pooling units
of size 3× 3. All max pooling units have a stride of 2, except
the one on top of that has a stride of 1. We use dropout [40]
regularization on layer 3 (with a ratio of 0.1) and layer 4 on
the fasteners branch (with a ratio of 0.2). The network also
uses weight decay regularization. On the fasteners branch, we
increase the weight decay factors on layers 4 and 5 by 10×
and 100× respectively to reduce overfitting.

We first apply global gain normalization on the raw image
to reduce the intensity variation across the image. This gain is
calculated by smoothing the signal envelope estimated using
a median filter. We estimate the signal envelope by low-pass
filtering the image with a Gaussian kernel. Although DCNNs
are robust to illumination changes, normalizing the image
to make the signal dynamic range more uniform improves
accuracy and convergence speed. We also subtract the mean
intensity value, which is calculated on the whole training set.
The network architecture is illustrated in Figure 3.

B. Training Procedure

To generate our training set, we initially selected ∼30 good
quality (with no occlusion and clean edges) samples from
each object category at random from the whole repository and
annotated the bounding box location and object class for each
of them. Our training software also automatically picks, using
a randomly generated offset, a background patch adjacent to
each of the selected samples. Once we had enough samples
from each class, we trained binary classifiers for each of the
classes against the background and tested on the whole dataset.
Then, we randomly selected misclassified samples and added
those that had good or acceptable quality (no occlusion) to the
training set. To maintain the balance of the training set, we also
added, for each difficult sample, 2 or 3 neighboring samples.
Since there are special types of fasteners that do not occur
very frequently (such as the c-clips or j-clips used around joint
bars), in order to keep the number of samples of each type in
the training set as balanced as possible, we added as many of
these infrequent types as we could find.

Careful annotation of the dataset resulted in the training
set of 2819 fully-annotated fasteners. Moreover, some of the
classes had very few examples. For instance, there are only



5

28 broken fast-clips, and just 38 j-clips in the dataset. If we
just had used this limited data, we would not have been able
to learn a good representation. Fortunately, both of these two
uncommon classes of fasteners share parts with the other ones.
Therefore, if we can make layer conv4 f learn a good model
for fastener parts, layer conv5 f would be able to learn how to
distinguish between fasteners by combining such parts, even
if the number of training examples is limited.

Therefore, we created an auxiliary fastener data set. Since
the only purpose of this dataset is to help learn parts, we just
used the bounding boxes and labels automatically generated
by our previous detector [4], whose error rate is just 0.37%.
We sampled 62,500 fasteners from each of 5 coarse classes.
The first class contains missing and broken fasteners, the next
3 classes contain fasteners corresponding to each of the classes
containing the most samples (PR-clips, e-clips, and fast-clips),
and the last class contains everything else.

We train the network using stochastic gradient descent on
mini-batches of 128 image patches of size 75 × 75 plus 48
fastener images of 182 × 182. The fastener images include
16 from the auxiliary fastener dataset and 1 from each of the
binary SVM tasks. We do data augmentation on material clas-
sification by randomly mirroring vertically and/or horizontally
the training samples. The patches are cropped randomly among
all regions that contain the texture of interest. To increase
robustness against adverse environment conditions, such as
rain, grease or mud, we identified images containing such
difficult cases and automatically resampled the data so that at
least 50% of the data is sampled from such difficult images.
We do data augmentation on fasteners by randomly mirroring
vertically the symmetric classes and randomly cropping the
fastener offset uniformly distributed within a +/-9 pixel range
in both directions.

V. MATERIAL IDENTIFICATION AND SEGMENTATION

A. Architecture

The material classification task at layer conv4 t generates
ten score maps at 1/16th. Each value Φi(x, y) in the score
map corresponds to the likelihood that pixel location (x, y)
contains material of class i. The ten classes of materials are
defined in Figure 8.

B. Score Calculation

To detect whether an image contains a broken tie, we first
calculate the scores at each site as

Sb(x, y) = max
i/∈B

Φi(x, y)− Φb(x, y) (3)

where b ∈ B is a defect class (crumbling or chip). Then we
calculate the score for the whole image as

Sb =
1

β − α

∫ β

α

F̂−1(t)dt (4)

where F̂−1 refers to the t sample quantile calculated from all
scores Sb(x, y) in the image. The detector reports an alarm if
S > τ , where τ is the detection threshold. We used α = 0.9
and β = 1.

VI. FASTENERS ASSESSMENT

In this section, we describe the details of the fastener
assessment task. Figure 4 shows the types of defects that our
algorithm can detect.

Fig. 4. Example of defects that our algorithm can detect. Blue boxes
indicate good fasteners, orange boxes indicate broken fasteners, and purple
boxes indicate missing fasteners. White numbers indicate tie index from last
mile post. Other numbers indicate type of fastener (for example, 0 is for e-clip
fastener).

A. Overview

Due to surface variations that result from grease, rust and
other elements in the outdoor environment, segmentation of
railway components is a very difficult task. Therefore, we
avoid it by using a detector based on a sliding window that we
run over the inspectable area of the tie. The features learned
at layer conv4 f are computed from the shared features at
conv3. The reason for sharing the features with the material
classification task is that there is overlap between both tasks.
For instance, the material classification task needs to learn
to distinguish between fasteners and the other materials, re-
gardless of the type of fastener. Also, the fastener detection
class needs to discriminate between fasteners and background,
regardless of the type of background. In our previous work,
we used the Histogram of Oriented Gradients (HOG) [41]
descriptor for detecting fasteners. Although the results that
we obtained using HOG features were better than previously
proposed methods, this approach still has its limitations. For
instance, the dimensionality of the feature vector is very
large (12,996), consuming a lot of memory and computational
resources, and the linear classifier cannot handle occlusions
very well. Therefore, in this paper we attempt to learn the
features by training the network end to end.

B. Classification

Our goal is to simultaneously detect, within each predefined
Region of Interest (ROI), the most likely fastener location and
then classify such detections into one of three basic conditions:
background (or missing fastener), broken fastener, and good
fastener. Then, for good and broken fastener conditions, we
want to assign class labels for each fastener type (PR clip, e-
clip, fastclip, c-clip, and j-clip). Figure 5 shows the complete
categorization that we use, from coarsest to finest. At the
coarsest level, we want to classify fastener vs. unstructured
background clutter. The background class also includes images
of ties where fasteners are completely missing. We have done



6

missing	  
(background)	  

broken	  

PR	  clip	   e	  clip	   fastclip	   c	  clip	   j	  clip	  

Level	  1	  

Level	  2	  

Level	  3	  

Defec,ve	   Non-‐defec,ve	  

Level	  4	  

good	  

fastener	  

ROI	  

Fig. 5. Object categories used for detection and classification (from coarsest to finest levels).

this for these reasons: 1) it is very difficult to train a detector
to find the small hole left on the tie after the whole fastener
has been ripped off, 2) we do not have enough training
examples of missing fasteners, and 3) most missing fasteners
are on crumbled ties for which the hole is no longer visible.
Once we detect the most likely fastener location, we want
to classify the detected fastener between broken vs. good, and
then classify it into the most likely fastener type. Although this
top-down reasoning works for a human inspector, it does not
work accurately in a computer vision system because both the
background class and the fastener class have too much intra-
class variations. As a result, we have resorted to a bottom-up
approach.

To achieve the best possible generalization at test time, we
have based our detector on the maximum margin principle
of the SVM. The SVM separating hyperplane is obtained by
minimizing the regularized hinge loss function,

E =
∑
i

max (0, 1− yi(w · xi + b)) +
λ

2
‖w‖, (5)

where xi ∈ R512 are the outputs of layer conv4 f and
yi ∈ {−1,+1} their corresponding ground truth labels (whose
meaning will be explain later). The gradients with respect to
the parameters w and b are

∂E

∂w
= −

∑
i

yixiδ[yi(w · xi + b) < 1] + λw (6)

∂E

∂b
= −

∑
i

yiδ[yi(w · xi + b) < 1], (7)

where δ{condition} is 1 if condition is true and -1 otherwise.
The gradient of the hinge loss function with respect to the data
(which is back-propagated down to the lower layers) is

∂E

∂xi
= −yiwδ[yi(w · xi + b) < 1]. (8)

Once the parameters converge, these gradients become highly
sparse and only the difficult training samples contribute to to

updating the parameters on layer conv4 f and all the layers
below.

Instead of training a multi-class SVM, we use the one-vs-
rest strategy, but instead of treating the background class as
just another object class, we treat it as a special case and use a
pair of SVMs per object class. For instance, if we had used a
single learning machine, we would be forcing the classifier to
perform two different unrelated tasks: a) reject that the image
patch does not contain random texture and b) reject that the
object does not belong to the given category. Therefore, given
a set of object classes C, we train two detectors for each object
category. The first one, with weights bc, classifies each object
class c ∈ C vs. the background/missing class m 6∈ C, and
the second one, with weights fc classifies object class c vs.
other object classes C\c. As illustrated in Figure 6, asking our
linear classifier to perform both tasks at the same time would
result in a narrower margin than training separate classifiers
for each individual task. Moreover, to avoid rejecting cases
where all fc classifiers produce negative responses, but one
or more bc classifiers produce strong positive responses that
would otherwise indicate the presence of a fastener, we use
the negative output of fc as a soft penalty. Then the likelihood
that sample x belongs to class c becomes

Lc(x) = bc · x+ min(0, fc · x), (9)

where x = HOG(I) is the feature vector extracted from a
given image patch I . The likelihood that our search region
contains at least one object of class c is the score of the union,
so

Lc = max
x∈X

Lc(x), (10)

where X is the set of all feature vectors extracted within the
search region, and our classification rule becomes

ĉ =

{
arg max

c∈C
Lc max

c∈C
Lc > 0

m otherwise.
(11)



7

(a) (b)

Fig. 6. Justification for using two classifiers for each object category.
Shaded decision region corresponds fastener in good condition, while white
region corresponds to defective fastener. Blue circles are good fasteners,
orange circles are broken fasteners, and purple circles are background/missing
fasteners. (a) Classification region of good fastener vs. rest (b) Classification
region of intersection of good fastener vs. background and good fastener
vs. rest-minus-background. The margin is much wider than using a single
classifier.

C. Score Calculation

For the practical applicability of our detector, it needs to
output a scalar value that can be compared to a user-selectable
threshold τ . Since there are several ways for a fastener to be
defective (either missing or broken), we need to generate a
single score that informs the user how confident the system is
that the image contains a fastener in good condition. This score
is generated by combining the output of the binary classifiers
introduced in the previous section.

We denote the subset of classes corresponding to good
fasteners as G and that of broken fasteners as B. These two
subsets are mutually exclusive, so C = G ∪ B and G ∩ B = ∅.
To build the score function, we first compute the score for
rejecting the missing fastener hypothesis (i.e, the likelihood
that there is at least one sample x ∈ X such that x /∈ m) as

Sm = max
c∈G

Lc, (12)

where Lc is the likelihood of class c defined in Eq. 10.
Similarly, we compute the score for rejecting the broken
fastener hypothesis (i.e, the likelihood that for each sample
x ∈ X , x /∈ B ) as

Sb = −max
c∈B

max
x∈X

fc · x, (13)

The reason why the Sb does not depend on a c-vs-background
classifier bc is because mistakes between missing and broken
fastener classes do not need to be penalized. Therefore, Sb
need only produce low scores when x matches at least one
of the models in B. The negative sign in Sb results from the
convention that a fastener in good condition should have a
large positive score. The final score becomes the intersection
of these two scores

S = min(Sm, Sb). (14)

The final decision is done by reporting the fastener as good if
S > τ , and defective otherwise.

D. Training Procedure

The advantage of using a maximum-margin classifier is that
once we have enough support vectors for a particular class, it

Fig. 7. CTIV platform used to collect the images.

is not necessary to add more inliers to improve classification
performance. Therefore, we can potentially achieve relatively
good performance with only having to annotate a very small
fraction of the data.

E. Alignment Procedure

For learning the most effective object detection models,
the importance of properly aligning the training samples can-
not be emphasized enough. Misalignment between different
training samples would cause unnecessary intra-class variation
that would degrade detection performance. Therefore, all the
training bounding boxes were manually annotated, as tightly
as possible to the object contour by the same person to
avoid inducing any annotation bias. For training the fastener
vs. background detectors, our software cropped the training
samples using a detection window centered around these
boxes. For training the fastener vs. rest detectors, our software
centered the positive samples using the user annotation, but
the negative samples were re-centered to the position where
the fastener vs. background detector generated the highest
response. This was done to force the learning machine to learn
to differentiate object categories by taking into account parts
that are not common across object categories.

VII. EXPERIMENTAL RESULTS

To evaluate the accuracy of our fastener detector, we have
tested it on 85 miles of continuous trackbed images. These
images were collected on the US Northeast Corridor (NEC)
by ENSCO Rail’s Comprehensive Track Inspection Vehicle
(CTIV) (see Figure 7). The CTIV is a hi-rail vehicle (a road
vehicle that can also travel on railway tracks) equipped with
several track inspection technologies, including a Track Com-
ponent Imaging System (TCIS). The TCIS collects images of
the trackbed using 4 Basler sprint (spL2048-70km) linescan
cameras and a custom line scan lighting solution [42].



8

The sprint cameras are based on CMOS technology and use
a CameraLink interface to stream the data to a rack-mounted
computer. Each camera contains a sensor with 2 rows of 2,048
pixels that can sample at line rates of up to 70KHz. The
cameras can be set to run in dual-line mode (high-resolution)
or in “binned” more, where the values of each pair of pixels
are averaged inside the sensor. During this survey, the cameras
were set up in binned mode so, each camera generated a
combined row of 2,048 pixels at a line rate of 1 line/0.43mm.
The sampling rate was controlled by the signal generated from
a BEI distance encoder mounted on one of the wheels. The
camera positions and optics were selected to cover the whole
track with minimal perspective distortion and their fields of
view had some overlap to facilitate stitching.

The collected images were automatically stitched together
and saved into several files, each containing a 1-mile image.
These files were preprocessed by ENSCO Rail using their
proprietary tie detection software to extract the boundary of all
the ties in each image. We verified that the tie boundaries were
accurate after visually correcting invalid tie detections. We
downsampled the images by a factor of 2, for a pixel size of
0.86 mm. To assess the detection performance under different
operating conditions, we flagged special track sections where
the fastener visible area was less than 50% due to a variety
of occluding conditions, such as protecting covers for track-
mounted equipment or ballast accumulated on the top of the
tie. We also flagged turnouts so we could report separate
ROC curves for both including and excluding them. All the
ties in this dataset are made of reinforced concrete, were
manufactured by either San-Vel or Rocla, and were installed
between 1978 and 2010.

For a fair comparison between the approach proposed in
this paper and previously published results, we trained the
algorithm with the same dataset and annotations that we used
in our previous works described in [5] and [4]. We used
the output of our previous fastener detection algorithm [4]
to extract new fastener examples for semisupervised learning.

A. Material Identification

We divided the dataset into 5 splits and used 80% of the
images for training and 20% for testing and we generated a
model for each of the 5 possible training sets. For each split of
the data, we randomly sampled 50,000 patches of each class.
Therefore, for each model was trained with 2 million patches.
We trained the network using a batch size of 128 for a total
of 300,000 iterations with a momentum of 0.9 and a weight
decay of 5 × 10−5. The learning rate is initially set to 0.01
and it decays by a factor of 0.5 every 30,000 iterations. The
following methods are compared in this paper:

• Deep CNN MTL 3: The method described in Section V
with the full architecture in Figure 3.

• Deep CNN MTL 2: The previous method without the
binary SVM subnet.

• Deep CNN STL: The previous method without the
fasteners subnet and a batch size of 64. This single task
learning baseline is exactly the same model used in [5].

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

Fig. 8. Material categories. (a) ballast (b) wood (c) rough concrete (d)
medium concrete (e) smooth concrete (f) crumbling concrete (g) chipped
concrete (h) lubricator (i) rail (j) fastener

• LBP-HF with approximate Nearest Neighbor: The
Local Binary Pattern Histogram Fourier descriptor intro-
duced in [43] is invariant to global image rotations while
preserving local information. We used the implementation
provided by the authors. To perform approximate near-
est neighbor we used FLANN [44] with the ’autotune’
parameter set to a target precision of 70%.

• Uniform LBP with approximate Nearest Neighbor The
LBPu28,1 descriptor [45] with FLANN.

• Gabor features with approximate Nearest Neighbor:
We filtered each image with a filter bank of 40 filters (4
scales and 8 orientations) designed using the code from
[46]. As proposed in [47], we compute the mean and
standard deviation of the output of each filter and build
a feature descriptor as f = [µ00 σ00 y01 . . . µ47 σ47].
Then, we perform approximate nearest neighbor using
FLANN with the same parameters.

The material classification results are summarized in Ta-
ble II and the confusion matrices are shown in Figure 9.

TABLE II
MATERIAL CLASSIFICATION RESULTS.

Method Accuracy
Deep CNN MTL 3 95.02%
Deep CNN MTL 2 93.60%
Deep CNN STL [5] 93.35%

LBP-HF with FLANN 82.05%
LBPu2

8,1 with FLANN 82.70%
Gabor with FLANN 75.63%

Since we are using a fully convolutional DCNN, we directly
transfer the parameters learned using small patches to a
network that takes one 4096 × 320 image as an input, and
generates 10 score maps of dimension 252×16 each. The seg-
mentation map is generated by taking the label corresponding
to the maximum score. Figure 11 shows several examples of



9

0.47

0.15

0.31

0.10

1.05

0.56

0.17

0.07

0.31

0.34

0.19

0.31

0.11

0.15

0.64

0.19

0.45

0.21

0.14

0.25

4.86

0.17

1.79

0.81

0.25

0.05

0.02

0.21

0.36

4.73

3.64

0.21

0.80

0.12

0.13

0.12

0.07

0.39

0.57

6.13

0.02

0.33

0.00

0.03

0.02

1.50

0.28

1.08

0.26

0.04

5.03

0.00

0.03

0.06

0.20

0.06

0.46

0.73

0.38

2.18

0.00

0.00

0.01

0.22

0.18

0.49

0.13

0.00

0.00

0.00

0.98

0.15

0.07

0.21

0.03

0.13

0.01

0.01

0.03

1.48

0.07

0.20

0.25

0.01

0.47

0.01

0.08

0.04

0.08

0.15

97.06

97.56

92.28

86.67

95.53

94.51

91.75

97.71

98.11

99.02

Material identification

Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener

T
ru

e
 c

la
s
s

ballast

wood

rough concrete

medium concrete

smooth concrete

crumbled

chip

lubricator

rail

fastener

0

10

20

30

40

50

60

70

80

90

100

0.49

0.19

0.29

0.08

2.08

0.87

0.22

0.04

0.32

0.28

0.22

0.43

0.12

0.29

0.78

0.20

0.38

0.19

0.13

0.25

5.21

0.13

2.52

1.49

0.20

0.03

0.03

0.22

0.44

5.09

4.28

0.25

1.82

0.11

0.12

0.21

0.01

0.38

0.52

5.94

0.17

0.78

0.00

0.02

0.03

1.82

0.32

1.49

0.28

0.02

10.55

0.02

0.02

0.04

0.20

0.11

0.74

0.98

0.46

4.75

0.01

0.00

0.00

0.22

0.21

0.67

0.17

0.00

0.05

0.00

1.06

0.16

0.04

0.34

0.01

0.14

0.03

0.00

0.00

1.55

0.10

0.20

0.45

0.02

0.76

0.01

0.06

0.04

0.05

0.17

96.86

97.01

91.05

85.81

94.87

89.84

83.67

97.65

98.17

98.91

Material identification

Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener

T
ru

e
 c

la
s
s

ballast

wood

rough concrete

medium concrete

smooth concrete

crumbled

chip

lubricator

rail

fastener

0

10

20

30

40

50

60

70

80

90

100

(a) (b)

Fig. 9. Confusion matrix of material classification on 2.5 million 80×80 image patches with Deep Convolutional Neural Networks using (a) multi-task
learning (b) single task learning [5].

concrete and wood ties, with and without defects and their
corresponding segmentation maps.

B. Crumbling and Chipped Tie Detection

The first 3 rows in Figure 11 show examples of a crumbling
ties and their corresponding segmentation map. Similarly, rows
4 through 6 show examples of chipped ties. To evaluate the
accuracy of the crumbling and chipped tie detector described
in Section V-B we divide each tie in 4 images and we evaluate
the score (4) on each image independently. Due to the large
variation in the area affected by crumbling/chip we assigned a
severity level to each ground truth defect, and for each severity
level we plot the ROC curve of finding a defect when ignoring
lower level defects. The severity levels are defined as the ratio
of the inspectable area that is labeled as a defect. Figure 10
shows the ROC curves for each type of anomaly. Because of
the choice of the fixed α = 0.9 in equation (4) the performance
is not reliable for defects under 10% severity. For defects that
are bigger than the 10% threshold, at a false positive rate (FPR)
of 10 FP/mile the true positive rates (TPR) are 89.42% for
crumbling and 93.42% for chips. This is an improvement of
3.36% and 1.31% compared to the STL results reported in [5].
The results on chipped tie detection are mixed, while there is
an improvement at 2 FP/mile, the detection performance at 10
FP/mile is lower than that of STL. Table III summarizes the
results.

C. Fastener Categorization

On our dataset, we have a total of 8 object categories (2
for broken clips, 1 for PR clips, 1 for e-clips, 2 for fast clips,
1 for c-clips, and 1 for j-clips) plus a special category for
background (which includes missing fasteners). We also have 4
synthetically generated categories by mirroring non-symmetric
object classes (PR, e, c, and j clips), so we use a total of 12
object categories at test time.

For training our detectors, we used the same training
set as in [4], which has a total of 3,805 image patches,

TABLE III
TIE CONDITION DETECTION. FOR CHIPPED AND CRUMBLING, ONLY TIES
WITH AT LEAST 10% AFFECTED AREA ARE INCLUDED. FASTENER RATES

CORRESPOND INCLUDE THOSE FOR WHICH THE TRACK IS CLEAR.

Condition FPR MTL STL

Crumbling Tie 10 FP/mile 89.42% 86.54%
2 FP/mile 82.21% 74.52%

Chipped Tie 10 FP/mile 92.76% 94.08%
2 FP/mile 90.13% 88.52%

Fastener 10 FP/mile 99.91% 98.41%
2 FP/mile 96.74% 93.19%

Fig. 11. Semantic segmentation results (images displayed at 1/16 of original
resolution). See Figure 8 for color legend.



10

False Positives per Mile
10

-2
10

-1
10

0
10

1
10

2
10

3
10

4

D
e

te
c
ti
o

n
 R

a
te

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Crumbling tie detection

overall (STL)

≥ 10% (STL)
≥ 20% (STL)

≥ 30% (STL)
≥ 40% (STL)

≥ 50% (STL)
≥ 60% (STL)

≥ 70% (STL)
overall (MTL)
≥ 10% (MTL)
≥ 20% (MTL)

≥ 30% (MTL)
≥ 40% (MTL)

≥ 50% (MTL)
≥ 60% (MTL)

≥ 70% (MTL)

False Positives per Mile
10

-2
10

-1
10

0
10

1
10

2
10

3
10

4

D
e

te
c
ti
o

n
 R

a
te

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Chipped tie detection

overall (STL)

≥ 10% (STL)
≥ 20% (STL)

≥ 30% (STL)
≥ 40% (STL)

≥ 50% (STL)
≥ 60% (STL)

≥ 70% (STL)
overall (MTL)
≥ 10% (MTL)
≥ 20% (MTL)

≥ 30% (MTL)
≥ 40% (MTL)

≥ 50% (MTL)
≥ 60% (MTL)

≥ 70% (MTL)

(a) (b)

Fig. 10. (a) ROC curve for detecting crumbling tie conditions. (a) ROC curve for detecting chip tie conditions. Each curve is generated considering conditions
at or above a certain severity level. Note: False positive rates are estimated assuming an average of 104 images per mile. Confusion between chipped and
crumbling defects are not counted as false positives.

PFA
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

proposed method
WACV 2015
HOG OT-MACH
HOG DAG SVM
HOG 1-vs-1 vote SVM
Int. norm. OT-MACH

PFA
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

P
D

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

proposed method
WACV 2015
HOG OT-MACH
HOG DAG SVM
HOG 1-vs-1 vote SVM
Int. norm. OT-MACH

PFA
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

P
D

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

proposed method (clear ties)
proposed method (clear ties + sw)
proposed method (all ties)
WACV 2015 (clear ties)
WACV 2015 (clear ties + sw)
WACV 2015 (all ties)

(a) (a) detail (b)

Fig. 12. ROC curves for the task of detecting defective (missing or broken) fasteners (a) using 5-fold cross-validation on the training set (b) on the 85-mile
testing set.

including 1,069 good fasteners, 714 broken fasteners, 33
missing fasteners, and 1,989 patches of background texture.
During training, we also included the mirrored versions of the
missing/background patches and all symmetric object classes.

In addition to the proposed method described in Section
VI, we have also implemented and evaluated the following
alternative methods:

• STL (WACV 2015): The method in [4] uses the same
scores as the proposed method, based on HOG features
instead of the features learned at layer conv4 f.

• Intensity normalized OT-MACH: As in [12], for each
image patch, we subtract the mean and normalize the
image vector to unit norm. For each class c, we design
an OT-MACH filter in the Fourier domain using hc =
[αI + (1 − α)Dc]

−1xc with α = 0.95, where I is the
identity matrix, Dc = (1/Nc)

∑Nc

i=1 xcix
∗
ci, and Nc is

the number of training samples of class c.
• HOG features with OT-MACH: The method in [12],

but replacing intensity with HOG feature. Since HOG
features are already intensity-invariant, the design of the
filters reduces to hc = xc.

• HOG features with DAG-SVM: We run one-vs-one
SVM classifiers in sequence. We first run each class
against the background on each candidate region. If
at least one classifier indicates that the patch is not
background, then we run the DAG-SVM algorithm [48]
over the remaining classes.

• HOG features with majority voting SVM: We run all

possible one-vs-one SVM classifiers and select the class
with the maximum number of votes.

For the second and third methods, we calculate the score using
the formulation introduced in sections VI-B and VI-C, but with
bc = hc and fc = hc−

∑
i 6=c hi/(C−1). For the forth and last

methods, we first estimate the most likely class in G and in B.
Then, we set Sb as the output of the classifier between these
two classes, and Sm as the output of the classifier between
the background and the most likely class.

We can observe in Figure 12 (a) that the proposed method
is the most accurate, followed by WACV 2015 STL baseline
and HOG with OT-MACH method. The other methods perform
poorly on this dataset. In the third row of Table III we compare
the fastener detection performance of MTL with the STL
baseline.

D. Defect Detection

To evaluate the performance of our defect detector, we
divided each tie into 4 regions of interest (left field, left gage,
right gage, right field) and calculated the score defined by
(14) for each of them. Figure 12 shows the ROC curve for
crossvalidation on the training set as well as for the testing
set of 813,148 ROIs (203,287 ties). The testing set contains
1,052 ties images with at least one defective fastener per tie.
The total number of defective fasteners in the testing set was
1,087 (0.13% of all the fasteners), including 22 completely
missing fasteners and 1,065 broken fasteners. The number of
ties that we flagged as “uninspectable” is 2,524 (1,093 on



11

switches, 350 on lubricators, 795 covered in ballast, and 286
with other issues).

We used the ROC on clear ties (blue curve) in Figure 12 (b)
to determine the optimal threshold to achieve a design false
alarm rate of 0.07% (τ = 0.1070). This target is a bit lower
than the 0.1% that we used in the for the baseline experiments.
The reason for lowering the sensitivity is that the detection rate
pateaus at PFA > 0.06%. Using this sensitivity level, we ran
our defective fastener detector at the tie level (by taking the
minimum score across all 4 regions). Results are shown in
Table IV.

TABLE IV
RESULTS FOR DETECTION OF TIES WITH AT LEAST ONE DEFECTIVE

FASTENER.

Subset Total # Bad PD PFA
MTL STL MTL STL

clear ties 200,763 1,037 99.90% 98.36% 0.25% 0.38%
clear + sw. 201,856 1,045 99.90% 97.99% 0.61% 0.71%

all ties 203,287 1,052 99.90% 98.00% 1.01% 1.23%

At this sensitivity level, our MTL detector only misses
one defect (compared to 17 type II errors with the baseline
detector). The false alarm rate on clear ties goes down to
0.25%, which is 34% lower than the baseline. Figure 13 shows
the single defective fastener that was missed. It could be
argued that the clip is still holding the rail in place, so it
is a very close call.

Fig. 13. The single defect missed by our detector. Solid bounding boxes
correspond to ground truth annotations. Dashed bounding boxes correspond
to the output of the detector. The number 0 corresponds to the PR-clip class,
which is correctly classified. The clip has not completely popped out.

VIII. CONCLUSION AND FUTURE WORK

This paper has introduced a new algorithm for inspecting
railway ties and fasteners that takes advantage of the inherent
structure of this problem. We have been able to benefit from
scalability advantage of deep convolutional neural networks
despite the limited amount of training data in some of the
classes. This has been possible by setting up multiple tasks and
cooperatively training a shared representation that is effective
on each of them. We have showed that not only is possible save
computation time by reusing the computation of intermediate
features, but also that this representation results in better
generalization performance than traditional features.

ACKNOWLEDGMENT

This work was partially supported by the Federal Railroad
Administration under contract DTFR53-13-C-00032. The au-
thors thank Amtrak, ENSCO, Inc. and the Federal Railroad
Administration for providing the data used in this paper. The
authors sincerely thank University of Maryland student Daniel
Bogachek for his help setting up earlier crumbling tie detection
experiments during his visit at the Center for Automation
Research in summer 2014.

REFERENCES

[1] J. A. Smak, “Evolution of Amtrak’s concrete crosstie and fastening
system program,” in International Concrete Crosstie and Fastening
System Symposium, June 2012.

[2] M. H. Shehata and M. D. Thomas, “The effect of fly ash composition
on the expansion of concrete due to alkalisilica reaction,” Cement and
Concrete Research, vol. 30, pp. 1063–1072, 2000.

[3] S. Sahu and N. Thaulow, “Delayed ettringite formation in swedish
concrete railroad ties,” Cement and Concrete Research, vol. 34, pp.
1675–1681, 2004.

[4] X. Gibert, V. M. Patel, and R. Chellappa, “Robust fastener detection for
autonomous visual railway track inspection,” in IEEE Winter Conference
on Applications of Computer Vision (WACV), 2015.

[5] ——, “Material classification and semantic segmentation of railway
track images with deep convolutional neural networks,” in IEEE In-
ternational Conference on Image Processing (ICIP), 2015.

[6] J. Cunningham, A. Shaw, and M. Trosino, “Automated track inspection
vehicle and method,” May 2000, uS Patent 6,064,428.

[7] M. Trosino, J. Cunningham, and A. Shaw, “Automated track inspection
vehicle and method,” March 2002, uS Patent 6,356,299.

[8] F. Marino, A. Distante, P. Mazzeo, and E. Stella, “A real-time visual in-
spection system for railway maintenance: Automatic hexagonal-headed
bolts detection,” IEEE Trans. on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, vol. 37, no. 3, pp. 418–428, 2007.

[9] P. De Ruvo, A. Distante, E. Stella, and F. Marino, “A GPU-based
vision system for real time detection of fastening elements in railway
inspection,” in IEEE International Conference on Image Processing
(ICIP). IEEE, 2009, pp. 2333–2336.

[10] X. Gibert, A. Berry, C. Diaz, W. Jordan, B. Nejikovsky, and A. Tajaddini,
“A machine vision system for automated joint bar inspection from a
moving rail vehicle,” in ASME/IEEE Joint Rail Conference & Internal
Combustion Engine Spring Technical Conference, 2007, pp. 289–296.

[11] A. Berry, B. Nejikovsky, X. Gibert, and A. Tajaddini, “High speed video
inspection of joint bars using advanced image collection and processing
techniques,” in Proc. of World Congress on Railway Research, 2008.

[12] P. Babenko, “Visual inspection of railroad tracks,” Ph.D. dissertation,
University of Central Florida, 2009. [Online]. Available: http:
//crcv.ucf.edu/papers/theses/Babenko Pavel.pdf

[13] A. Mahalanobis, B. V. K. V. Kumar, S. Song, S. R. F. Sims,
and J. F. Epperson, “Unconstrained correlation filters,” Appl. Opt.,
vol. 33, no. 17, pp. 3751–3759, Jun 1994. [Online]. Available:
http://ao.osa.org/abstract.cfm?URI=ao-33-17-3751

[14] E. Resendiz, J. Hart, and N. Ahuja, “Automated visual inspection of
railroad tracks,” IEEE Trans. on Intelligent Transportation Systems,
vol. 14, no. 2, pp. 751–760, June 2013.

[15] Y. Li, H. Trinh, N. Haas, C. Otto, and S. Pankanti, “Rail component
detection, optimization, and assessment for automatic rail track inspec-
tion,” IEEE Trans. on Intelligent Transportation Systems, vol. 15, no. 2,
pp. 760–770, April 2014.

[16] H. Trinh, N. Haas, Y. Li, C. Otto, and S. Pankanti, “Enhanced rail
component detection and consolidation for rail track inspection,” in IEEE
Workshop on Applications of Computer Vision (WACV), 2012, pp. 289–
295.

[17] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 1, 2001, pp. I–511–I–518
vol.1.

[18] E. Stella, P. Mazzeo, M. Nitti, C. Cicirelli, A. Distante, and T. D’Orazio,
“Visual recognition of missing fastening elements for railroad mainte-
nance,” in IEEE International Conference on Intelligent Transportation
Systems, 2002, pp. 94–99.

http://crcv.ucf.edu/papers/theses/Babenko_Pavel.pdf
http://crcv.ucf.edu/papers/theses/Babenko_Pavel.pdf
http://ao.osa.org/abstract.cfm?URI=ao-33-17-3751


12

[19] F. Marino, A. Distante, P. L. Mazzeo, and E. Stella, “A real-time visual
inspection system for railway maintenance: automatic hexagonal-headed
bolts detection,” IEEE Trans. on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, vol. 37, no. 3, pp. 418–428, 2007.

[20] M. Singh, S. Singh, J. Jaiswal, and J. Hempshall, “Autonomous rail track
inspection using vision based system,” in IEEE International Conference
on Computational Intelligence for Homeland Security and Personal
Safety, Oct 2006, pp. 56–59.

[21] H.-Y. Hsieh, N. Chen, and C.-L. Liao, “Visual recognition system
of elastic rail clips for mass rapid transit systems,” in ASME/IEEE
Joint Rail Conference & Internal Combustion Engine Spring Technical
Conference, 2007, pp. 319–325.

[22] Y. Xia, F. Xie, and Z. Jiang, “Broken railway fastener detection based on
adaboost algorithm,” in IEEE International Conference on Optoelectron-
ics and Image Processing (ICOIP), vol. 1. IEEE, 2010, pp. 313–316.

[23] J. Yang, W. Tao, M. Liu, Y. Zhang, H. Zhang, and H. Zhao, “An efficient
direction field-based method for the detection of fasteners on high-speed
railways,” Sensors, vol. 11, no. 8, pp. 7364–7381, 2011.

[24] H. Feng, Z. Jiang, F. Xie, P. Yang, J. Shi, and L. Chen, “Automatic
fastener classification and defect detection in vision-based railway
inspection systems,” IEEE Trans. on Instrumentation and Measurement,
vol. 63, no. 4, pp. 877–888, April 2014.

[25] X. Gibert, V. M. Patel, D. Labate, and R. Chellappa, “Discrete shearlet
transform on GPU with applications in anomaly detection and denois-
ing,” EURASIP Journal on Advances in Signal Processing, vol. 2014,
no. 64, pp. 1–14, May 2014.

[26] R. Khan, S. Islam, and R. Biswas, “Automatic detection of defective
rail anchors,” in IEEE 17th International Conference on Intelligent
Transportation Systems (ITSC), Oct 2014, pp. 1583–1588.

[27] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, no. 4, pp. 93–202, 1980.

[28] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,
1989.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, November
1998.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Systems (NIPS), 2013.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[32] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014.

[33] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv:1408.5093, 2014.

[34] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in Advances in Neural Information
Systems (NIPS), 2011.

[35] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015.

[36] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1, pp.
41–75, Jul 1997.

[37] L. Y. Pratt, J. Mostow, and C. A. Kamm, “Direct transfer of learned
information among neural networks,” in Proc. Of AAAI, 1991.

[38] G. Hinton, “Learning distributed representation of concepts,” in Proc.
of the 8th Int. Conf. of the Cognitive Science Society, 1986, pp. 1–12.

[39] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, pp. 594–611, 2006.

[40] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[41] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 1, Jun 2005, pp. 886–893.

[42] Basler AG, “Success story: ENSCO deploys Basler sprint and
ace GigE cameras for comprehensive railway track inspection,”

http://www.baslerweb.com/linklist/9/8/3/6/BAS1110 Ensco Railway
Inspection.pdf, Oct 2011.

[43] T. Ahonen, J. Matas, C. He, and M. Pietikäinen, “Rotation invariant
image description with local binary pattern histogram fourier features,”
in Image Analysis. Springer, 2009, pp. 61–70.

[44] M. Muja and D. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in International Conference on
Computer Vision Theory and Application VISSAPP’09). INSTICC
Press, 2009, pp. 331–340.

[45] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24,
no. 7, pp. 971–987, 2002.

[46] M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb, “Identification using
encrypted biometrics,” in Computer Analysis of Images and Patterns.
Springer, 2013, pp. 440–448.

[47] B. Manjunath and W. Ma, “Texture features for browsing and retrieval of
image data,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 18, no. 8, pp. 837–842, 1996.

[48] J. C. Platt, N. Cristianini, and J. Shawe-taylor, “Large margin DAGs for
multiclass classification,” in Advances in Neural Information Systems
(NIPS). MIT Press, 2000, pp. 547–553.

http://www.baslerweb.com/linklist/9/8/3/6/BAS1110_Ensco_Railway_Inspection.pdf
http://www.baslerweb.com/linklist/9/8/3/6/BAS1110_Ensco_Railway_Inspection.pdf

	I Introduction
	I-A Organization of the paper

	II Related Works
	II-A Railway Track Inspection
	II-B Convolutional Neural Networks
	II-C Multi-task Learning
	II-D One-shot Learning

	III Problem Description
	III-A Dataset
	III-B Data Annotation

	IV Approach
	IV-A Overall Architecture
	IV-B Training Procedure

	V Material Identification and Segmentation
	V-A Architecture
	V-B Score Calculation

	VI Fasteners Assessment
	VI-A Overview
	VI-B Classification
	VI-C Score Calculation
	VI-D Training Procedure
	VI-E Alignment Procedure

	VII Experimental Results
	VII-A Material Identification
	VII-B Crumbling and Chipped Tie Detection
	VII-C Fastener Categorization
	VII-D Defect Detection

	VIII Conclusion and Future Work
	References

