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ABSTRACT
We develop a Bayesian particle filter for tracking traffic flows that is capable of capturing non-
linearities and discontinuities present in flow dynamics. Our model includes a hidden state vari-
able that captures sudden regime shifts between traffic free flow, breakdown and recovery. We
develop an efficient particle learning algorithm for real time on-line inference of states and pa-
rameters. This requires a two step approach, first, resampling the current particles, with a mix-
ture predictive distribution and second, propagation of states using the conditional posterior
distribution. Particle learning of parameters follows from updating recursions for conditional
sufficient statistics. To illustrate our methodology, we analyze measurements of daily traffic flow
from the Illinois interstate I-55 highway system. We demonstrate how our filter can be used to
inference the change of traffic flow regime on a highway road segment based on a measurement
from freeway single-loop detectors. Finally, we conclude with directions for future research.
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INTRODUCTION
Modeling traffic dynamics for a transportation network with highways, arterial roads and public
transit is an important task for effectively managing traffic flow. A major goal is to provide
traffic flow conditions on highways from field measurements fusing in-ground loop detectors
or GPS probes. Traffic managers make decisions based on model forecasts to regulate ramp
metering, apply speed harmonization, or change road pricing as congestion mitigation strategies.
The general public uses model-based predictions for assessing departure times, and travel route
choices, among other factors.

We propose a dynamic state-space model which incorporates a latent switching variable
together with a traffic flow state variable to capture the non-linearities and discontinuities in
traffic patterns. Our dynamic model allows for three traffic flow regimes: free flow, breakdown
and recovery. A physical interpretation of the change in the flow regime is a traffic queue with
congestion inside the queue and free flow outside. In addition to switching variable and traffic
flow states, we track a state that measures the rate of degradation or recovery. The challenge is to
filter traffic flow measurements which are sparse, from both fixed and moving sensors which are
located at a small number of locations at any given point in time. Statistical inference is further
complicated by noisy non-Gaussian observations; for example, Rasschaert (1) show that the data
generating distribution for video cameras is a mixture of Poissons.

In order to achieve real-time sequential inference, we develop an efficient particle filter
and learning algorithm. This allows us to track the speed of traffic flow together with the latent
states that describe regime switches, and the rate of degradation (recovery). To illustrate our
methodology, we model a data from a network of in-ground loop detectors on Chicago’s Inter-
state I-55 with measurements on speed, counts and occupancy of traffic flow. The sequential
nature of particle filtering makes frequent updating feasible, and therefore, our method provides
an alternative to Markov Chain Monte Carlo (MCMC) simulation methods. The computational
cost of the latter grows linearly with the number of observations. We build on particle filters for
traffic flow problems (see Mihaylova et al. (2)) who use the evolution dynamics as a proposal dis-
tribution before re-sampling, the so-called bootstrap or sampling/importance resampling (SIR)
filter. We improve the filtering efficiency by developing a Rao-Blackwellized which is also flexi-
ble enough to incorporate particle learning.

Our approach builds upon existing statistical methods in a number of ways. Tebaldi and
West (3) infer network route flows and Westgate et al. (4) develop MCMC methods to estimate
travel time reliability for ambulances using noisy GPS for both path travel time and individual
road segment travel time distributions. Anacleto et al. (5) propose a dynamic Bayesian network
to model external intervention techniques to accommodate situations with suddenly changing
traffic variables. Another class of probabilistic methods rely on using image processing tech-
niques for traffic estimation, for example in Kamijo et al. (6) authors developed an algorithm
that is based on Markov random field that allows analyzing images from intersections to detect
flows and accidents.

Small changes in consecutive speed measurements can be explained by sensor noise but
significant changes require estimation of probability of a flow regime switch, which is repre-
sented by a discontinuity in traffic flow speed. Previous work on estimating traffic flows use
extensions of the Kalman filter and relies heavily on Gaussianity assumptions, see Gazis and
Knapp, Schreiter et al., Wang and Papageorgiou, Work et al. (7, 8, 9, 10). Recently, Blandin
et al., Polson and Sokolov (11, 12) showed that dynamic properties of traffic flow such as dis-
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continuities (or shock waves), lead to forecast distributions that are mixtures. Our non-Gaussian
state-space model will explicitly capture such a behavior.

Our approach builds on the current literature in a number of ways:

• Provides a hierarchical model rather than a conservation law based model. Our ap-
proach avoids boundary condition estimation

• A predictive likelihood particle filter provides an efficient estimation strategy. Our
filter is less sensitive to measurement outliers and less prone to particle degeneracy

• Tracks traffic flow variables, such as traffic flow speed together with additional latent
variables for regime switching and a degeneracy (recovery) rate.

One class of previously considered problems involves estimating (i) turn counts on urban
controlled intersections [Lan and Davis, Ghods and Fu (13, 14)], (ii) flows or travel times on net-
work routes [Kwong et al., Wu et al., Rahmani et al., Nantes et al., Fowe and Chan, Dell’Orco
et al. (15, 16, 17, 18, 19, 20)], (iii) travel times and densities on an individual road segment [Coif-
man and Kim, Zheng and Van Zuylen, Zhan et al., Seo and Kusakabe, Seo et al., Bachmann et al.
(21, 22, 23, 24, 25, 26)], and (iv) queue position on highways or arterial roads [Vigos et al., Ban
et al., Zhan et al., Lee et al. (27, 28, 29, 30)]. There are several types of algorithms, which can be
categorized into the following groups (i) time series analysis, (ii) machine or deep learning, and
(iii) model-based analysis in a form of state-space models. We tackle the latter, which requires a
particle filtering algorithm to perform inference.

A machine-learning algorithm was provided by Sun et al. (31), where authors proposed
a Bayes network algorithm for forecasting traffic flow. The idea is to derive the conditional
probability of a traffic state on a given road, given states on topological neighbors on a road
network. The resulting joint probability distribution is a mixture of Gaussians. Bayes networks
for estimating travel times were suggested earlier by Horvitz et al. (32). This approach even-
tually became a commercial product that led to the start of Inrix, a traffic data company. Wu
et al. (33) provides a machine-learning method based on a support vector regression (SVR) to
forecast travel-times and Quek et al. (34) use a fuzzy neural-network approach to address the
issue of traffic data generating processes being non-linear and used fuzzy logic to improve the
interoperability of their model. On the contrary, Rice and van Zwet (35), argue that there is a
linear relation between the future travel times and currently estimated conditions. They demon-
strate that a regression model with time varying coefficients is capable of designing a travel time
prediction scheme. Another class of forecasting models relies on classical time series modeling.
For example, Tan et al. (36) studied two classes of time series methods, auto-regressive moving
average (ARIMA) and exponential smoothing (ES). The forecasts generated by ARIMA and ES
models are used as inputs to neural networks, which aggregates those into a single forecast. Van
Der Voort et al. (37) also proposed combing an ARIMA model with a machine learning method,
the Kohonen self-organizing map, which was used as an initial classifier. Van Lint (38) addresses a
parameter estimation problem of real-time learning that can improve the quality of forecasts via
an extended Kalman filter for incorporating data in real-time into a parameter learning process.
Ban et al. (39) proposes a method for estimating queue lengths at controlled intersections, based
on the travel time data measured by GPS probes. The method relies on detecting discontinu-
ities and changes of slopes in travel time data. Another data-mining based approach for queue
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state estimation was proposed in Ramezani and Geroliminis (40), who combined the traffic flow
shockwave analysis with data mining techniques.

Cheng et al. (41) proposes a threshold-based critical point extraction algorithm, with a
goal to reduce the communication cost in the future real-time probe data collection application.
A probabilistic approach, proposed in Hofleitner et al. (42) uses a learning algorithm to infer the
density of vehicles on arterial roads. A heuristic filter that allows combining data from multiple
types of sensors with different spatial and temporal resolutions was proposed in Van Lint and
Hoogendoorn (43).

Our main contribution is an algorithm for quick detection of the break-downs and recov-
eries in the traffic flow regimes. In many cases, we can detect the breakdown new measurement
arrives. We contrast the performance of our filter with some other approaches in the “Numerical
Experiments” subsection.

BAYESIAN MODELING OF TRAFFIC FLOW SPEED
Traffic flow speed data often relies on sparse and noisy measurements. Sparseness occurs due
to a fixed grid of sensor or a dynamically changing data source such as GPS probes. Our state-
space model is designed to be applicable in both scenarios. There are discontinuities in the
traffic flow dynamics which need to be accounted for. We build a Dynamic Model [West and
Harrison, Carlin et al. (44, 45)] for the traffic state during three regimes: free flow, breakdown
and recovery.

To illustrate our methodology, we use data from a sensor on I-55 with id N-6041. The
sensor is located eight miles from the Chicago downtown on I-55 north bound (near Cicero Ave),
which is part of a route used by many morning commuters to travel from southwest suburbs to
the city. As shown on Figure 1, the sensor is located 840 meters downstream of an off-ramp and
970 meters upstream from an on-ramp.

FIGURE 1 Location of the N-6041 sensor and the geometry of the road segment.

Figure 2 illustrates a typical day traffic flow pattern on Chicago’s I-55 highway where
sudden breakdowns are followed by a recovery to free flow regime. This traffic pattern is recur-
rent and similar to one observed on other work days. We can see a breakdown in traffic flow
speed during the morning peak (region 2) period followed by speed recovery (region 3). The free
flow regimes (regions 1,4, and 5 on the plot) are usually of little interest to traffic managers. This
data motivates our choice of the statistical model developed. The goal is to build a model that is
capable of capturing the sudden regime changes, such as free flow to congestion at the beginning
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of the morning rush hour (regions 1 and 2) or change in speed to the recovery regime at the end
of the rush hour (regions 2 and 3).

FIGURE 2 Example of one day speed profile on May 14, 2009 (Thursday). This plot
illustrates the speed profile for a segment of interstate highway I-55. Different flow regime
regions were identified and labeled by the authors.

A key modeling feature is the inclusion of a switching state variable αt+1 ∈ {−1,0,1} to
identify different flow regimes. Trends during the break-down periods and recovery periods can
then be modeled using the first order polynomial component.

Specifically, given a discretization from t to t +∆t , we use a state-space model of the
form

Observation: yt+1 =H xt+1+ γ
T zt+1+ vαt+1

, vαt+1
∼N (0,Vαt+1

) (1)

Evolution: xt+1 =Gαt+1
xt +(I −Gαt+1

)µ+wt+1, wt+1 ∼N (0,Wαt+1
) (2)

Switching Evolution: αt+1 ∼ p(αt+1|αt ,Zt ) (3)

where evolution gain matrix is

Gαt+1
=
�

Fαt+1
αt+1

0 1

�

, and µ=
�

v f
0

�

Our hidden state variable xt = (θt , βt )
T , where θt is traffic flow speed and βt is rate of change.

We model the recovery and degradation in speed using an additive component αtβt . We also
modelβt using a random walk model. Measurements are then given by yt = (s peed , count , d ens i t y)t ,
and we incorporate a switching variable with three states αt ∈ {b r eakd own, f r e e f l ow, r ecove r y}t .

The observation matrix H , which could be time varying, allows for partial observation
of the state vector xt . The parameter v f the free flow speed on the road segment. We allow for the
possibility of regressors, zt+1, in the observation equation which effect the sensor measurement
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model, γ are regressors parameters. The switching coefficient Fαt
defines weather the process is

mean-reverting or not. We define it by

Fαt
=
¨

1, αt ∈ {1,−1}
F0, αt = 0.

,

where F0 < 1 is the rate of mean-reversion during a free flow regime. The dynamics p(αt+1|αt ,Zt )
of the switching evolution depends on the set of variables Zt , that explain regime shifts. Several
approaches to model switching process p(αt+1|αt ,Zt ) and choosing Zt are described in the next
sub-section.

The main task of our approach is to detect the start of breakdown and recovery as soon
as possible. The causes of breakdown or recovery might be different. For example a breakdown
might be caused by a recurrent demand that increases capacity or non-recurrent conditions, such
as weather or traffic accidents. Characteristic change in the traffic flow speed would be the same
in either situation and thus our model is agnostic to the cause of the start or end of a congestion
period.

Modeling p(αt+1|αt ,Zt )
The discrete state αt+1 ∈ {−1,0,1} models breakdown (α =−1), free flow (α = 0), and recovery
(α = 1) regimes of a traffic system. We need to specify a transition kernel for the evolution of
this state given a set of exogenous predictor variables, denoted by Zt , and current state αt . Given
Zt , the set of probabilities, p(αt+1|αt ,Zt ), will then form a 3×3 matrix which will be combined
with the evolution of the hidden state vector xt .

Figure 4 shows that break downs happen more or less the same time during morning or
evening peak periods on a work day. Therefore, it is natural to introduce an exogenous variable
Zt = (pe r i od , day o f week), pe r i od ∈ {1,2,3} where the three periods correspond to morn-
ing, evening peak period and the rest of the day. Incorporating additional considerations beyond
a period of the day and day of the week, such as weather, month, and special event leads to

Zt = (day o f week , mont h, weat he r, mont h, e vent ,acc i d ent )t .

One way to build such a model is to identify 3 × 3 transition matrix p(αt+1|αt ,Zt ) for each
combination of the parameters in Zt based on the historic observations.

Figure 3(a) shows the average speed for a fixed location on the network for the April 4 -
March 3 period in 2009, weekend days identified by blue dots. We see that the average speed on
weekend is very close to free flow speed, roughly 63 mi/h, which means there is no congestion
on those days. On the other hand average speed on a work day is significantly lower as a result
if congestion during rush hour. We also can see an unusual average speed on April 10 of 2009
(seventh observation). It was Good Friday. Thus, far less traffic was observed compared to a
typical Friday.

Figure 3(b) shows a scatter plot of measured traffic flow speed for all non-holiday Wednes-
days in 2009. The measurements are taken every five minutes. We can see that congestion starts
roughly at the same time at around six in the morning and lasts roughly for three hours. The
breakdown in the evening happens less frequently.
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(a) Average Speed per day (April, 2009) (b) Speed on Wednesdays (2009)

FIGURE 3 Recurrent traffic flows. The left panel (a) shows average speed as measured by
the sensor N-6041 for each day during the April 4 - March 3 of 2009 time period. Weekends
are marked by blue dot. The right panel (b) shows raw speed measurements from the sensor
N-6041 for each five minute interval of every Wednesday in 2009.

Another effect to be modeled is traffic congestion that is a recurrent event, and is similar
from one week to another. Figure 4 shows the recurrent traffic conditions grouped by the day
of the week. This observation can be used to choose Zt . In particular, an approach based on
non-parametric regression that uses historical traffic flow data. For example, Smith et al. (46)
and Chiou et al. (47) showed that the last three measured speed values, perform very well for
predicting traffic flows. In this case we can write Zt as

Zt = (αt , x̂t , x̂t−1, x̂t−2, t i me o f day)T ,

where x̂t is the filtered value of state vector xt . Then the transition dynamics p(αt+1|αt ,Zt ) is
generated by computing a weighted average of those points from historic database that fall within
a neighborhood of Zt . To calculate the neighborhood, we calculate distance between Zt and each
of the point from the data base, and then choose k points with smallest distance. The weights
are proportional to the distance.
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FIGURE 4 Daily Traffic Patterns, measured in 2009. Each plot shows raw speed measure-
ments averaged over five minute intervals from the sensor N-6041 for a given day of the
week, with holidays and days with erroneous measurements removed from data.

TRACKING TRAFFIC FLOWS DURING SPECIAL AND WEATHER EVENTS
Our model is flexible in the sense that we can handle special events or severe weather conditions
that can upset a typical traffic patterns. To show the empirical effect of snowy weather, Figure 5
compares the expected travel time (red line), which is calculated based on historical data for the
last 150 days, with the travel time on a snow day (green line), for December 11, 2013. There were
1.8 inches of snow on this day, with snow starting at midnight and continuing till noon. There
were no traffic accidents on this road segment on this day. As we can see, even a light snow in a
region, where drivers are used to driving during snow days can cause major delays. The yellow
region is the 70% confidence interval based on historical data.
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(a) North Bound (b) South Bound

FIGURE 5 Impact of light snow on travel times on I-55 near Chicago on December 11,
2013. Both plots show travel time on a 27 mile stretch of highway I-55 between I-355 and
I-94 in both north and south directions. The north bound direction is from southwest
suburbs to the city. The red line is a travel time averaged over previous 150 days, the
yellow area show 70% confidence interval for the data and green line is the travel time on
the day of the event. Source: www.travelmidweststats.com

Special events is another potential cause of unusual traffic conditions. Figure 6 shows
impacts of special events on travel times on interstate I-55 north bound (towards the city). The
weekday football game, which takes place at Solder Field stadium in Chicago downtown, com-
bined with typical commute traffic has a very significant impact on travel times. Weekend special
events have a relatively minor negative impact. On the other hand, the NATO summit that was
held in Chicago’s McCormick Place located slightly south of downtown on Monday, had posi-
tive impact on travel times. This can be explained away by regular commuters, who knew about
the event, changing their departure times, using commuter rail or simply working from home
on this day.

www.travelmidweststats.com
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(a) NATO Summit on Sunday May 20, 2012 (b) NATO Summit on Monday May 21, 2012

(c) New York Giants at Chicago Bears on (d) Baltimore Ravens at Chicago Bears on
Thursday October 10, 2013 Sunday November 10, 2013

FIGURE 6 Impact of special events on I-55 north bound travel times. All plots show travel
time on a 27 mile stretch of highway I-55 between I-355 and I-94 in both north (towards the
city) and south directions. All plots compare travel times on the day of the special event
(red line) with the travel time on the same day of the week averaged over the previous 150
days (blue line). www.travelmidweststats.com

BUILDING A PARTICLE FILTER
Given our state-space model, the goal is to provide an on-line algorithm, for finding, in an on-line
fashion, the set of joint filtered posterior distributions p(xt ,αt |y1:t ) using a two-step procedure
for both xt ,αt , the traffic flow state, and switching variable at each time point. The advantage
of particle filtering is that we simply re-sample from the predictive distribution of the current
posterior and then propagate, to the next set of particles, to generate the approximation to the
conditional posterior update. Appendix A provides a review of particle filtering and learning
methods.

From a probabilistic viewpoint, we can re-write equations (1) - (2) as a hierarchical model

(yt+1|xt+1)∼N (H xt+1+ γ
T zt+1,Vαt+1

) (4)

(xt+1|xt ,αt+1)∼N (Gαt+1
xt +(I −Gαt+1

)µ, Wαt+1
). (5)

Now, suppose that we are currently at time t . We assume a particle approximation for

www.travelmidweststats.com
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the joint posterior of (xt ,αt ) is of the form

pN (xt ,αt |y
t ) =

N
∑

i=1

w (i)t φ(xt , m(i)t ,C (i)t )δα(i)t
(αt )

where y t = (y1, ..., yt ) and δα(·) is a Dirac measure and w (i)t is a set of particle weights, which
we will provide recursive updates for. We denote the Kalman moments by st = (mt ,Ct ) which
form a set of conditional sufficient statistics for the state. We describe the recursions later. Here
φ(x,µ,C ) denotes a normal density with mean µ and covariance C

φ(x,µ,C ) =
1

(2π)
k
2 |C |

1
2

exp
�

−
1

2
(x −µ)T C−1(x −µ)

�

.

To assimilate the next measurement, we need to find an updated posterior for (xt+1,αt+1),
with approximate weights w (i)t+1 and particles (xt+1,αt+1) of the form

pN �xt+1,αt+1|y
t+1�=

N
∑

i=1

w (i)t+1φ
�

xt+1, m(i)t+1,C (i)t+1

�

δ
α(i)t+1
(αt+1),

Our weights will be updated using the predictive likelihood, p(yt+1|s
(i)
t ), which are re-normalized.

We aim to provide a posterior with the same number of particles N with mixture weights of the
form

w (i)t+1 =
w (i)t p(yt+1|(αt , st )

(i))
∑N

i=1 w (i)t p(yt+1|(αt , st )
(i))

.

Recursive Updating
At time zero, we set an initial state distribution p(x0|α0) as follows

p(x0|α0) =
N
∑

i=1

w (i)
α0
φ(x0,µ

(i)
α0

,C (i)
α0
)

We take p(α0 = s) = 1/3, s ∈ {−1,0,1}.
Conditional on the hidden switching state αt , the Kalman filter recursions, imply that

filtered posterior distribution at time t is also mixture multivariate normal, i.e

pN (xt |α1:t , y1:t ) =
N
∑

i=1

w (i)t φ(xt , m(i)t ,C (i)t )

where (mt ,Ct )
(i) are functions of the whole path α1:t , y1:t .

The goal is to find the next filtered posterior p(xt+1|y1:t+1), which is obtained from the
marginal of the joint posterior p(xt+1,αt+1|y1:t+1).

Given, that xt ∼N (mt ,Ct ), from evolution equation (5), it follows that

p(xt+1|αt+1, st ) =φ(xt+1,Gαt+1
mt +(I −Gαt+1

)µ,Gαt+1
Ct G

T
αt+1
+Wαt+1

)
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To implement this algorithm, first compute the predictive likelihood of the next obser-
vation yt+1 given αt+1, st , where st = (mt ,Ct ) is the sufficient statistics. This can be done by
marginalizing out xt+1 from measurement equation (4). We obtain a marginal predictive distri-
bution

p(yt+1|αt+1, st ) =
∫

p(yt+1|αt+1, xt+1)p(xt+1|αt+1, st )d xt+1

=
∫

φ(yt+1, H xt+1+ γ
T zt+1,Vαt+1

)

φ(xt+1,Gαt+1
mt +(I −Gαt+1

)µ,Gαt+1
Ct G

T
αt+1
+Wαt+1

)d xt+1

=φ
�

yt+1,µ
y
t+1,V

p
t+1

�

.

where µy
t+1 =H (Gαt+1

mt+(I−Gαt+1
)µ)+γ T zt+1, V P

t+1 =Vαt+1
+H T

�

Gαt+1
Ct G

T
αt+1
+Wαt+1

�

H
and Vαt+1

and Wαt+1
are given variance-covariance matrices.

We can further marginalize out αt+1 using the transition kernel p(αt+1|αt ,Zt ). This leads
to 3-component mixture predictive model of the form

p(yt+1|xt ,αt ) =
∑

αt+1∈{0,1,−1}
φ(yt+1,µ

y
t+1,V

p
t+1)p(αt+1|αt ,Zt )

Our model, therefore allows for heavy-tails and non-Gaussianity in the traffic flow evolution.
We now show how this can be used to implement a particle filter and learning algorithm and
track the filtered posterior distributions of the hidden state p(xt |y1:t ) over time as new data yt+1
arrives.

Given (αt+1, yt+1), we need to update st = (µt ,Ct )
T , where we suppress the index i for

clarity.
These updates are given by Kalman recursion operator,K , which is given by

µ f
t =Gαt+1

µt +(I −Gαt+1
)µ, C f

t =Gαt+1
C GT

αt+1
+Wαt+1

µt =µ
f
t +Kt (yt −Hµ f

t ), Ct = (I −Kt Ht )C
f

t

with Kalman gain matrix
Kt =C f

t H T (H C f
t H T +V )−1

.
Now we are in a position to find the predictive density in equation (6), namely p(yt+1|αt , st ),

which is a 3-component mixture of Gaussians. This will lead to an efficient Rao-Blackwellised
particle filter

Algorithm. Particle Filtering for traffic flows:
Step 1 (Draw) an index kt (i)∼M u l t i(wt+1)-distribution with weights

w (i)t+1 = p
�

yt+1|s
(i)
t

�

/
N
∑

i=1

p
�

yt+1|s
(i)
t

�

. (6)
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Step 2 (Propagate) switching state α(i)t+1 ∼ p(αt+1|α
kt (i)
t )

Step 3 (Propagate) sufficient statistics s kt (i)
t using assimilated data and Kalman filter recur-

sion
s (i)t+1 =K (s

kt (i)
t ,α(i)t+1, yt+1) (7)

The weights are updated according to the following rule

w (i)t+1 =
w (i)t p(αt+1|α

(i)
t )

∑N
i=1 w (i)t p(αt+1|α(i)t )

Finally, we draw new state vector xt+1 from its mixture multivariate normal distribution.

TRACKING TRAFFIC FLOW ON INTERSTATE I-55
Dataset Description
The data was provided by the Lake Michigan Interstate Gateway Alliance
(http://www.travelmidwest.com/ ) formally Gary-Chicago-Milwaukee Corridor (GCM). The data
are measurements from the loop-detector sensors installed on interstate highways. A loop detec-
tor is a very simple presence sensor that senses when a vehicle is on top of it and generates an
on/off signal. There are slightly more then 900 loop-detector sensors that cover a large portion
of the Chicago metropolitan area. Every 5 minutes a report for each of the loop detector sensors
is recorded. Our data contains averaged speed, flow, and occupancy. Flow is defined as the number
of off-on switches. Occupancy is defined as percentage of time a point on a road segment was
occupied by a vehicle, thus it varies between 0 (empty road) to 100 (complete stand still). We
assume a constant vehicle length, and treat speed derived from a single loop-detector occupancy
measurement as the true traffic flow speed.

Numerical Experiments
Consider a single road segment. We use measured data for a 24-hour period taken on a week
day. The segment we consider is a part of highway I-55 north bound. This part of the highway
is heavily congested during the morning rush hour, mostly due to commuters, who travel from
the south-west suburbs to the central business district of Chicago. There were no special events
on that day and the weather was clear, thus a very similar congestion pattern can be observed
on any “usual” work day on this road segment. The measurements are made by a single loop
detector. For this example we calculate the filtering distribution for the travel speed, flow regime,
and rate of change variables on this segment. The time series of measured speeds is of length
N = 288 (24× 12).

The state xt = (θt , βt )
T ∈ R2 is a true travel speed and associated trend coefficient. The

parameters of the observation and evolution models are set to:

H = (1 0), Vαt
= 4, F0 = 0.5, Wαt

=
�

1.9 0
0 4.5

�

,

Given that we did not have access to manufacturer’s specifications of the loop detectors, we use
a value for the measurement error within the guidelines of the specification. The error for the
evolution equation was chosen using maximum a posteriori mode estimation based on the data
from the previous 30 days.
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In our simulation study, we define a transition matrix P with equilibrium probabilities
πP =π that calibrate well to the three states in practice. Thus, we construct a Markov-switching
process with the following probability transition matrix

Pαt
=







0.6 0.3 0.1
0.15 0.7 0.15
0.3 0.1 0.6






,

where αt ∈ {b r eakd own, f r e e f l ow, r ecove r y}. The transition probabilities were fitted
using a maximum a posteriori mode estimator. F0 was fitted using data from times when traffic
is stationary, and Wαt

was fitted using the data from both the stationary and non-stationary
regimes.

Figure 7 shows the filtered speed and its quantiles, along with measured data. We see
that the filtered state curve more-or-less follows the measurement curve. The evolution model
proposed in this paper is very general and allows large changes in the speed state. Thus, the
jittering behavior of measurement get mostly explained by statistical model and does not get
filtered out.
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FIGURE 7 Filtered traffic speed given loop detector measurements.

Figure 8 shows the filtered probability of α for each of the values (0,1,-1). We can see that
the algorithm accurately captures the changes in the flow regime, assigns high probability to free
flow regime before the morning peak and the shifts probability to the breakdown regime.
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FIGURE 8 Filtered value of P(α = i), i = 1, 2, 3

Figure 9 shows the filtered values for rate of change of speed during recovery and break-
down regimes. The algorithm captures all of the changes in traffic flow change rates. The algo-
rithm captures “fast” breakdown a little after 6am and “slow” breakdown at around 10am. It also
captures, for example, the recovery between 2pm and 4pm.

(a) Recovery (b) Degradation

FIGURE 9 Rate of change of traffic flow
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FIGURE 10 Comparison of filtered value of α with traffic states calculated using three
other naïve filters filters

Naive filter 1 (mean filter): µi =
1

w
∑i−1

j=i−w yi , y f
i =

yi −µi

µi

Naive filter 2 (simple smoothing): y f
i =

yi − yi−1

yi−1
Naive filter 3 (quantile filter):

Yi = {yi−w , ..., yi−1}
Qi := P r (Yi ≤ yi ) = 0.5 (median)

y f
i =

yi −Qi

Qi

The results of numerical experiments illustrate the following features. The filtered speed
plot follows the measurement plot, which is an expected result. We have chosen a well-behaving
sensor for the study and there is no outliers in the measurements. The filtering algorithm prop-
erly identifies rate of change during break down and recovery regime. We can see that breakdown
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happens faster. This is a well known fact, that it takes less time for a queue to build up than to
dissipate. This difference in time can be explained by driver’s behavior and the fact that vehicles
acceleration rate is lower then deceleration rate. However, the results for filtered probabilities of
the switching variable αt are less intuitive. Our filter properly identifies free flow regime in the
morning, but then gets “slightly confused” during morning rush hour by assigning very close
probabilities to recovery and breakdown regimes. We interpret this as saying that the Markov
switching process model used to model P (αt |αt+1,Zt ) is misspecified and need to be refined. This
is a topic for our future research.

DISCUSSION
We propose a mixture state-space model together with a particle filter and learning for tracking
the state of traffic flow and other hidden variables such as flow regime and rate of change in the
traffic flow speed. The proposed method is flexible, in a sense that it does not require the state-
space model to be Gaussian. Our approach does not rely on blind particle proposal for estimating
the forecast distribution, but instead draws are taken from a smoothed distribution, which takes
the measurement into consideration. Thus, our filter is fully adapted with exact samples from the
filtering distribution are drawn. We used the sufficient statistics representation for state particles
lead to a computationally efficient method. We formulate the traffic flow evolution equation as
a hierarchal Bayesian model that is capable of capturing traffic flow discontinuities.

Although we have focused on representation of state-space dynamics using multi-process
DLM, the same approach will work for the kinematic wave theory based approach. When the
evolution equation is given by the classical macroscopic traffic flow model, namely Lighthill-
Whitham-Richards (LWR) partial differential equation Lighthill and Whitham, Richards (48, 49).
A Bayesian analysis of traffic flows using the LWR model is described in Polson and Sokolov (12).
However, the analysis based on the LWR model requires an estimation of conditions for a road
segment, which is not always available. The statistical model described in here has the flexibility
to avoid assumptions on locations of sensors.

While we demonstrated the solution to the filtering problem in this paper, the fact that
we provided a closed form solution to the filtering density and can do exact sampling from the
filtering density allows us to use the same approach for particle learning and smoothing Carvalho
et al. (50). It works by augmenting the particle space to {xt , st}, where st is the sufficient statistic
for the parameter space γ , i.e. p(γ |x t , y t ) = p(γ |φt ). In the DLM setting we can learn β, by
removing the evolution equation for this parameter, rather then learning it directly from data,
without relying on any model. Further research into predictive performance of such models is
warranted.

PARTICLE FILTERING AND LEARNING METHODS
Particle filtering and learning methods are designed to provide state and parameter inference via
the set of joint posterior filtering distribution obtained in an on-line fashion [Gordon et al. (51),
Carpenter et al. (52),Pitt and Shephard (53), Storvik (54), Carvalho et al. (50)].

Let yt denote the data, and θt the state variable, in our context use (xt ,αt ). Let φ denote
the unknown parameters. For the moment, we suppress the conditioning on the parameters φ.
We will show how to update state variables and sufficient statistics for φ. First, we factorize the



Polson and Sokolov 18

joint posterior distribution of the data and state variables both ways as

p(yt+1,θt+1|θt ) = p(yt+1|θt+1)p(θt+1|θt )
= p(yt+1|θt ) p(θt+1|θt , yt+1)

The goal is to obtain the new filtering distribution p(θt+1|y t+1) from the current p(θt |y t ).
A particle representation of the previous filtering distribution is a random histogram of draws.
It is denoted by pN (θt |y t ) = 1/N

∑N
i=1δθ(i)t

, where δ is a Dirac measure. As the number of
particles increases N →∞ the law of large numbers guarantees that this distribution converges
to the true filtered distribution p(θt |y t ).

In order to provide random draws of the next distribution, we first resample θt ’s using
the smoothing distribution

p(θt |y
t+1)∝ p(yt+1|θt )p(θt |y

t )

obtained by Bayes rule. Thus, we draw θk(i)
t by drawing the index k(i) from a multinomial

distribution with weights

w (i)t =
p(yt+1|θ

(i)
t )

∑N
j=1 p(yt+1|θ( j )t )

.

We set θ(i)t = θ
k(i)
t and “propagate” to the next time period t + 1 using the predictive

p(θt+1|y1:t+1) =
∫

p(θt+1|θt , yt+1)p(θt |y1:t+1)dθt .

Given a particle approximation {θ(i) : 1≤ i ≤N} to pN
�

θt |y t
�

, we can use Bayes rule to write

pN �θt+1|y
t+1�∝

N
∑

i=1

p
�

yt+1|θ
(i)
t

�

p
�

θt+1|θ
(i)
t , yt+1

�

=
N
∑

i=1

w (i)t p
�

θt+1|θ
(i)
t , yt+1

�

,

where the particle weights are given by

w (i)t =
p
�

yt+1|θ
(i)
t

�

∑N
i=1 p

�

yt+1|θ(i)t

� .

This mixture distribution representation leads to a simple simulation approach for propagating
particles to the next filtering distribution.

The algorithm consists of two steps:

Step 1. (Resample) Draw θ(i)t ∼M u l tN

�

w (1)t , ..., w (N )t

�

for i = 1, ...,N

Step 2. (Propagate) Draw θ(i)t+1 ∼ p
�

θt+1|θ
(i)
t , yt+1

�

for i = 1, ...,N .
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To implement this algorithm, we need the predictive likelihood for the next observation,
yt+1, given the current state variable θt . It is defined by

p
�

yt+1|θt

�

=
∫

p
�

yt+1|θt+1

�

p
�

θt+1|θt

�

dθt+1.

We also need the conditional posterior for the next states θt+1 given (θt , yt+1). It is given by

p
�

θt+1|θt , yt+1

�

∝ p
�

yt+1|θt+1

�

p
�

θt+1|θt

�

.

This algorithm has several practical advantages. First, it does not suffer from the prob-
lem of particle degeneracy which plagues the standard sample-importance resample filtering al-
gorithms. This effect is heightened when yt+1 is an outlier. Second, it can easily be extended
to incorporate sequential parameter learning. It is common to also require learning about other
unknown static parameters, denoted by φ. To do this, we assume that there exists a conditional
sufficient statistic st for φ at time t , namely

p(φ|θ1:t , y1:t ) = p(φ|st )

where st = s(θ1:t , y1:t ). Moreover, we can propagate these sufficient statistics by the deterministic
recursion st+1 = S(st ,θt+1, yt+1), given particles (θt ,φ, st )

(i), i = 1, . . . ,N . First, we resample
(θt ,φ, st )

k(i) with weights proportional to p(yt+1|(θt ,φ)
k(i)). Then we propagate to the next

filtering distribution p(θt+1|y1:t+1) by drawing θ(i)t+1 from p(θt+1|θ
k(i)
t ,φk(i), yt+1), i = 1, . . . ,N .

We next update the sufficient statistic for i = 1, . . . ,N ,

st+1 = S(s k(i)
t ,θ(i)t+1, yt+1).

This represents a deterministic propagation. Parameter learning is completed by drawing φ(i)

using p(φ|s (i)t+1) for i = 1, . . . ,N . We now track the state, θt , and conditional sufficient statistics,
st , which will be used to perform off-line learning for φ.

The algorithm now consists of four steps:

Step 1. (Resample) Draw Index kt (i)∼M u l tN

�

w (1)t , ..., w (N )t

�

for i = 1, ...,N

The weights are proportional to p(yt+1|(θt , st )
(i))

Step 2. (Propagate) Draw θ(i)t+1 ∼ p
�

θt+1|(θt , st )
k(i), yt+1

�

for i = 1, ...,N .

Step 3. (Update) Deterministic s (i)t+1 = S
�

s k(i)
t ,θ(i)t+1, yt+1

�

for i = 1, ...,N .

Step 4. (Learning) Offline φ(i) ∼ p
�

φ|s (i)t+1

�

for i = 1, ...,N .
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