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Overview of Environment Perception for Intelligent

Vehicles
Hao Zhu, Ka-Veng Yuen, Lyudmila Mihaylova and Henry Leung, Fellow, IEEE

Abstract—This paper presents a comprehensive literature re-
view on environment perception for intelligent vehicles. The
state-of-the-art algorithms and modeling methods for intelligent
vehicles are given, with a summary of their pros and cons. A
special attention is paid to methods for lane and road detection,
traffic sign recognition, vehicle tracking, behavior analysis, and
scene understanding. In addition, we provide information about
datasets, common performance analysis, and perspectives on
future research directions in this area.

Index Terms—Intelligent vehicles, environment perception and
modeling, lane and road detection, traffic sign recognition, vehicle
tracking and behavior analysis, scene understanding.

I. INTRODUCTION

RESEARCH and development on environmental percep-

tion, advanced sensing, and intelligent driver assistance

systems aim at saving human lives. A wealth of research has

been dedicated to the development of driver assistance systems

and intelligent vehicles for safety enhancement [1], [2]. For

the purposes of safety, comfortability, and saving energy, the

field of intelligent vehicles has become a major research and

development topic in the world.

Many government agencies, academics, and industries in-

vest great amount of resources on intelligent vehicles, such

as Carnegie Mellon University, Stanford University, Cornell

University, University of Pennsylvania, Oshkosh Truck Corpo-

ration, Peking University, Google, Baidu, and Audi. Further-

more, many challenges have been held to test the capability

of intelligent vehicles in a real world environment, such as

DARPA Grand Challenge, Future challenge, and European

Land-Robot Trial.
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Fig. 1. Four fundamental technologies of intelligent vehicle [3].

Intelligent vehicles are also called autonomous vehicles,

driverless vehicles, or self-driving vehicles. An intelligent ve-

hicle enables a vehicle to operate autonomously by perceiving

the environment and implementing a responsive action. It com-

prises four fundamental technologies: environment perception

and modeling, localization and map building, path planning

and decision-making, and motion control [3], as shown in

Fig. 1.

One main requirement to intelligent vehicles is that they

need to be able to perceive and understand their surroundings

in real time. It also faces the challenge of processing large

amount of data from multiple sensors, such as camera, radio

detection and ranging (Radar), and light detection and ranging

(LiDAR). A tremendous amount of research has been dedi-

cated to environment perception and modeling over the last

decade. For intelligent vehicles, data are usually collected by

multiple sensors, such as camera, Radar, LiDAR, and infrared

sensors. After pre-processing, various features of objects from

the environment, such as roads, lanes, traffic signs, pedestrians

and vehicles, are extracted. Both static and moving objects

from the environment are being detected and tracked. Some

inference can also be performed, such as vehicle behavior and

scene understanding. The framework of environment percep-

tion and modeling is given in Fig. 2. The main functions

of environment perception for intelligent vehicles are based

on lane and road detection, traffic sign recognition, vehicle

tracking and behavior analysis, and scene understanding. In

this paper, we present a comprehensive survey of the state-

of-the-art approaches and the popular techniques used in

environment perception for intelligent vehicles.

This paper is organized as follows. Vehicular sensors for

intelligent vehicles are presented in Section II. In Section III, a

survey on lane and road detection is given. The technology on

traffic sign recognition is summarized in Section IV. Then, the
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Fig. 2. The framework of environment perception and modeling [3].

survey of vehicle tracking and behavior analysis is presented

in Section V. A review of scene understanding technologies

is given in Section VI and discussions are presented in

Section VII. Finally, conclusions and open questions for future

work are presented in Section VIII.

II. VEHICULAR SENSORS

A significant progress has been made in the research of

intelligent vehicles in recent years. Intelligent vehicles tech-

nologies are based on the information of the ego vehicle and

its surroundings, such as the lanes, roads, and other vehicles,

using the sensors of intelligent vehicles [4], [5]. The sensors in

intelligent vehicles can be divided into internal and external

sensors. The information of an ego vehicle can be obtained

by internal sensors, such as engine temperature, oil pressure,

battery and fuel levels. External sensors measure objects of

the ego vehicle’s surroundings, such as lanes, roads, other

vehicles, and pedestrians. External sensors includes Radar,

LiDAR, and Vision. In the Internet of vehicles, these sensors

can communicate with other vehicles and road infrastructure.

The communication among sensors, actuators and controllers

is carried out by a controller area network (CAN). It is a serial

bus communication protocol developed by Bosch in the early

80s [4], [6].

A. Global Positioning System

The Global Positioning System (GPS) is a space-based

navigation system that provides time and location information.

However, there is no GPS signal in an indoor environment.

Other systems are also under development or in use. Typical

examples are the Russian Global Navigation Satellite System,

the Indian Regional Navigation Satellite System, the planned

European Union Galileo positioning system, and the Chinese

BeiDou Navigation Satellite System.

B. Inertial navigation system

The Inertial Navigation System (INS) is a self-contained

navigation system. It can be used to track the position and

orientation of an object without external references.

C. Radar

Radar is an object detection system. Using the signal of

radio waves, it can be used to determine the range, angle, or

velocity of objects. Radar is consistent in different illumination

and weather conditions. However, measurements are usually

noisy and need to be filtered extensively [7].

D. LiDAR

LiDAR has been applied extensively to detect obstacle in

intelligent vehicles [8]. It utilizes laser light to detect the

distance to objects in a similar fashion as Radar system.

Compared with Radar, LiDAR provides a much wider field-

of-view and cleaner measurements. However, LiDAR is more

sensitive to precipitation [7].

E. Vision

Vision sensors are suitable for intelligent vehicle. Compared

with Radar and LiDAR, the raw measurement of vision sensor

is the light intensity [9]. Vision sensor can be grouped as

camera, lowlight level night vision, infrared night vision, and

stereo vision. It can provide a rich data source and a wide

field of view.

III. LANE AND ROAD DETECTION

Lane and road detection is an active field of research for

intelligent vehicles. Some surveys on recent developments in

lane and road detection can be found in [10], [11], [12].

We summarized some lane detection systems in Fig. 3. The

characteristics of these systems are given as follows:

(1) Lane departure warning: By predicting the trajectory of

the host vehicle, a lane departure warning system warns for

near lane departure events.

(2) Adaptive cruise control: In the host lane, the adaptive

cruise control follows the nearest vehicle with safe headway

distance.

(3) Lane keeping or centering: The lane keeping or centering

system keeps the host vehicles in the lane center.

(4) Lane change assist: The lane change assisting system

requires the host vehicle to change the lane without danger of

colliding with any object.

The difficulty of a lane and road detection system is condi-

tion diversity, such as lane and road appearance diversity, im-

age clarity, and poor visibility. Therefore, in order to improve

the performance of lane and road detect, various algorithms

have been proposed according to different assumptions on the

structured road. These assumptions are summarized as follows

[11]:

(1) The lane/road texture is consistent.

(2) The lane/road width is locally constant.

(3) Road marking follows strict rules for appearance or

placement.

(4) The road is a flat plane or follows a strict model for

elevation change.

Existing algorithms apply one or more of these assumptions.

Furthermore, the lane and road detection system usually con-

sists of three components: pre-processing, feature extraction,

and model fitting.
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Fig. 3. Some lane detection systems [11]: (a) Lane departure warning (b)
Adaptive cruise control (c) Lane keeping or centering (d) Lane change assist.

A. Pre-processing

Pre-processing is important for feature extraction in a lane

and road detection system. The objective of pre-processing

is to enhance feature of interest and reduce clutter. Pre-

processing methods can be categorized into two classes: re-

moving illumination-related effects and pruning irrelevant or

misleading image parts [12].

Due to the effects of time of a day and weather conditions,

vehicles face illumination-related problems. A robust lane and

road detection system should be able to handle the illumination

changes, from a sunny day to a rainy night. Information fusion

methods from heterogeneous sensors are effective to solve this

problem. Other weather-free methods have also been proposed.

In [13], a perceptual fog density prediction model was pro-

posed by using natural scene statistics and fog aware statistical

features. Observations and modeling of fog were studied by

cloud Radar and optical sensors in [14]. Furthermore, the cast

shadow is another major illumination-related issue. In a sunny

day, the shadow of trees can be casted on the road. Many color

space transformations to Hue Saturation Lightness (HSL),

Lightness and A and B for the color-opponent dimensions

(LAB), and others, which are not affected by illumination

changes, were proposed to eliminate the shadow effect [15],

[16], [17]. In [18], three different shadow-free images (1D, 2D,

and 3D) were investigated according to simple constraints on

lighting and cameras.

Vehicles, pedestrians, and other objects can be treated as

obstacles for the lane and road detection task. Many meth-

ods have been studied for pruning parts of the image. The

traditional approach is Regions of Interest (ROI) and feature

extraction is performed only on the ROI. A two-stage method,

including ROI extraction and lane marker verification, was

proposed for robust detection of pedestrian marked lanes at

traffic crossings. ROI extraction was performed by using color

and intensity information [19]. In [20], a set of Regions of

Interests (ROIs) was detected by a Motion Stereo technique

to improve the pedestrian detector’s performance. Using dense

stereo for both ROIs generation and pedestrian classification, a

novel pedestrian detection system for intelligent vehicles was

presented in [21].

B. Feature extraction

1) Lane feature: In general, a lane feature can be detected

by appearance of shape or color [12]. The simplest approach

of lane feature extraction assumes that the lane color is known.

Using the median local threshold method and a morphological

operation, lane markings can be extracted [22]. An adaptive

threshold method was proposed to lane markings detection in

[23].

Lane shape or color can be used to represent different

types of lanes on the road, such as solid line, dashed line,

segmented line, and circular reflector. Some colors can be used

for lane detection, such as white, yellow, orange and cyan.

Other lane feature extraction methods were based on one or

more assumptions [11], [23].

The detection methods are based on differences in the

appearance of lanes compared with the appearance of the

whole road. With this assumption, gradient-based feature

extraction methods can be applied. In [11], a steerable filter

was developed by computing three separable convolutions to

a lane tracking system for robust lane detection.

In [24], [25], [26], the lane marks were assumed to have

narrower shape and brighter intensity than their surroundings.

Compared with the steerable filter, a method with fixed vertical

and horizontal kernels was proposed with the advantage of fast

execution and disadvantage of low sensitivity to certain line

orientations [24]. In [27], the scale of kernel can be adjusted.

Furthermore, some practical techniques ([28], [29], [30],

[31]) were applied using mapping images to remove the per-

spective effect [12]. However, the inverse perspective mapping

(IPM) assumes that the road should be free of obstacles.

In order to resolve this problem, a robust method based on

multimodal sensor fusion was proposed. Data from a laser

range finder and the cameras were fused, so that the mapping

was not computed in the regions with obstacles [32].

By zooming into the vanishing point of the lanes, the lane

markings will only move on the same straight lines they are
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on [33]. Based on this fact, a lane feature extraction approach

was presented [33], [34].

2) Road feature: Roads are more complicated than lanes

as they are not bounded by man-made markings. Under

different environments, different cues can be used for road

boundaries. For example, curbs can be used for urban roads

and barriers can be found in highway roads [12]. Different

road features should be extracted in different environments

based on different assumptions.

Roads are assumed to have an elevation gap with its

surrounding [24], [35], [36], [37]. Stereo vision-based methods

were applied to extract the scene structure [35]. In [24], [36],

[38], a road markings extraction method is proposed based

on three dimensional (3-D) data and a LiDAR system. In

[37], a method was proposed to estimate the road region in

images captured by vehicle-mounted monocular camera. Using

an approach based on the alignment of two successive images,

the road region was determined by calculating the differences

between the previous and current warped images.

Another method for road feature extraction is based on road

appearance and color, where it is assumed that the road has

uniform appearance. In [17], a region growing method was

applied to road segmentation. In [11], the road appearance

constancy was assumed. Some methods based on road color

features were considered in [39], [40]. A road-area detection

algorithm based on color images was proposed. This algorithm

is composed of two modules: boundaries were estimated using

the intensity image and road areas were detected using the full

color image [40].

Texture is also used as road feature [41], [42]. Using

Gabor filters, texture orientations were computed. Then an

edge detection technique was proposed for the detection of

road boundaries [42]. In order to improve the performance of

road detection, methods incorporating prior information have

been proposed, such as temporal coherence [43] and shape

restrictions [39]. Temporal coherence is averaging the results

of consecutive frames. Shape restrictions mean the modeling

of the road shape and restricting the possible road area [44].

Using geographical information systems, an algorithm was

proposed to estimate the road profile online and prior to

building a road map [44].

C. Model fitting

The lane and road model can be categorized into three

classes: parametric models, semi-parametric models, and non-

parametric models [12].

1) Parametric models: In the case of short range or high-

way, straight line is the simplest model for path boundaries.

For curved roads, parabolic curves and generic circumference

arcs were proposed in the bird’s eye view. Hyperbolic polyno-

mial curves and parabolic curves were applied to handle more

general curved paths in the projective headway view [12].

Many methods were developed to fit the parametric mod-

els, such as random sampling consensus (RANSAC), Hough

transform, vanishing point, and Kalman filter. RANSAC has

the ability to detect outliers and to fit a model to inliers

only. It has been investigated for all types of lane and road

models. In [29], a Kalman filter-based RANSAC method was

found to lane detection. In [45], a parabolic lane model was

proposed and the parameters of the lane model were obtained

by the randomized Hough transform and genetic algorithm.

By assuming a constant path width, vanishing points can be

applied as texture for linear boundaries. In [46], the Hough

transform and a voting method were utilized to obtain the

vanishing points and the road boundaries.

2) Semi-parametric models: In contrast to parametric mod-

els, semi-parametric models do not assume a specific global

geometry of the path. Therefore, it is necessary to consider

the problem of over-fitting and unrealistic path curvature [12].

Splines are piecewise-defined polynomial functions [12]. A

cubic-spline curve enables fast fitting since the control points

are on the curve. A lane-boundary hypothesis was represented

by a constrained cubic-spline curve in [47]. A B-Spline can

describe any arbitrary shape using control points. Using a B-

Snake to perform lane marking detection, a lane tracking algo-

rithm was proposed in [48]. Cubic Hermite splines ensure the

continuity of the extracted features. In [24], the cubic Hermite

spline was proposed to extract features, which represents the

underlying lane markings. In all spline models [12], the curves

were parameterized using a set of control points either on [47]

or near [48] the curve. In [49], a Catmull-Rom spline was

proposed for lane detection. One major advantage of splines

is that small changes in the parameters lead to small changes

in the appearance of the curves they model [12].

3) Non-parametric models: Non-parametric models require

only continuity but not differentiability of the curve. In [50],

an ant colony optimization method was proposed to solve

the road-borders detection problem. In [51], a hierarchical

Bayesian network method was used to detect off road driv-

able corridors for autonomous navigation. Considering only

constrained relations among points on the left and right lane

boundaries, a lane model was proposed in [28]. Table I

summarizes various methods for lane and road detection.

D. Evaluation

In order to compare the performance of different methods,

it is necessary to establish benchmark and evaluate algorithms

for lane and road detection. Some datasets are available, such

as the Caltech Lanes dataset and Road markings dataset. Cal-

tech Lanes dataset1 was built from streets in Pasadena, CA at

different times of day. It includes 1225 individual frames. Road

markings dataset2 includes more than 100 original images of

diverse road scenes.

We performed experiments on the Caltech Lanes dataset and

1224 frames have been used. Each frame has 640×480 pixels.

A RANSAC line fitting-based method [56], a feature pattern-

based method [58], a Hough transform-based method3, and a

B-Snake-based method [59] are compared. In the RANSAC

1The data set is publicly available at
http://www.vision.caltech.edu/malaa/datasets/caltech-lanes/

2The data set is publicly available at
http://www.lcpc.fr/english/products/image-databases/article/roma-road-
markings-1817

3http://cn.mathworks.com/help/vision/examples/lane-departure-warning-
system.html
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TABLE I
VARIOUS METHODS IN LANE AND ROAD DETECTION

Research

study

Feature ex-

traction

Model fitting Accuracy reported in the original paper Processing time reported

in the original paper

Comment

Li et al.,

2003 [23]

color infor-

mation

curve fitting Not given the numerical performance N/A using an adaptive thresh-

old method without being

predefined, only consider

the color information fea-

ture

Lee et al.,

2001 [52]

transformation

modules

piecewise linear
• Dataset: real expressway

• Results: 58 lane changes of total 61 lane changes are successfully

detected

Mean alarm triggering

time: 0.643 seconds at

15Hz

lane departure warning.

sensor fusion algorithm is

proposed to estimate lane

geometry

Jung et al.,

2016 [53]

Hough

transform

cubic curve
• Dataset: Borkar’s dataset [54], Yoo’s dataset [55], and Jung’s dataset

• Performance evaluate: Lane detection rate

• Results:

– Borkar’s dataset: 95.72%

– Yoo’s dataset: 97.68%

– Jung’s dataset: 88.70%

0.117 seconds for a 1-

second video

alignment of multiple

consecutive scanlines

McCall et

al., 2006

[11]

steerable fil-

ters

parabolic approximation
• Dataset: scenes from dawn daytime, dusk, and nighttime data

• Performance evaluate: mean absolute error in position, standard devi-

ation of error in position, and standard deviation of error in rate of

change of lateral position

• Results:

– mean absolute error in position: 8.2481 cm (average)

– standard deviation of error in position: 13.1377 cm (average)

– standard deviation of error in rate of change of lateral position:

0.29595 cm/s (average)

N/A robustness to complex

environment

Aly et al.,

2008 [56]

filtering

with

Gaussian

kernels

RANSAC spline fitting
• Dataset: 1224 labeled frames containing 4172 marked lanes

• Performance evaluate: the correct detection rate, the false positive rate,

and the false positive/frame rate

• Results:

– 2-lanes mode: detecting only the two lane boundaries of the current

lane

∗ the correct detection rate: 96.34%

∗ the false positive rate: 11.57%

∗ the false positive/frame rate: 0.191

– all lanes mode: detecting all visible lanes in the image

∗ the correct detection rate: 90.89%

∗ the false positive rate: 17.38%

∗ the false positive/frame rate: 0.592

N/A generating a top view of

the road using inverse

perspective mapping

Wang et al.,

2012 [33]

global shape

information

parallel parabolas on the

ground plane • Dataset: several video sequences

• Performance evaluate: ER value means parameter estimation error

• Results:

– scene 1 ER: 0.11 (parameter a), 0.27 (parameter b1), 0.38 (parameter

b2), and 0.71 (parameter c)

– scene 2 ER: 0.36 (parameter a), 0.99 (parameter b1), 0.27 (parameter

b2), and 0.80 (parameter c)

– scene 3 ER: 1.06 (parameter a), 0.41 (parameter b1), 0.19 (parameter

b2), and 1.01 (parameter c)

N/A based on the fact that by

zooming into the vanish-

ing point of the lanes,

the lane markings will

only move on the same

straight lines they are on

Yamaguchi

et al., 2009

[37]

shape infor-

mation

road region boundary is

represented by a single

line

Not given the numerical performance N/A road have an elevation

gap with its surrounding

Rasmussen

et al., 2004

[42]

texture

information

vanishing point Not given the numerical performance N/A designed for ill-

structured roads

Cui et al.,

2016 [57]

color and

shape

information

white bars of a particu-

lar width against a darker

background

• Dataset: different urban traffic scenes

• Performance evaluate: the mean absolute error of the lane marking

detection accuracy

• Results: about 3 pixels

N/A shape registration algo-

rithm between the de-

tected lane markings and

a GPS-based road shape

prior for localization

line fitting-based method [56], a top view of the image was

obtained by IPM, then some selective oriented Gaussian filters

were proposed, and a RANSAC spline fitting algorithm was

used to detect lanes. In feature pattern-based method [58], lane

features were detected by HSV color spaces, and the Hough

transform algorithm was proposed to detect the lanes. In

Hough transform-based method, the lane features was detected

by color thresholding. Then, Hough transform algorithm was

applied. In the B-Snake-based method [59], a B-Snake model

was proposed to detect the lane boundaries. Lane detection

samples by these four algorithms are given in Fig. 4. The

measures of correct rate and false positive rate are utilized to

evaluate these four algorithms. For simplicity, the results only

focus on the two lane boundaries of the current lane. The

detection results are given in Table. II. The RANSAC line

fitting-based method has the highest correct and false positive

rates.
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Fig. 4. Lane detection samples by these four algorithms. The first column
is the RANSAC line fitting-based method results, the second column is the
feature pattern-based method results, the third column is the Hough transform-
based method results, and the fourth column is the B-Snake-based method
results. The first row is the frame=65, the second row is the frame=67, the
third row is the frame=201, and the fourth row is the frame=222.

TABLE II
THE RESULTS OF LANE DETECTION

Method Correct rate
(%)

False positive
rate (%)

The RANSAC line fitting-
based method

96.39 11.25

The Feature pattern-based
method

95.33 6.44

The Hough transform-based
method

95.49 8.40

The B-Snake-based method 94.22 10.63

IV. TRAFFIC SIGN RECOGNITION

Traffic signs are used on roads to represent different traffic

situations. Most traffic signs are encoded as visual language,

which can be quickly interpreted by drivers. Traffic signs

can be divided into ideogram-based signs and text-based

signs. Ideogram-based signs express the sign meaning through

graphics. The text-based signs contain text or other symbols

[60]. Therefore, the text-based signs usually contain more

information than the ideogram-based signs, but recognition of

the text-based signs is more time-consuming. As a result, most

research works were dedicated to ideogram-based signs.

Traffic signs give warning to drivers, show the danger and

special attention around them, and help them navigate [61].

Some traffic signs of China, United States and Europe are

given in Table III. Even though the traffic signs of most

countries are conformed to the Vienna Convention, some

traffic signs are country-dependent.

The first paper on sign recognition was published in Japan in

1984 [61]. In the following decades, a large volume of research

works on traffic sign recognition were conducted. However,

as traffic signs are placed in complex outdoor conditions,

traffic sign recognition is a nontrivial problem. The influencing

factors are summarized as follows [60]:

TABLE III
SOME TRAFFIC SIGNS OF CHINA, AMERICA, AND EUROPE

Road
Sign

Interpretation Color Shape Region

Prohibition Red, White Octagon China

Prohibition Red, White Octagon Europe

Prohibition Red, White Octagon U.S.

Prohibition Red, White, Black Circle China

Prohibition Red, White, Black Circle Europe

Prohibition Red, White, Black Circle U.S.

Warning Red, White, Black Circle China

Warning Red, White, Black Circle Europe
SPEED

LIMIT

Warning Red, White, Black Circle U.S.

Obligation Blue, White Circle China

Obligation Blue, White Circle Europe
KEEP

LEFT Obligation Blue, White Circle U.S.

(1) lighting conditions: such as sunny, shady, rainy, cloudy,

and windy;

(2) background: such as freeways, expressways, highways,

boulevards, streets, and country roads;

(3) the presence of other objects in the scene: such as cars,

pedestrians, and fog;

(4) varied appearance of traffic signs: the size, angle, and

position of traffic signs may be different in different images;

(5) long exposure: under long exposure, the color of traffic

sign may be faded;

(6) measurement: the image of traffic sign suffers from

motion blur using a moving measured platform.

Other noteworthy works on recent developments in traffic

sign recognition are given in [60], [62], [63], [64]. The system

of traffic sign recognition can be partitioned into three steps:

segmentation, feature selection and detection.

A. Segmentation

The purpose of the segmentation process is to obtain the

location of the traffic sign. Some of the previous works

bypassed this step and started directly with detection [65],

[66], [67], [68]. Most of them were based on color and a

threshold of images in some color space. The RGB color space

is a popular representation modality for images, but the RGB

space is sensitive to changes in lighting. As a result, Hue,

Saturation, and Intensity (HSI) space and Hue, Saturation, and

Value (HSV) space were proposed [69], [70], [71]. HSI color

space is similar to human perception of colors [70]. A color

appearance model CIECAM97 was used to measure color

appearance under various viewing and weather conditions [72],

[73]. In [74], the authors demonstrated that a good approach

to image segmentation should be normalized with respect to

illumination, such as RGB or Ohta normalization.

In addition to these color-based threshold methods, other

methods were also proposed. In [75], a cascaded classifier

trained with AdaBoost was proposed for traffic sign detection.

In [76], a color-based search method was developed with

a discrete-color image representation. In [77], it generated
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ROIs with possible traffic sign candidates using a biologically

motivated attention system.

B. Shape features

The methods of feature selection for traffic sign recognition

can be divided into color-based approaches and shape-based

approaches. The color of traffic sign includes yellow, black,

red, blue, and white while the shape of traffic sign includes

triangle, circle, and octagon. The color-based feature selection

methods are the same as the methods for segmentation.

For the shape-based methods, the most popular one is

based on edges. Using the Canny edge detection or other

variations, the edges can be detected [78], [79], [80], [81].

The histogram of oriented gradients (HOG) method was also

proposed. A traffic sign detection approach was developed by

use of visual saliency and HOG feature learning [82]. Two

new HOG features, namely the Single Bin HOG feature and

Fishers discriminant analysis linearized HOG feature, were

proposed in [83]. The HOG feature with color information

was proposed to obtain a more robust feature [67]. A Haar

wavelet-like feature for traffic sign is another alternative [68],

[84]. Furthermore, some other methods were proposed, such

as distance to bounding box [85], fast Fourier transform (FFT)

of shape signatures [86], tangent functions [71], simple image

patches [70], and combinations of various simple features

[77]. In [64], integral channel features and aggregate channel

features were proposed to detect U.S. traffic signs.

C. Detection

As the detection step is coupled with the feature extraction

step, the choice of detection method depends on the features

from the previous stage [63]. The Hough transform was

proposed to process the edge features [87], [88]. A radial

symmetry detector was proposed for sign detection [89], [90].

In [79], a fast radial symmetry transform was proposed to

detect triangular, square or octagonal road signs.

A Support Vector Machine (SVM) was proposed to process

the HOG feature [67], [82]. A cascaded classifier was also used

to classify HOG features [83], [91]. A multilayer perceptron

neural networks was also proposed to detect road sign in

[70]. Genetic algorithms for sign road detection was presented

in [92]. An overview of traffic sign detection methods is

summarized in Table IV.

D. Evaluation

Public traffic sign datasets with ground truth are available

at the German TSR Benchmark 4, KUL Belgium Traffic Signs

Data set 5, Swedish Traffic Signs Data set 6, RUG Traffic Sign

Image Database 7, Stereopolis Database, and LISA Dataset

4The data set is publicly available at
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

5The data set is publicly available at http://www.vision.ee.ethz.ch/t̃imofter/
6The data set is publicly available at

http://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/
7The data set is publicly available at http://www.cs.rug.nl/

ĩmaging/databases/traffic sign database/traffic sign database.html

TABLE V
RESULTS OF COMPARISON TRAFFIC LIGHT RECOGNITION SYSTEMS

Segmentation Feature Classification Precision
(%)

Recall
(%)

Color
thresholding

HSV Color
thresholding

68 62.8

Color
thresholding

RGB Color
thresholding

65 68

RGB Color
thresholding

HOG SVM 80.6 82

RGB Color
thresholding

Local binary
pattern

SVM 83 83.3

RGB Color
thresholding

Gabor
wavelet

Linear
discriminant
analysis

79 82.1

8. Results for detection with these data sets and tracking

are presented in [63], [64]. The performance evaluation is

performed with important measures such as detection rate and

false positives per frame.

We performed experiments on traffic light recognition. The

dataset of La Route Automotive at Mines ParisTech 9, Paris,

was chosen. We used a set of 200 red lights, 200 green lights,

100 yellow lights for training and 200 red lights, 200 green

lights, 100 yellow lights for testing. Each frame has 640 ×

480 pixels. To evaluate traffic light recognition systems, the

common measures precision and recall were chosen. They are

defined as:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

where TP , FP , and FN denotes true positives, false pos-

itives, and false negatives, respectively. The results of the

performance comparison of the considered methods are given

in Table V. From this table, the method of SVM with local

binary patterns is found to provide the the best performance.

V. VEHICLE DETECTION, TRACKING AND BEHAVIOR

ANALYSIS

Although there have been substantial developments in the

field of vehicle tracking and behavior analysis, the field is

still at its infancy stage. The framework of vehicle tracking

and behavior analysis is illustrated in Fig. 5. From this

figure, some features can be used to perform vehicle detection

from numerous vehicular sensors. Vehicles can be tracked by

many multi-sensor multi-target tracking algorithms. Then, the

behavior of vehicles can be inferred.

A. Vehicle detection

Research on vehicle detection faces the problem of outdoor

complex environments, such as illumination and background

changes and occlusions. Key developments on vehicle detec-

tion were summarized in [9], [101]. The vehicle detection

methods can be categorized into appearance-based and motion-

based [9].

8The data set is publicly available at http://cvrr.ucsd.edu/LISA/datasets.html
9http://www.lara.prd.fr/benchmarks/trafficlightsrecognition
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TABLE IV
AN OVERVIEW OF TRAFFIC SIGN DETECTION METHODS

Research

study

Segmentation Features Detection methods Real-time

implementa-

tion

Sign type Accuracy reported in the original paper Processing time reported

in the original paper

Maldonado-

Bascn et al.,

2007 [85]

HSI thresh-

olding

distance to bounding box Shape classification

based on linear SVMs

No Circular, rectangular, tri-

angular, and octagonal

the recognition success probabilities are 93.24%, 67.85%, and 44.90% for the small, medium-sized,

and large masks, respectively

1.77s per frame on a 2.2

GHz Pentium 4M, where

the frame dimensions are

720*576 pixels

Keller et al.,

2008 [93]

Radial sym-

metry voting

Haar wavelet features Cascaded classifier Yes Rectangular
• Dataset: a videos consists of 16826 frames with 80 different speed sign instances

• Performance evaluate: Detection rate, classification rate, and recognition rate

• Results:

– Detection rate: 98.75%

– Classification rate: 97.5%

– Recognition rate: 96.25%

N/A

Gao et al.,

2006 [72]

LCH thresh-

olding

HOG Comparison with tem-

plate

No Circular and Rectangular
• Dataset: several real road sign databases

• Performance evaluate: Detection rate, classification rate, and recognition rate

• Results:

– Detection rate: 98.75%

– Classification rate: 97.5%

– Recognition rate: 96.25%

From 0.2 up to 0.7 sec-

onds per image on a PC

with Pentium.III

Barnes et

al., 2008

[80]

None Edges Radial symmetry voting Yes Circular
• Dataset: real data collected on public roads around Canberra, Australian

• Performance evaluate: Detection rate

• Results: 93% successful detection with around 0.5 false positive per sequence

N/A

Gonzalez

et al., 2011

[88]

None Edges Hough shape detection No Any sign
• Dataset: real data collected on Spanish road

• Performance evaluate: detection signs ratio and valid signs ratio

• Results: detection signs ratio: 98.10% and valid signs ratio: 99.52%

N/A

Xie et al.,

2009 [82]

Saliency de-

tection

HOG SVM N/A Circular and square
• Dataset: real images

• Results:

– Detection ratio: 98.30% (average)

– False positive rate: 4.71% (average)

10 seconds for a 400x300

image

Zaklouta et

al., 2012

[94]

Color HOG and distance trans-

forms

K-D trees, random

forests, and SVM

Yes Red color sign
• Dataset: German TSR Benchmark

• compare the performance of the k-d trees, the random forests, and the SVM classifiers

N/A

Yuan et al.,

2014 [95]

None Color global and local

oriented edge magnitude

pattern

SVM N/A Any sign
• Dataset: Spanish Traffic Sign Set, German TSR Benchmark, and Authors data set

• Results:

– Detection results

∗ Precision: 94.45% (Spanish Traffic Sign Set) 87.34% (Authors data set)

∗ Recall: 88.02% (Spanish Traffic Sign Set) 91.60% (Authors data set)

– Classification results: accuracy rate

∗ Authors data set:97.24%

∗ German TSR Benchmark: 97.26%

4 frames per seconds,

where the frame is

1360*1024

Yuan et al.,

2015 [96]

Multithreshold

segmenta-

tion

Color, saliency, spatial,

and contextual

SVM N/A Any sign
• Dataset: Spanish Traffic Sign Set, German TSR Benchmark, and Swedish Traffic Signs Data set

• Results:

– Detection results

∗ Spanish Traffic Sign Set: Precision (91.46%), Recall (96.57%), and F-measure (93.95%)

∗ German TSR Benchmark: Precision (89.65%), Recall (87.84%), and F-measure (88.73%)

∗ Swedish Traffic Signs Data set: Precision (96.30%), Recall (96.21%), and F-measure

(96.25%)

– Classification results: accuracy rate

∗ Spanish Traffic Sign Set: 100%

∗ German TSR Benchmark: 97.63%

∗ Swedish Traffic Signs Data set: 95.49%

3 frames per seconds,

where the frame is

1280*960

Yang et al.,

2016 [97]

None color probability model

and HOG features

SVM and convolutional

neural network

No Any sign
• Dataset: German TSR Benchmark and Chinese Traffic Sign Dataset

• Results:

– Detection results: Recall

∗ German TSR Benchmark: 99.47%

∗ Chinese Traffic Sign Dataset: 99.51%

– Classification results: accuracy rate

∗ German TSR Benchmark: 98.24%

∗ Chinese Traffic Sign Dataset: 98.77%

165 ms per image of

1360*800 pixel using a

PC with a 4-core 3.7 GHz

CPU

Liu et al.,

2016 [98]

High

contrast

region

extraction

Voting of neighboring

features

Split-flow cascade tree

detector and extended

sparse representation

classification

No Any sign
• Dataset: German TSR Benchmark

• Results: Classification results

– Accuracy: 94.81%

– False alarm rate: 4.10%

115 ms per image of

1360*800 pixel using a

PC with a 4-core 3.19

GHz CPU

Chen et al.,

2016 [99]

Saliency

model

Color, shape, and spatial

location information

AdaBoost and support

vector regression

Yes Any sign
• Dataset: German TSR Benchmark, Spanish Traffic Sign Set, and KUL Belgium Traffic Signs

Data set

• Performance evaluate: area under curve, precision, and recall

• Results:

– German TSR Benchmark: area under curve 99.96%

– KUL Belgium Traffic Signs Data set: area under curve 97.04%

– Spanish Traffic Sign Set: precision 94.52% recall 80.85%

0.05-0.5 seconds per im-

age

Hu et al.,

2016 [100]

None Spatially pooled features

and aggregated channel

features

Normalized spectral clus-

ter

N/A Any sign
• Dataset: German TSR Benchmark and KITTI Dataset

• Performance evaluate: precision-recall curve and average precision

about 0.6 seconds per im-

age

1) Appearance-based methods: Many appearance features

have been proposed to detect vehicles, such as: color, symme-

try, edges, HOG features, and Haar-like features. Using color

information, vehicles can be segmented from the background.

In [102], multivariate decision trees for piecewise linear non-

parametric function approximation was used to model the

color of a target object from training samples. In [103], an

adaptive color model was proposed to detect the color features

of the objects around the vehicles. In [104], symmetry as

a cue for vehicle detection was studied. In [105], a scheme

of symmetry axis detection and filtering based on symmetry

constraints was proposed.

More recently, simpler image features (e.g., color, symme-

try, and edges) have been transformed to robust feature sets.

In [106], vehicles were detected based on their edges of HOG

features and symmetrical characteristics. In [107], HOG sym-
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Fig. 5. The framework of vehicle tracking and behavior analysis [9].

metry vectors were proposed to detect vehicles. Haar features

are sensitive to vertical, horizontal, and symmetric structures

[9]. In [108], Haar and Triangle features were proposed for

vehicle detection systems. HOG and Haar features were used

to detect vehicle in [109].

After generating the hypothesis of locations of possible

vehicles, verification is necessary for the presence of vehicles.

SVM and AdaBoost methods are widely used for vehicle

detection. A system of integrated HOG feature and SVM clas-

sification has been studied in [106], [110]. The combination

of edge feature and SVM classification was given in [111].

AdaBoost was proposed to classify the symmetry feature and

edge feature in [112] and [113], respectively. The Haar-like

feature and AdaBoost classification has been applied to detect

vehicles [114], [115].

2) Motion-based methods: In motion-based vehicle detec-

tion methods, optical flow and occupancy grids have been

widely used. In [116], optical flow was proposed to detect

any type of frontal collision. In [117], the optical flow method

was applied to a scene descriptor for classifying urban traffic.

The optical flow was also proposed to analyze road scenes [9],

[118]. Occupancy grids are proposed for scene segmentation

and understanding. In [119], occupancy grids were filtered

both temporally and spatially. In [120], an occupancy grid

tracking solution was proposed based on particles for tracking

the dynamic driving environment.

B. Vehicle tracking

The aim of vehicle tracking is to reidentify and measure dy-

namics and motion characteristics and to predict and estimate

the upcoming position of vehicles [9]. The major problems

include: measurement error uncertainty, data association, and

necessity to fuse efficiently data from multiple sensors.

1) Measurement uncertainty: In the tracking on platform

of intelligent vehicles, the measurement noise is the main

issue of measurement uncertainty. The Kalman filter is the

optimal algorithm in a linear system under Gaussian noises.

However, in Radar-based tracking non-Gaussian distributions

are often observed [121]. Many methods have been proposed

to deal with this non-Gaussian nature of the noises. They

can be classified as recursive and batch approaches [122].

The recursive approaches are performed online [123], such

as the Masreliez filter, multiple model (MM) approaches,

Sequential Monte Carlo (SMC) approaches, and interacting

multiple model (IMM) filters. The batch approaches are with

offline implementations. In [124], an expectation maximization

(EM) algorithm and an IMM algorithm were developed. In

[125], a variational Bayesian (VB) algorithm was proposed

to estimate the state and parameters in non-Gaussian noise

systems.

2) Data association: Data association plays an important

role in the multi-sensor multi-target systems. The algorithms

of data association can be divided into explicit data association

algorithms and implicit data association algorithms [126].

Methods for explicit data association tracking vary widely:

from the nearest neighbor (NN) algorithm [127], the multi-

hypothesis tracking (MHT) approach [128], the probabilistic

data association (PDA) approach [129], to the joint probability

data association (JPDA) algorithms [130], [131]. In contrast

to explicit data association, implicit data association tracking

approaches output a set of object hypotheses in an implicit

way, such as particle filter approaches [132], probability

hypothesis density (PHD) filtering [133], multi-target multi-

Bernoulli (MeMBer) filtering [134], [135], and labeled multi-

Bernoulli filtering [136].

3) Fusion: The architectures for sensor data fusion can be

divided into centralized and decentralized fusion. Combining

the overall system measurements, most of the data and infor-

mation processing steps are performed at the fusion center

in centralized fusion. In [137], a multitarget detection and

tracking approach for the case of multiple measurements per

target and for an unknown and varying number of targets

was proposed. In [138], [139], a joint sensor registration and

fusion approach was developed for cooperative driving in

intelligent transportation systems. In [140], [141], a multi-

sensor and multitarget surveillance system was developed

based on solving jointly the registration, data association and

data fusion problems.

For the decentralized fusion architecture, the fusion of tracks

can be performed at the tracks level. In [142], based on

equivalent measurements, a joint sensor registration and track-

to-track fusion approach was proposed. In [143], using a

pseudo-measurement approach, a joint registration, association

and fusion method at distributed architecture was developed.

In [144], using information matrix fusion, a track-to-track

fusion approach was presented for automotive environment

perception. Therefore, many heterogeneous sensor data can

be fused for vehicle tracking [145].

4) Joint lane, vehicle tracking, and vehicle classification:

The performance of vehicle tracking can be improved by

utilizing the lane information and vehicle characteristics to

enforce geometric constraints based on the road information.

The lane tracking performance can be improved by exploiting

vehicle tracking results and eliminating spurious lane marking
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TABLE VII
THE RESULTS OF VEHICLE TRACKING

Method Distance

The tracking by detection method 68.78

The scene flow-based method 18.12

The L1-based tracker method 0.95

The compressive tracking method 2.40

filter responses from the search space [146]. Vehicle character-

istics can be used to enhance data association in multi-vehicle

tracking. However, few works have explored simultaneous

lane, vehicle tracking and classification. A joint lanes and

vehicles tracking system was proposed by a PDA filter using

camera in [147]. In [148], simultaneous lane and vehicle

tracking method using camera was applied to improve vehicle

detection. In [146], a synergistic approach to integrated land

and vehicle tracking using camera was proposed for driver

assistance. In [149], using lane and vehicle information, a

maneuvering target was tracked by Radar and image-sensor-

based measurement. In [150], an integrated system for vehicle

tracking and classification was presented. Table VI highlights

key representative works in vehicle detection and tracking.

We performed experiments on KITTI datasets. A total of

278 frames were used and results are obtained with the

tracking by detection method 10, the scene flow-based method

[158], an L1-based tracking method [159], and a compressive

method [160]. These algorithms were applied to tracking

single vehicle and comparative results from separate video

frames results are given in Fig. 6. A measure of the distance

between the true centerline and the estimated centerline is used

to evaluate these algorithms. The tracking results are given in

Table. VII. It is observed that the L1-based tracker method

has the best performance.

C. Behavior analysis

Using the results from the vehicle detection and tracking

system, an analysis of the behaviors of other vehicles can be

performed. Four characteristics of vehicle behavior are pre-

sented, namely context, maneuvers, trajectories and behavior

classification [146].

1) Context: The role of context is important for vehicle

behavior analysis. In [117], modeling the driving context,

the driving environment was classified. In [161], a dynamic

visual model was designed to detect critical motions of nearby

vehicles. In [154], the behavior of on-coming vehicles was

inferred by motion and depth information.

2) Maneuvers: An overtaking monitoring system was pre-

sented in [162]. In [163], combining the information pro-

vided by Radar and camera, an optical flow method was

implemented to detect overtaking vehicles. In [154], an IMM

was evaluated for inferring the turning behavior of oncoming

vehicles. In [149], a Markov process was constructed to model

the behavior of on-road vehicles.

3) Trajectories: In [164], a long-term prediction method

of vehicles was proposed. In [165], highway trajectories were

10http://www.cvlibs.net/software/trackbydet/

clustered using hidden Markov model. In [166], vehicle track-

ing in combination with a long term motion prediction method

was presented.

4) Behavior classification: Efficient models such as Gaus-

sian mixture models, Markov models, and Bayesian networks

have been validated for vehicle behavior classification. In

[164], the vehicle behavior was classified by a Gaussian

mixture model. In [167], the vehicle behavior was modeled by

Markov model before their future trajectories was estimated.

In [168], the behavior of vehicles was classified by a Bayesian

network.

VI. SCENE UNDERSTANDING

Scene understanding is very useful for intelligent vehicles.

The procedure of scene understanding can be broadly subdi-

vided to semantic segmentation and scene classification.

A. Semantic segmentation

Semantic segmentation is the first step towards scene un-

derstanding. It is mainly based on low-features, such as color,

edges, and brightness. The methods for feature selection have

been reported in the above subtasks of lane and road detection,

traffic sign recognition, and vehicle detection. Furthermore,

contextual information is important for semantic segmentation.

Using contextual information, the widely applied models of

scene understanding can be categorized as graphical models,

convolutional networks, cascaded classifiers, and edge detec-

tion [169].

1) Graphical models: Markov Random Fields (MRF) and

Conditional Random Fields (CRF) are the most popular ap-

proaches. In [170], an inference technique was presented for

MRF to minimize a unified energy function. In [171], a

CRF method was proposed for labeling images. In [172], a

hierarchical Dirichlet process was developed to model visual

scenes.

2) Convolutional networks: Convolutional networks are

widely used [169]. In [173], a convolutional network was

trained for scene parsing. In [174], a deep convolutional

network in combination with CRF was shown to improve the

semantic segmentation performance.

3) Cascaded classifiers: In [175], a different architecture

for combining multiple classifiers into a cascaded classifier

model was performed for scene understanding. In [176], a

feedback enabled cascaded classification model was developed

to jointly optimize several subtasks in scene understanding.

Since each classifier is considered in series, the training

process of a cascaded classifier model is substantially simpler

than convolutional networks [169].

4) Edge detection: Various unsupervised methods have

been applied for edge detection. In [177], an efficient edge

detector was introduced and able to learn different edge

patterns. In [169], a contextual hierarchical model was used to

distinguish between “patches centered on an edge pixel” and

“patches centered on a non-edge pixel”.
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TABLE VI
SOME REPRESENTATIVE WORKS IN VEHICLE DETECTION AND TRACKING

Research

study

Detection Tracking Accuracy reported in the original paper Processing time reported

in the original paper

Sensor type

Liu et

al.,2007

[151]

Contour

symmetry

Template

matching • Dataset: real-world video sequences

• Performance evaluate: tracking continuity

• Results:

– Urban road 97.9%

– Narrow road 93.6%

– High way 100%

– Mountain road 80.5%

25 frames per second us-

ing PC machine (Pentium

IV 2.8GHz and 512M of

RAM)

Monocular

vision

Haselhoff

et al.,2009

[152]

Haar-like

features

Kalman fil-

ter • Dataset: real-world video sequences

• Performance evaluate: overlap factor

• Results: around 90%

N/A Monocular

vision

Sivaraman

et al.,2009

[153]

Haar-like

features

Particle filter
• Dataset: LISA-Q Front FOV data set

• Performance evaluate:

– True positive rate: 95%(set 1) 91.7%(set 2) 99.8%(set

3)

– False detection rate: 6.4%(set 1) 25.5%(set 2) 8.5%(set

3)

– Average false positives/frame: 0.29(set 1) 0.39(set 2)

0.28(set 3)

– Average true positives/frame: 4.2(set 1) 1.14(set 2)

3.17(set 3)

– False positives/vehicle: 0.06(set 1) 0.31(set 2) 0.09(set

3)

N/A Monocular

vision

Barth et

al.,2010

[154]

Motion and

depth infor-

mation

Kalman fil-

ter, IMM • Dataset: synthetic stereo images

• Performance evaluate: root mean squared corner error

• Results: average 0.49m

80 ms per frame on an In-

tel Quad Core processor,

Stereo

vision

Danescu

et al.,2011

[120]

Occupancy

grids

Particle filter
• Dataset: synthetic stereo images

• Performance evaluate: speed and orientation estimation

accuracy

• Results: quickly converge toward the ground truth and

stable

40 ms per frame on an In-

tel Core 2 Duo processor

at 2.1 GHz

Stereo

vision

Lim et

al.,2013

[155]

HOG Markov

chain Monte

Carlo

particle

filter

• Dataset: real world stereo images

• Performance evaluate: the MOTP score and the MOTA

score

• Results:

– MOTA: 94.0% (Scene1) 89.8% (Scene2)

– MOTP: 68.2% (Scene1) 69.3% (Scene2)

N/A Stereo

vision

Fortin et

al.,2015

[156]

Point sets Sequential

Monte Carlo

methods

• Dataset: synthetic data and real data from an IBEO LD

Automotive scanning laser telemeter

• Performance evaluate: estimation accuracies, cardinality

accuracy, and OSPA-T distance

N/A LiDAR

Chavez-

Garcia et

al.,2016

[157]

Point sets

and HOG

Markov

chain Monte

Carlo

• Dataset: two datasets from urban areas and two datasets

from highways

• Performance evaluate: vehicle mis-classifications

• Results: 5.4% (Highway 1 ) 4.5% (Highway 2) 10.2%

(Urban 1) 10.3% (Urban 2)

N/A Radar, cam-

era, and Li-

DAR

B. Scene classification

As most scenes are composed of entities in a highly vari-

able layout, scene classification is an important problem for

environment perception. In the literature, scene classification

has been focused on binary problems, such as distinguishing

indoor from outdoor scenes. Inspired by the way how the

human perception system works, numerous efforts have been

devoted to classify a large number of scene categories. The
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Fig. 6. The samples tracking results by these four algorithms. The red box is the results of the tracking by detection method, the green box is the results
of the scene flow-based method, the blue box is the results of the L1-based tracker method, and the yellow box is the results of the compressive tracking
method.

most popular method is the “bag-of-features”. It represents

images as orderless collections. The features can be extracted

by the Scale-invariant feature transform (SIFT) [178] or the

HOG method [179]. In [180], the SIFT was proposed to

extract visual features and these features were encoded to a

Fisher kernel framework for scene classification. In [181], a

convolutional neural network (CNN) was proposed to perform

scene classification.

Recently, the model of “bag-of-semantics” was proposed. In

this model, an image is extracted as a semantic feature space.

It has the capability to perform a spatially localized semantic

mapping. In [182], a set of classifiers for individual semantic

attributes was trained for object classification. In [183], a high-

level image representation encoding object appearance and

spatial location information was proposed. In [184], a semantic

Fisher vector, which is an extension of the Fisher vector to bag-

of-semantics, was applied to classify image patches. Table VIII

highlights some representative works in scene understanding.

C. Datasets

Datasets are publicly available for scene understanding,

such as: the KITTI Vision dataset 11 and the CityScapes

segmentation benchmark 12. Furthermore, some researchers

have annotated KITTI images with semantic labels, such

as Jose Alvarez13, Philippe Xu14, Lubor Ladicky15, Fatma

Güney16, Sunando Sengupta17, German Ros18 and Abhijit

Kundu19. Some other datasets were captured using Kinect or

similar devices 20.

VII. DISCUSSION

From Section II to Section VI, the subtasks of environment

perception are given. In general, the process of segmentation,

11http://www.cvlibs.net/datasets/kitti/
12https://www.cityscapes-dataset.com/news/
13https://rsu.forge.nicta.com.au/people/jalvarez/research bbdd.php
14https://www.hds.utc.fr/x̃uphilip/dokuwiki/en/data
15https://www.inf.ethz.ch/personal/ladickyl/
16http://www.cvlibs.net/projects/displets/
17http://www.robots.ox.ac.uk/t̃vg/projects/SemanticUrbanModelling/index.php
18http://adas.cvc.uab.es/s2uad/
19http://www.cc.gatech.edu/ãkundu7/projects/JointSegRec/
20http://www.cs.ucl.ac.uk/staff/M.Firman/RGBDdatasets/

detection, classification, and tracking can be treated as a piece

or whole framework for each subtasks. In this framework

feature extraction represents a key challenge. We summarize

some representative feature cues in Table IX.

For the lane and road detection, different methods rely on

different assumptions. Many features have been investigated.

A better solution is fusion of multiple features to achieve

reasonable performance. For model fitting, straight line is a

simple and effective model for short range roads or highway.

Splines are good models for curved roads.

In the traffic sign recognition systems, most segmentation

methods rely on color or shape information. The detection

approach is dependent on the choice of features. In most

traffic sign recognition system, color, shape, and structural

features are typically considered. The Hough transform and its

derivatives have been widely applied for the purposes of object

detection. The SVM, neural networks, and cascaded classifiers

have been used to classify the traffic sign using HOG or Haar

wavelet features. The performance of traffic sign recognition

can be improved, for instance by creating a combined feature

space and by using the map information. A drawback of traffic

sign recognition systems is due to the lack of public datasets

for training and testing.

For the purpose of vehicle tracking, the tradeoff between

accuracy and computational complexity is of primary impor-

tance. The motion and depth information add another layer

that can help improving the accuracy. However, most current

vehicle tracking algorithms do not use information about the

fact of vehicle driving on the road. We believe that a joint

framework of lane detection, vehicle classification, and vehicle

tracking are in the heart of the next generation of intelligent

vehicles.

The methods of deep learning [174] and semantic Fisher

vector [184] have a big potential in scene understanding.

VIII. CONCLUSION

The development of environment perception and modeling

technology is one of the key aspects for intelligent vehicles.

This paper presents an overview of the state of the arts of

environment perception and modeling technology. First, the

pros and cons of vehicular sensors are presented. Next, popular
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TABLE VIII
SOME REPRESENTATIVE WORKS IN SCENE UNDERSTANDING

Research

study

Indoor or

outdoor

Characteristics Accuracy reported in the original paper Processing time reported

in the original paper

Comment

Lee et al.,

2009 [185]

indoor 3D cuboid from a single

image • Dataset: 54 images of indoor scenes

• Results:

– Classified correctly: 81% of the pixels

– Less than 30% misclassified pixels: 76% of the images

– 10% misclassified pixels: 44%

N/A Built on edges and image segments as features; most of them

rely on the Manhattan world assumption

Hedau et al.,

2009 [186]

indoor 3D occupancy grids
• Dataset: 308 indoor images

• Results:

– Error for box layout estimation: 21.2%(pixel error),

6.3%(corner error)

– Pixel error for surface label estimation: 18.3%(pixel

error)

N/A Modeling the room clutter using 3D occupancy grids

Pero et al.,

2012 [187]

indoor cuboids
• Dataset: UCB dataset and Hedau test

• Results: Average error on room layout estimation

– UCB dataset: 18.4%

– Hedau test: 16.3%

N/A Modeling the geometry and location of specific objects using

cuboids

Delaitre et

al., 2012

[188]

indoor context from observing

people • Dataset: 146 time-lapse videos

• Results:

– Pose estimation

∗ Average precision: about 50%

∗ Percentage of Correct Parts: about 56%

– Semantic labeling of objects

∗ Average precision: 43 ± 4.3(appearance, location

and person features combined)

N/A Functional object description to recognize objects by the way

people interact with them

Zeisl et al.,

2011 [189]

indoor structure prior vertical and non-vertical structures coexist O(nL) for an m*n image

and considering L depth

values

A natural assumption of bounded open space for building

interiors: (i) by parallel ground and ceiling planes, and (ii) by

vertical wall elements

Hoiem et al.,

2007 [190]

outdoor 3D layout of a scene from

a single image

Results: Average accuracy of varying levels of spatial support

and four types of cues are given

N/A Separating the ground from the vertical structures and the sky

Hoiem et al.,

2008 [191]

outdoor tree-structured modeling

(check) • Dataset: 422 outdoor images from the LabelMe dataset

• Performance evaluate:

– Object Detection : ROC curves for car and pedestrian

detection

– Horizon Estimation : median absolute error

N/A Framework for placing local object detection in the context of

the overall 3D scene by modeling the interdependence of objects

Sudderth et

al., 2008

[172]

outdoor hierarchical Dirichlet

process • Dataset: 613 street scenes and 315 pictures of office scenes

• Performance evaluate: segmentation results, ROC curves

N/A Couples topic models originally developed for text analysis

with spatial transformations; consistently accounts for geometric

constraints

Geiger et al.,

2012 [192]

outdoor Prior, Vehicle Tracklet,

Vanishing points, seman-

tic scene label, scene

flow, occupancy grid

• Dataset: 113 intersections scenes

• Performance evaluate: Topology Accuracy, Location Error,

Street Orient, Road Area Overlap, Tracklet Accuracy, Lane

Accuracy, Object Orient error, and Object Detection Ac-

curacy

N/A Understanding traffic situations at intersection

TABLE IX
SOME REPRESENTATIVE FEATURE CUES

Type Cues Characteristics or advantages Limitations

Appearance-

based

Color Simple calculations Affect from background with same color

Edge Low computational load
• Affect from outlier

• Difficult to choose the threshold

Symmetry
• Vertically symmetrical in multi-vehicle in road

• Useful to ROI estimation

• High computational load

• Difficult to choose the threshold

Corners Find corners with edge pixels Not useful in complex environment

Multiple

features • More precision

• Robustness

High computational load

Motion-

based

Occupancy

grids

Computing static obstacles and free space High computational load

Optical flow Matching pixels or feature points between two frames
• Not useful to slow moving objects

• High computational load

modeling methods and algorithms of lane and road detection,

traffic sign recognition, vehicle tracking and behavior analysis,

and scene understanding are reviewed. Public datasets and

codes of environment perception and modeling technology are

also described.

Current challenges for environment perception and model-
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ing technology are due to the complex outdoor environments

and the need of efficient methods for their perception in real

time. The changeable lighting and weather conditions, and the

complex backgrounds, especially the presence of occluding

objects still represent significant challenges to intelligent ve-

hicles. Furthermore, it is very important to recognize road in

the off-road environment.

As many algorithms have been proposed for environment

perception, it is necessary to establish more benchmarks

and performance evaluations on environment perception for

intelligent vehicles.

Since environment perception and modeling technology

stage is the link with the work of localization and map build-

ing, path planning and decision-making, and motion control,

the next step is to develop the entire system.
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