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Personalized Prediction of Vehicle Energy
Consumption based on Participatory Sensing

Chien-Ming Tseng and Chi-Kin Chau

Abstract—The advent of abundant on-board sensors and elec-
tronic devices in vehicles populates the paradigm of participatory
sensing to harness crowd-sourced data gathering for intelligent
transportation applications, such as distance-to-empty prediction
and eco-routing. While participatory sensing can provide diverse
driving data, there lacks a systematic study of effective utilization
of the data for personalized prediction. There are considerable
challenges on how to interpolate the missing data from a sparse
dataset, which often arises from participatory sensing. This paper
presents and compares various approaches for personalized
vehicle energy consumption prediction, including a blackbox
framework that identifies driver/vehicle/environment-dependent
factors and a collaborative filtering approach based on matrix
factorization. Furthermore, a case study of distance-to-empty
prediction for electric vehicles by participatory sensing data
is conducted and evaluated empirically, which shows that our
approaches can significantly improve the prediction accuracy.

Index Terms—Participatory sensing, vehicle energy consump-
tion, distance-to-empty prediction, data mining

I. INTRODUCTION

Participatory sensing is an emerging paradigm of crowd-
sourced data collection and knowledge discovery, which has
been applied in diverse applications of pervasive and mobile
computing systems [1]. The basic concept is that a group
of users contribute their personal data (possibly, voluntarily)
to a third-party data repository, in exchange for the useful
knowledge extracted from the collective data, which is then
incorporated in personalized applications of individual users.

Vehicles are becoming a vital platform for participatory
sensing. First, there are extensive deployments of on-board
sensors and in-vehicle information systems, equipped with
network connectivity and computing power, acting as effective
information collection systems. Second, the wide availability
of electronic devices and smartphones carried by passengers
can extend the computing and sensing abilities of vehicles.
Third, there are abundant off-the-shelf and after-market au-
tomotive accessories for gathering driving data and vehicle
information. Notably, participatory sensing has been applied
in several existing intelligent transportation applications (e.g.,
traffic status updates in Google Map and Waze).

Furthermore, new intelligent transportation applications can
be enhanced by participatory sensing. One of the critical
applications is the prediction of distance-to-empty (DTE) -

Chien-Ming Tseng and Chi-Kin Chau are with the Department of
EECS, Masdar Institute of Science and Technology, UAE (e-mail: {ctseng,
ckchau}@masdar.ac.ae).

This paper appears in IEEE Transactions on Intelligent Transportation
Systems (DOI:10.1109/TITS.2017.2672880).

the distance an electric vehicle (EV) or internal-combustion-
engine (ICE) vehicle can reach before its energy/fuel is
exhausted. DTE is determined by a variety of factors, such
as driving behavior, terrain, types of road, traffic, and vehicle
specifications. The conventional approach of DTE prediction
employed by car manufacturers is based on the projection of
past average vehicle energy efficiency of individual drivers.
Such an approach is often perceived to be inaccurate. How-
ever, if there is further knowledge about the vehicle, driving
behavior and the route to travel, future energy efficiency can
be estimated with higher accuracy.

The availability of participatory sensing data is able to
improve the accuracy of DTE prediction by exploiting the
historical data from other drivers. Conceptually, one can
identify the characteristics pertaining to specific driver, vehicle
or environment. Then, one can harness the measurements
from similar drivers, vehicles or environments to assist the
prediction. In particular, there are several areas of applications:

1) Vehicle Centric Applications: Range anxiety is critical
for EVs. Since there are far more ICE vehicles on the
road than EVs, one can harness the data collected from
ICE vehicles to improve the DTE prediction for EVs.

2) Driver Centric Applications: With diverse data collected
from various drivers, one can compare the driving be-
havior among drivers. Hence, one can classify driving
behavior and provide driving recommendations.

3) Environment Centric Applications: Eco-routing or green
telematics can be provided by comparing different routes
according to energy/fuel consumption prediction.

This paper studies a framework of participatory sensing
with an integrated platform of appropriate knowledge dis-
covery and incorporation mechanisms for personalized vehi-
cle/driver/environment centric applications (depicted in Fig. 1).

Fig. 1: An integrated platform of participatory sensing for
personalized applications.

While participatory sensing can provide diverse driving
data, there are considerable challenges of harnessing partic-
ipatory sensing. First, participatory sensing dataset is often
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sparse and skewed, which does not cover sufficient combi-
nations of vehicle/driver/environment. This calls for an effec-
tive approach to interpolate the missing data from a sparse
dataset. Second, the dimensionality of dataset may be large
due to different combinations of various drivers, vehicles and
environments. To enable data analytics, an efficient method is
desirable to extract the correlations within data.

This paper explores several approaches of utilizing partici-
patory sensing data for personalized applications:

1) Comparison with the Average: One can obtain the aver-
age data values (e.g., average speed, stopping duration)
from a large dataset for a specific environment. Then the
deviation of individual drivers is compensated from the
average data values in personalized applications.

2) Collaborative Filtering: A domain-free data mining
technique is to analyze the relationships and interde-
pendencies within a dataset and to identify a smaller set
of latent factors that can characterize the observed data.
Based on latent factors, one can interpolate the missing
data in the dataset. In particular, matrix factorization is
a popular solution to realize collaborative filtering.

3) Similarity Matching: Using a known model of vehicle
energy consumption, one can compare the participatory
sensing data and find the most similar instances from
the available data to estimate the required values.

The notion of average data values has been utilized in
previous papers [2], [3], which has a disadvantage of requiring
a large dataset. Collaborative filtering [4], [5] is a general
technique in data mining without leveraging the detailed
knowledge of underlying model. However, the presence of spe-
cific knowledge in vehicle energy consumption can potentially
improve the accuracy and effectiveness.

This paper presents several viable approaches of utilizing
participatory sensing data for personalized prediction of vehi-
cle energy consumption. In particular, a blackbox framework
is presented to effectively identify driver/vehicle/environment
dependent factors from participatory sensing data for per-
sonalized prediction. To demonstrate the effectiveness of our
approaches, a case study of distance-to-empty prediction for
EVs based on the participatory sensing data is conducted and
validated empirically, which shows that our approaches can
significantly improve the prediction accuracy.

Outline of Paper: The related work is first presented in
Sec. II. The methodologies of personalized prediction ap-
proaches are presented in Secs. III-IV. The empirical eval-
uations of our approaches are given in Sec. V. A case study
that utilizes our results is discussed in Sec. VI.

II. RELATED WORK

A. Vehicle Energy Consumption Models

Modeling vehicle energy consumption has been the subject
of a number of research papers. One popular method is the
model-based approach, which is based on vehicle dynamics
to model the consumption behavior of ICE vehicles [6] and
EVs [7]. Energy consumption estimation can use a blackbox
approach. For example, a statistical approach using regression
model to estimate the energy consumption of ICE vehicles

is presented in [8]. The energy consumption rate of different
vehicles and roads can also be clustered to characterize the
energy consumption of general vehicle and road types [3].

B. Data Collection of Vehicle Energy Consumption

The accuracy of energy consumption prediction can be
enhanced by collecting more information. Two crucial fac-
tors of energy consumption prediction are the future speed
profiles and future environmental factors (e.g., temperature,
wind speed or route grade), which may be highly dynamic
and difficult to predict. One method to estimate the future
speed profiles is to utilize Markov chain [9]. Also, one can
deploy sensor networks, by which stationary measurements at
specific locations, such as traffic, average speed, speed limit
and route grade can be measured. There are a number of papers
focusing on utilizing such information [3]. However, the traffic
data in these papers is usually static, which may have a large
deviation in dynamic traffic. A study that integrates the real-
time traffic sensor data to predict the energy consumption and
emission of ICE vehicles is presented in [10]. One can also
obtain the estimated information from social networks and
participatory sensing. Participatory sensing can provide mobile
measurements and good geographic penetrations [11]. For
example, [12] shows that the estimation of stochastic effects
which impact the travel velocity and acceleration profiles can
be crowd-sourced to identify traffic congestion. Our previous
work employs participatory sensing for DTE prediction [13],
[14], which is extended in this paper.

C. Applications of Vehicle Energy Consumption

The integration of energy consumption prediction and data
collection enables many applications. One application is the
estimation of DTE, based on the prediction of vehicle energy
efficiency (i.e., energy intensity), which is employed in pro-
duction vehicles [15]. DTE can be estimated by measuring the
mean energy consumption over short and long distances [16].
To account for the deviation between the historical and future
energy intensity, a regression model can be used to predict
the future energy intensity given future route information [17].
Route features from sensor data can be clustered to identify the
driving pattern for EV range estimation [18]. Another applica-
tion is eco-routing. A system based on road characteristics and
current prevailing traffic conditions is presented in [19]. It can
provide users a more economic and safer route with reasonable
speed instead of only driving at a lower speed. Another study
utilizing average participatory sensing data and static traffic in-
formation for eco-routing system of ICE vehicles is presented
in [2]. Route-type based energy consumption prediction can
be implemented using OpenStreetMap (OSM) data. There are
some studies using the OSM data to predict the EV range
[20]. A cloud based prediction system considers the deviation
between the mean energy consumption and that of different
condition (e.g., traffic congestion or driving behavior) in [21].
The route-type based energy consumption model requires a
complete map database including speed limit, route type and
traffic information, which may not be available everywhere.
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This work differentiates from the previous work in sev-
eral aspects: (1) We compare various personalized predic-
tion approaches of vehicle energy consumption. (2) We
present a novel blackbox framework to extract driver/vehicle/
environment-dependent factors. (3) We conduct a case study
of DTE prediction for EVs using different approaches.

III. METHODOLOGY AND BACKGROUND

This section presents the relevant methodology and back-
ground related to vehicle energy consumption models.

A. Areas of Factors

While there are many factors to determine vehicle energy
consumption, they can be classified by three broad areas:
• Driver: The driver who controls the vehicle has a direct

impact on the vehicle movement. Different drivers exhibit
different preferences for stop/start and acceleration, ag-
gression in various scenarios, propensity for hypermiling,
etc. Psychological and behavioral traits of drivers also
affect vehicle energy efficiency.

• Vehicle: Different types of vehicles consume energy
differently. ICE vehicles are characterized by the engine
types and gear shifts, whereas hybrid and EVs are af-
fected by battery performance and regenerative braking.
The sizes and weights of vehicles often determine the
efficiency of kinetic energy conversion, so SUVs and
trucks are usually less energy-efficient than sedan and
compact vehicles.

• Environment: The environmental factors include traffic
and roads. Traffic for a road segment depends on a
plethora of factors, including time-of-day, day-of-year,
special events, which may follow a certain pattern. The
types of roads also affect drivers’ behavior differently,
which can be divided into three main categories: small
public or private roads with urban traffic, lower capacity
“urban” highways, and higher capacity freeways. Other
environmental factors, such as road grades and weather
types, can also be considered.

The historical data of vehicle speed profiles can be identified
by a combination of (driver, vehicle, environment), referred
as a data point. This paper aims to predict the energy con-
sumption for each data point. Through participatory sensing, a
dataset of measured energy consumption for a relatively small
number of data points are collected. This paper addresses the
challenge of data interpolation with good accuracy.

B. Types of Models

There are two main types of energy consumption models:
• White-box Model: A straightforward approach is to

employ a white-box microscopic behavior model of each
vehicle that comprehensively characterizes the engine
performance, vehicle mechanics, battery systems, etc.
To incorporate traffic information, one can rely on a
macroscopic traffic database collected from a network
of loop sensors along specific road segments. However,
such a white-box vehicle model requires a large amount

of data for calibration and detailed knowledge specific
to a particular vehicle. Also, the availability and access
of accurate traffic information is often limited to certain
authorized parties only.

• Blackbox Model: A blackbox approach is more desirable
that requires minimal knowledge of vehicle model with
only a small set of measurable variables and parameters.
The variables and parameters depend on the combina-
tions of (driver, vehicle, environment). In the subsequent
sections, the variables and parameters obtained in the
blackbox model will be utilized for collaborative filtering
and similarity matching.

C. Energy Consumption Model

This section describes a linear blackbox model of vehicle
energy consumption that has been used extensively in the liter-
ature [2], [3], [8], [13], [22]. Denote a driver by D, a vehicle
model by V, and a particular environment (e.g., a segment
of route and time-of-day) by R. Each energy consumption is
represented by a numerical value ED,V,R, indexed by the tuple
(D,V,R). All the entries of energy consumption values form
a 3-dimensional tensor, denoted by [ED,V,R].

While there are sophisticated approaches of estimating the
moving vehicle energy consumption by white-box microscopic
behavior models [7], [6], [9], [18], [23], [24], these models
are rather difficult to implement. Many parameters are re-
quired, for example, engine efficiency, transmission efficiency,
regenerative braking efficiency, etc. However, in practice, these
parameters are hard to obtain. Therefore, this paper utilizes a
blackbox approach without the detailed knowledge of vehicle
mechanics. This approach maximizes the applicability for a
wide range of scenarios arising from participatory sensing.

The total energy consumption E of driver D with vehicle
model V in a particular environment R is given by:

ED,V,R = Emv
D,V,R + Eid

D,V,R (1)

where Emv
D,V,R is the moving vehicle energy consumption and

Eid
D,V,R is the idle vehicle energy consumption.

1) Moving Vehicle Energy Consumption: With respect to a
particular combination of (D,V,R), the moving vehicle energy
consumption Emv has unit in liter or kWh. Next, the subscript
D,V,R is dropped for brevity.

In this paper, Emv (denoted by Êmv) is estimated by a linear
equation of several measurable variables from vehicles1:

Êmv =
αv,1

αv,2

...
αv,r


T 

v
v2

...
vr

+


~αd,1

~αd,2

...
~αd,k


T 

~d
~d2

...
~dk

+


~αa,1

~αa,2

...
~αa,m


T 

~a
~a2

...
~am

+

αg

α`

c

T g`
1


(2)

where

1Some of the variables are selected based on [25], which analyzed more
than 20 thousand data points from 45 drivers to identify the most significant
factors of fuel consumption and emission.
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(a) Measured and interpolated data points in a
sparse dataset. (b) Factors and dependence. (c) Interpolation of data points by substitution of

factors from the most similar measured data points.

Fig. 2: Illustrations for interpolation of missing data points.

• v is the continuous average speed (i.e., the average speed
without idling). The higher powers2 of v like v2, ..., vr

are also considered.
• ~d = (τd, µd, σd) is the deceleration tuple:

– τd is the total duration of deceleration.
– µd is the mean deceleration (i.e., the sum of decel-

eration values divided by the deceleration duration).
– σd is the standard deviation of deceleration.

Denote the higher powers of components in the deceler-
ation tuple by ~dk = (τkd , µ

k
d, σ

k
d).

• ~a is the acceleration tuple (similar to ~d).
• g is the mean absolute value of gyroscope along the

moving direction.
• ` is the auxiliary load of idling, which is the baseline

measurement when the vehicle is not moving.
• c is a normalization constant.
• αv , (αv,1, ..., αv,r), αd , (αd,1, ..., αd,k), αa , (αa,1,
..., αa,k), αg, α` are the corresponding coefficients.

Note that the coefficients αd , (αd,1, ..., αd,k) can effectively
capture the regenerated energy of EVs.

2) Idle Vehicle Energy Consumption:
Similarly, a blackbox approach is used to estimate the idle

vehicle energy consumption. The subscript D,V,R is dropped for
brevity. With respect to a particular combination of (D,V,R),
the idle vehicle energy consumption Eid (denoted by Êid) is
estimated by a linear equation:

Êid = β1µ`+ β2ω (3)

where
• µ is the total idle duration.
• ` is the auxiliary load of idling.
• ω is the outdoor temperature.
• β1, β2 are the coefficients.
The parameters v, ` can be obtained from standard OBD

data inquiry from vehicles, whereas ~d,~a, µ can be computed
from speed profiles, g can be obtained from smartphones, and
ω can be obtained from online weather data.

D. Estimation of Coefficients

The coefficients (αv, ~αd, ~αa, αg, α`, c, β1, β2) in Eqns. (2)-
(3) can be estimated by the standard regression method, if

2Sec. V will empirically determine the proper powers of parameters.

sufficient measured data (v, ~d,~a, g, `, µ, ω) and the respective
energy consumption data (Êmv, Êid) are provided. Assume
that each driver-vehicle pair (D,V) has collected sufficient
historical personal driving data, and hence, the coefficients can
be estimated for the respective environment R. One notable
advantage of regression method is that it is less susceptible to
random noise, which can arise from various sources (e.g., due
to time synchronization in data sampling, mechanic damping,
inaccurate measurements).

IV. INTERPOLATING PARTICIPATORY SENSING DATA

Given a dataset of driving data collected by participatory
sensing, a data point can be visualized as a point in a
3-dimensional Euclidean space, indexed by (D,V,R). The
participatory sensing dataset is usually sparse, consisting of
a skewed and clustered distribution of data points. In order to
predict the vehicle energy consumption for the data points
that are not collected from participatory sensing, we seek
to interpolate the missing data points to cover the space of
dataset. An illustration is depicted in Fig. 2a.

Next, three major data interpolation approaches by similar-
ity matching, matrix factorization, and comparison with the
average are presented.

A. Similarity Matching

Similarity matching is related to neighborhood-based col-
laborative filtering. The three areas of factors (i.e., driver,
vehicle, and environment) that determine the vehicle energy
consumption are not necessarily exclusive. There are factors
that can belong to multiple aspects. For example, the speed of
a vehicle depends on both driver and environment. Abstractly,
the factors can be visualized by a Venn diagram (see Fig. 2b).

After characterizing the factors and their dependence, the
interpolation of missing data points can be attained by suitable
substitution of factors from the most similar measured data
points. For example, see Fig. 2c for an illustration. After
obtaining the measured data for (D1,V1,R1) and (D2,V2,R2),
we aim to estimate the energy consumption for (D1,V1,R2).
If D1 is similar to D2 and V1 is similar to V2, then one can
replace the factors that depend on R1 in (D1,V1,R1) by those
depend on R2 in (D2,V2,R2).

The energy consumption model in Eqns. (2)-(3) provides
a convenient way to extract the factors of driver, vehicle,
and environment dependence. In Table I, the dependence of
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each parameter is heuristically assigned based on the major
observable impacts from the driver, vehicle or environment.

Driver- Vehicle- Environment-
dependent dependent dependent

v, ~d,~a, g, ` X X
µ, ω X

αv , ~αd, ~αa, αg X
α`, c X
β1, β2 X X

TABLE I: Dependence of parameters and coefficients.

For the coefficients, it is assumed that their dependence
is complementary to that of the respective parameters. For
example, the average speed v is more likely affected by the
driver and environment, while to a less extent by the type
of vehicle. Hence, coefficient αv is considered to be vehicle-
dependent, such that the product αvv will be specific to a
particular tuple (D,V,R). The dependence of coefficients will
be empirically validated in Sec. V.

The interpolation of missing data points can be attained
by the substitution of parameters and coefficients in the
vehicle energy consumption model. Consider an example in
Fig. 2c. Let the parameters and coefficients for (D1,V1,R1)
be (αv, ~αd, ~αa, αg, α`, c, β1, β2) and (v, ~d,~a, g, `, µ, ω), and
those for (D2,V2,R2) be (α′v, ~α

′
d, ~α
′
a, α
′
g, α
′
`, c
′, β′1, β

′
2)

and (v′, ~d′,~a′, g′, `′, µ′, ω′). To estimate the energy con-
sumption of (D1,V1,R2), (αv, ~αd, ~αa, αg, α`, c, β1, β2) and
(v′, ~d′,~a′, g′, `, µ′, ω) can be used in the vehicle energy con-
sumption model.

To determine the similarity among drivers and vehicles, two
approaches of similarity matching by speed profile matching
and driving habit matching are presented next.

1) Speed Profile Matching:
One can characterize the similarity between a pair (D,V)

and (D′,V′) under the same environment R by comparing
the respective speed profiles (i.e., the plots of speed against
traveled distance). Since speed profiles are time series, dy-
namic time warping (DTW) [26] can be used as a metric for
determining the similarity, and identifying the corresponding
similar regions between two time series, which has been
applied in many applications (e.g., speech recognition).

The basic idea of DTW is to determine an optimal align-
ment between two time series. Consider two time series
X = (x[t])nX

t=1 and Y = (y[t])nY
t=1 of lengths nX and nY

respectively. A warp path is defined as W = (w[k])nW

k=1,
where the k-th element is wk = (i, j), such that i is an
index from time series x[i] and j is an index from time
series y[j]. nW is the length of the warp path W , such that
max(nX , nY ) ≤ nW < nX +nY . The warp path W is subject
to the following constraints:

1) w[1] = (1, 1) and w[nW ] = (nX , nY );
2) if w[k] = (i, j) and w[k+1] = (i′, j′), then i ≤ i′ ≤ i+1

and j ≤ j′ ≤ j + 1.
The warp path of minimum distance dist(W ∗) is defined by:

dist(W ∗) = min
w

nW∑
k=1

d(w[k]) (4)

where each d(w[k]) = |x[i] − y[j]| is the distance of the
coordinates (i, j) of the k-th element in W . A simple approach
to determine an optimal warp path between two time series is
using dynamic programming. But there are other more efficient
algorithms with linear running time [26].

Suppose each trip is divided into a sequence of segments
(Ri). Let vD,V,Ri [t] be the time series of speed profile for tuple
(D,V,Ri). For each pair of (D,V,Ri) and (D′,V′,Ri), define

χRi

(D,V),(D′,V′) , dist(W ∗) (5)

where W ∗ is the minimum-distance warp path between the
time series vD,V,Ri [t] and vD′,V′,Ri [t].

Let R(D,V) be a set of segments that have speed profiles
measured with (D,V). Namely, if Ri ∈ R(D,V), then the
speed profile vD,V,Ri [t] exists in the dataset. Define a similarity
metric χ̄(D,V),(D′,V′) between each pair of (D,V) and (D′,V′)
by the average minimum warp path distance over all segments:

χ̄(D,V),(D′,V′) ,

∑
Ri∈R(D,V)∩R(D′,V′)

χRi

(D,V),(D′,V′)

|R(D,V) ∩R(D′,V′)|
(6)

Note that χ̄(D,V),(D′,V′) =∞, if R(D,V) ∩R(D′,V′) = ∅.
For example, the speed profiles of three driver-vehicle pairs

(D1,V1), (D2,V2), (D3,V3) for the same trip of a certain road
R1 are plotted in Fig. 3. Smaller minimum warp path distance
is observed to have closer similarity in the speed profile;
namely, (D1,V1) is more similar to (D2,V2) than (D3,V3).
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Fig. 3: Speed profiles of three drivers on the same trip.
χR1

(D1,V1),(D2,V2)
= 1.1385 and χR1

(D1,V1),(D3,V3)
= 1.3883.

This paper uses χ̄(D,V),(D′,V′) to characterize the similarity
between each pair of (D,V) and (D′,V′). The tuple (D′,V′)
with the smallest value χ̄(D,V),(D′,V′) is identified for estimat-
ing energy consumption of (D,V). For finding multiple similar
data points, k-nearest neighbors (k-NN) clustering is employed
to find the k most similar speed profiles with (D,V).

2) Driving Habit Matching:
Speed profiles are not always available for the same environ-

ment. An alternative is to rely on the available data collected
from other environments. An important factor for vehicle
energy consumption is the acceleration/deceleration [25]. The
accelerating behavior of the drivers is related to vehicle energy
efficiency. On the other hand, aggressive decelerations, usually
inducing rear-end collisions, is related to driving awareness.

For example, the mean acceleration and deceleration
(µd, µa) against the continuous average speed of each segment
from the data of a driver are plotted in Fig. 4. It is observed
that the decelerations/accelerations tend to be higher at a low
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Fig. 4: Mean acceleration and deceleration amplitudes vs.
continuous average speed of each segment of a driver.

speed (possibly, due to stop-and-go behavior), whereas lower
decelerations/accelerations can be found at a high speed. Low
accelerations are usually due to cruise control or mindful
drivers, while high accelerations are due to aggressive driving.

Therefore, we are motivated to use the average acceleration
and deceleration as a metric to characterize driving habits.
However, we may not have collected sufficient measurements
for every vehicle speed. Hence, we normalize the distribution
of data to obtain a better estimation of the average. First,
divide the range of vehicle speed into a sequence of inter-
vals with width ∆v (i.e., [v, v + ∆v]). This paper considers
∆v = 10km/h. For each interval [v, v + ∆v], let γva(D,V)
be the mean value of the acceleration measurements within
[v, v+ ∆v]. Define the estimated average acceleration by the
average of the mean values in all intervals by γ̄a(D,V). To
avoid bias, we ignore the intervals in which the number of the
data points is less than 10.

Because a difference is observed in high-speed and low-
speed driving habits, we define different estimated average
accelerations for the intervals above or below a threshold vth:

1) Low-speed estimated average acceleration γ̄lowa (D,V).
2) High-speed estimated average acceleration γ̄higha (D,V).

Similarly, define γ̄lowd (D,V) and γ̄highd (D,V) for deceleration.
Fig. 5 depicts an illustration of γvd(D,V), γ̄lowd (D,V) and
γ̄highd (D,V) from a dataset of driving data.
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Fig. 5: An illustration of γ̄d(D,V) and γvd(D,V).

Heuristically, this paper sets vth = 80km/h, because this
speed limit usually sets the difference between highways
and suburban roads. The average deceleration/acceleration
tuple

(
γ̄lowa (D,V), γ̄higha (D,V), γ̄lowd (D,V), γ̄highd (D,V)

)
can

capture the driving habit of each (D,V). The average de-
celeration/acceleration tuple is used to compare the similarity
between each pair (D,V) and (D′,V′).

B. Matrix Factorization

The similarity matching approaches are based on domain-
specific knowledge. Collaborative filtering is a domain-free
approach, relying on the identification of abstract latent fac-
tors. Matrix factorization is a popular approach of constructing
latent factors, which has been implemented in recommendation
system [5] and other large-scale problems [4].

Consider an example of sparse matrix R of n pairs of (D,V)
and m road segments R, as shown in Table II, in which each
entry represents a measurement (e.g., v, ~d or ~a). Note that
some data points may be missing in R, denoted by “?”.

D,V
R 1 2 3 4 ... m

1 67 74 ? 32 ... 50
2 54 ? 83 44 ... 65
... ? 74 53 ? ... ?
n ? 66 58 ? ... 88

TABLE II: An example of sparse matrix R of vehicle speed v.

The basic idea of matrix factorization is to find two low-
rank (n × k and m × k) matrices, P and Q, such that PQT

can approximate R. Namely,

R ≈ PQT = R̂ (7)

P and Q can be regarded as mappings to reduce the m,n-
dimensional space of the original dataset to a k-dimensional
space of latent factors, where k � min(m,n). Denote the
entry at the i-th column and the j-th row of R be rij .

The objective of matrix factorization is find P,Q such that

min
P,Q

∑
i,j

(rij − piqTj )2 + λP ||pi||2 + λQ||qj ||2 (8)

where pi is the i-th row vector of P , and qj is the j-th column
vector of Q. Since factorization may cause over-fitting, λP and
λQ are used to regularize the fitting.

There are two popular approaches to compute P,Q in
Eqn. (8): stochastic gradient descent [4] and alternating least
squares [5]. In this paper utilizes stochastic gradient descent.
The basic idea is to go through all rij in R. For each
rij , determine the corresponding factor vectors pi and qj .
Then, compute the approximate value by piqTj and update the
parameters according to:

pi ← pi + ε(eijqj − λP pi)
qj ← qj + ε(eijpi − λQqj)

(9)

where eij = rij − piq
T
j represents the difference between

approximate value and actual value and ε is the learning rate.
Once P,Q are determined, the estimation of a missing data
r̂ij can be estimated by r̂ij = piq

T
j . All measurements (e.g.,

v, ~d or ~a) can be substituted and estimated using matrix
factorization. The estimated values can be utilized in the
vehicle energy consumption prediction.

C. Comparison with the Average

A simple approach for estimating vehicle energy consump-
tion is based on the global average data values (e.g., average
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speed) from participatory sensing data. However, each driver
may deviate considerably from the average data values. To
compensate for the deviations, a personalized adjustment is
incorporated to improve the prediction accuracy.

Let fD,V,R be a personal data value for tuple (D,V) in envi-
ronment R, and the average data value be f̄R. An adjustment
function Df

D,V(·) is used to convert the average data value to
the personal data value, such that:

fD,V,R = DD,V
f (f̄R) (10)

In this paper, a simple adjustment function is considered by
the following regression model:

DD,V
f (f̄R) = η1f̄R

2
+ η2f̄R + η3 (11)

V. EMPIRICAL EVALUATIONS

This section discusses the empirical evaluations of the
energy consumption model and its properties.

A. Setup

The driving data from 5 drivers and 7 vehicles is collected.
The information of vehicles is given in Table III. Some drivers
drove multiple vehicles, which gives totally 10 tuples of (D,V).
Since the context of participatory sensing is considered, it
suffices to consider a relatively small dataset.

Vehicle Maker Model Year Type Displacement
V1 Nissan LEAF 2014 EV NA
V2 Ford Fiesta 2013 ICE 1.4
V3 Toyota Yaris 2013 ICE 1.5
V4 Hyundai Veloster 2014 ICE 1.6
V5 Ford Fusion 2012 ICE 2.5
V6 BMW 650i 2014 ICE 5.0
V7 Ford F150 2014 ICE 5.0

TABLE III: The vehicles in the experiments.

Totally 3000 km of data is collected. Fig. 6 depicts the
distance of collected data for all driver-vehicle pairs. The data
is then segmented into 1-km segments.
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Fig. 6: Collected data of all driver-vehicle pairs.

For ICE vehicles, we collected data through ELM327 de-
vices connected to vehicles’ onboard diagnostic (OBD) ports
and paired with a smartphone. The collected OBD data include
mass air-flow, manifold absolute pressure, intake air tem-
perature and engine RPM. Geo-location data, accelerometer
and gyroscope measurements from the smartphone are also
collected. For EVs (i.e., Nissan LEAF), high resolution state-
of-charge (SOC) and vehicle speed data are collected.

B. Estimation Errors of Energy Consumption Model

The ground truth energy consumption data (i.e., ED,V,R,
Emv

D,V,R, Eid
D,V,R) can be obtained from OBD data. From the

OBD data of ICE vehicles, the fuel rate can be estimated based
on mass air flow and fuel/air ratio. From the OBD data of EVs,
the energy consumption is estimated by SOC and the battery
capacity. Readers can refer to [27] for the details of extraction
OBD data from EVs.

Two metrics of error are utilized to evaluate the energy
consumption predictions in this study. The first metric of error
is the per-segment error for each segment of road Ri:

εi =
(Emv

D,V,Ri + Eid
D,V,Ri)− (Êmv

D,V,Ri + Êid
D,V,Ri)

Emv
D,V,Ri + Eid

D,V,Ri

(12)

which is used to evaluate the accuracy of the energy consump-
tion model (Eqns. (2)-(3)). The second metric of error is the
accumulative error:

εacc =
|ED,V,R − ÊD,V,R|

ED,V,R
(13)

which is used to evaluate the energy prediction accuracy over
a trip composed of many segments. Fig. 7 shows the speed
profile and energy consumption of an ICE vehicle and an
EV data. The idling energy consumption (Eid

D,V,R) is identi-
fied from speed profile, and the moving energy consumption
(Emv

D,V,R) is obtained by Eqn. (1).
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Fig. 7: Energy consumption of different driver-vehicle pairs.

C. Fitness of Energy Consumption Model

In this section, the proper powers of v, ~d,~a in Eqn. (2)
for model fitting are evaluated. The Akaike Information Cri-
terion (AIC) [28] is utilized to determine the proper values
of (r, k,m). AIC estimates the quality of each model and
balances the trade-off between the goodness of model fitting
and the complexity of model. The AIC value of a model can be
computed using the estimated residual in least square method.
Consider the energy consumption model using (r, k,m) order
of powers in Eqn. (2), the AIC value is expressed by:

AIC(r,k,m) = n log

∑
ε2i
n

+ 2K (14)
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where ε is the per-segment error (see Eqn. (12)), n is the
number of segment and K is the total number of estimated
regression coefficients (e.g., r+k+m+3). According to AIC
test criterion, the smaller value makes the better model. The
AIC value is normalized as AICN

(r,k,m), with respect to the
smallest AIC value in all driver-vehicle pairs (min(AIC)):

AICN
(r,k,m) =

AIC(r,k,m)

min(AIC)
− 1 (15)

The mean normalized AIC values averaged over all driver-
vehicle pairs for a particular (r, k,m) are plotted in Fig. 8a,
which shows that (2, 2, 2) attains the minimum, and hence, is
perceived as the best setting of powers of v, ~d,~a in Eqn. (2).

D. Evaluation of Energy Consumption Model

The per-segment errors of (2, 2, 2) model for all (D,V) pairs
are validated in this section. 80% of collected data (called
in-sample data) are randomly selected to train the regression
model. The rest of data (called out-sample data) are utilized
to validate the accuracy of the model. The per-segment error
distribution of out-sample data for driver-pair pair (4, 4) is
shown in Fig. 8b. The total number of segment is 58 (58km).
The mean error is 0.1%. The standard deviation is about
7.8% and the distribution approaches a normal distribution.
This shows that our energy consumption model is relatively
accurate. The model validation results of all pairs are displayed
in Fig. 8c. Slightly higher standard deviation of per-segment
error is observed for EVs, because of a lower sample rate.

Since we are interested in the energy consumption of the
overall trip, the accumulative error is more relevant. Fig. 9
shows the accumulative error against traveled distance over
multiple rounds in the same route. It is observed that although
the standard deviation is up to 5%, the accumulative error
is much smaller. This is due to the fact that the positive
and negative deviations can offset each other over a longer
distance. Therefore, the accumulative error has a lower value
after a longer distance. The root mean square accumulative
error RMSE(εacc), which measures the performance over the
traveled distance, is also examined. In the later case study in
Sec. VI, RMSE(εacc) will be used to evaluate the accuracy of
energy consumption prediction for a designated trip.

E. Dependence of Coefficients

To properly assign the dependence of coefficients in the
energy consumption model in Eqns. (2)-(3), the distribution
of coefficients between all driver-vehicle pairs is examined

0

0.1

0.2

εac
c

0 5 10 15 20
0

0.1

0.2

Distance (km)

εac
c

εacc(D
4
,V

4
) = 1.4%          RMSE(εacc) = 3.9%

εacc(D
1
,V

1
) = 2.7%          RMSE(εacc) = 5.3%

Fig. 9: Accumulative error against traveled distance.

to identify the dependence empirically. To compare between
different energy resource, the suggested conversion from the
US Environmental Protection Agency (US EPA) is utilized to
convert the kwh to gasoline fuel, in which 33.7 kilowatt hours
of electricity is equivalent to one gallon of gasoline [29].

To validate the dependence, a portion (80%) of training data
is randomly drawn to train the model for each driver-vehicle
pair, and the procedure is repeated 100 times to create 100 sets
of coefficients for each pair. As an example, the distributions of
coefficients αv,2 and c to the same driver or the same vehicle
are plotted in Fig. 10. It is observed that the distributions for of
coefficients αv,2 and c of the same driver in different vehicles
tends to be independent from another vehicle. In addition, the
rightmost figures show the distributions of different drivers
in the same vehicle are highly overlapping, which means
the coefficients are less affected by drivers. Therefore, the
coefficients αv,2 and c are assigned to be vehicle dependent.
The dependence of other parameters and coefficients in Table I
are also validated.

F. Driving Habits

This section compares the driving habits characterized by
low-speed and high-speed average acceleration/deceleration
tuple. The average accelerations/decelerations of several
drivers are plotted in Fig. 11, which are aggregated over
multiple trips. Positive correlations between average accel-
eration and average deceleration is observed. Drivers who
accelerate more tend to decelerate more. As a result, one
can classify the driving habits by awareness and efficiency
according to different regions in low-speed and high-speed
average accelerations/decelerations plots, relative to the mean
values among drivers.
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VI. CASE STUDY

This section presents the case study of various personalized
prediction approaches. All driver-vehicle pairs are required to
drive in a designated route for evaluation. The ground truth
energy consumption data is also collected. Fig. 12 shows the
energy consumption and speed profiles for two driver-vehicle
pairs. The designated route comprises of suburban (0 to 20
km) and stop-and-go (20 to 31 km) parts. 3 rounds of driving
are repeated to obtain training data and reference data.

A. Personalized Vehicle Energy Consumption Prediction

This section compares the performance of various person-
alized prediction approaches for vehicle energy consumption
using the collected data for the designated route. The energy
consumption model of each driver-vehicle pair is trained using
the historical data collected from daily driving. Then the
energy consumption of the route can be predicted using the
collected data from different driver-vehicle pairs for the route.

For example, the energy consumption model for Êmv of
(D1,V1) of a particular road segment is obtained form the
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Fig. 12: Energy consumption and speed profiles of the desig-
nated route in the case study.

historic data and is given as follows.

Êmv =
−5.831
0.266
0.483
14.863
76.918


T 

v
v2

g
`
1

+


−6.261
143.340
−139.219

0.034
−30.534
86.334



T 
τd
µd

σd
τ2d
µ2
d

σ2
d

+


11.067
11.425
−12.059
−0.056
−120.340
169.864



T 
τa
µa

σa
τ2a
µ2
a

σ2
a


Various personalized prediction approaches are considered

as follows:
1) Speed Profile Matching (SPM): The paths among driver-

vehicle pairs from historical data are matched using
GPS data. The distance metric χ̄(D,V),(D′,V′) is computed
using Eqn. (6) for all pairs of (D,V) and (D′,V′).
Besides, k-nearest neighbors (k-NN) clustering is uti-
lized to determine k nearest pairs in distance metric
χ̄(D,V),(D′,V′). The similarity matching approach based
on k nearest pairs is denoted by SPM(k)

2) Driving Habit Matching (DHM): The low-speed and
high-speed average deceleration/acceleration tuple(
γ̄lowa (D,V), γ̄higha (D,V), γ̄lowd (D,V),γ̄highd (D,V)

)
are

computed for every driver-vehicle pair (D,V). The low-
speed and high-speed average deceleration/acceleration
tuple defines a 4-dimensional data space. The similarity
matching approach based on k nearest pairs in the
4-dimensional data space is denoted by DHM(k).

3) Matrix Factorization (MF): The paths among driver-
vehicle pairs from collected data using GPS data are
matched before employing matrix factorization. The
matrix factorization approach is denoted by MF.

4) Average Data Values (Avg.): Using only the average data
values are used (e.g., average speed) for vehicle energy
consumption prediction. Sometimes, the average speed
is observed to be very close to the speed limit. The
average data based approach is denoted by Avg.

5) Adjusted Personal Data Values (Adj.): The adjustment
function in Eqn. (11) is used to convert the average data
values to the personal data values. The adjusted personal
data based approach is denoted by Adj.
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Fig. 13: Prediction error RMSE(εacc) over all (D,V) pairs.

ApproachesAccuracy Path System
Matching Complexity

SPM High Required High
DHM High No Low
MF High Required Medium
Adj. High Required Low
Avg. Low No Low

TABLE IV: Summary of strengths and
weaknesses of various approaches.

6) Self-Estimation (Self Est.): Using only one’s own data
in energy consumption model of the same road segment
in Eqns. (2)-(3) is also considered. The self-estimation
approach is denoted by Self Est. Self-estimation is a
benchmark, which essentially validates the accuracy of
the energy consumption model without using the data of
other driver-vehicle pairs. In practice, one’s own data of
the same road segment may not be always present, as
the driver has not traveled such a route before.

Fig. 13 compares the prediction errors in terms of RMSE,
against the ground truth energy consumption over all driver-
vehicle pairs. The strengths and weaknesses of each prediction
approach are summarized in Table IV.

Self Est. is observed to have 5% error, which is the lowest
among all approaches, because one’s own driving data on the
same route is the most accurate source for prediction, in spite
of the presence of different traffic condition. SPM is observed
to have a close prediction error with Self Est. Avg. is observed
to have the largest error, because of the considerable deviation
from individual drivers from the average. Adj. can improve
the accuracy of comparison with the average. Notably, DHM
is observed to perform relatively well, even though it does
not require path matching using GPS data. Therefore, driving
habits are a good indicator of vehicle energy consumption. In
summary, DHM provides good accuracy without GPS data,
which has low complexity for system implementation.

B. Distance-to-Empty Prediction for EV

In this section, our approaches are applied to the application
of DTE prediction for EV (i.e., Nissan LEAF ) using other ICE
vehicle data. For the convenience of comparison, certain routes
are selected and all drivers to required to travel the same route
at least 3 times for evaluations.

The data collected from Nissan LEAF includes:
1) State-of-charge (SOC), denoted by S, which indicates

the remaining battery level.
2) Initial capacity of the battery, denoted by BA.
3) Battery pack voltage when driving, denoted by BV .

The remaining energy (∆Et) in battery at time t is given by:

∆Et = St × BA × BV (16)

If the future average power intensity (P̄) is known, then
estimated DTE is given by:

D̂TE =
∆Et

P̄
(17)

The DTE prediction based on approaches using participa-
tory sensing data is compared with the on-board DTE meter
on Nissan LEAF (also known as Guess-O-Meter), which is
captured by a camera mounted over the dashboard. To compare
the effectiveness of DTE prediction, the deviation between the
true DTE (which is computed in an offline manner) and the
estimated D̂TE is measured by:

∆DTE = DTE− D̂TE (18)

The deviation between true DTE and the on-board DTE meter
on Nissan LEAF is compared.
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Fig. 14: Deviations of DTE prediction for various approaches.

The results are plotted in Fig. 14 for four different trips.
It is observed that all approaches using participatory sensing
data can significantly outperform the one provided by on-
board DTE provided by the on-board DTE meter on Nissan
LEAF. Notably, SPM, DHM and Adj. perform very close to
benchmark Self Est., whereas Avg. gives relatively inferior
performance. In summary, DHM consistently provides good
accuracy with low system complexity.

VII. CONCLUSION

In this paper, various methodologies of utilizing participa-
tory sensing data for personalized prediction of vehicle energy
consumption were investigated. Several approaches were stud-
ied and compared, including: (1) comparison with the average
using personalized adjustment, (2) two similarity matching ap-
proaches based on driver/vehicle/environment-dependent fac-
tors using speed profile matching and driving habit matching,
and (3) a collaborative filtering approach that uses matrix fac-
torization. Our empirical evaluations show that participatory
sensing data can significantly improve prediction accuracy.
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Among all approaches, similarity matching approach based
on driving habits provides good accuracy (as compared to a
benchmark of self-estimation using one’s own driving data)
with low system complexity. To evaluate the effectiveness, a
case study of DTE prediction for EVs is conducted based on
the participatory sensing data. In summary, similarity matching
based on driving habit can provide a practical solution of DTE
prediction for EVs, which significantly outperforms the on-
board DTE meter on Nissan LEAF.

Despite the promising results given by our study, there are
several practical issues and limitations to be recognized:

• Road Grade: This is the elevation of roads. There are
public mapping APIs to provide road elevation data. This
can be added to the future energy consumption model.

• Weather and Traffic: Our study assumes mild weather
and traffic conditions. But our energy consumption model
can be extended to incorporate additional parameters to
capture the impacts of weather in the vehicle model
(e.g., weather types and route conditions). The vehicle
speed from participatory sensing data naturally reflect the
traffic condition to a certain extent, however, the data
would need to be updated more frequently. Wind speed
and road surface conditions also affect vehicle energy
consumption, but are more difficult to measure.

• More Vehicle Information: The weight of vehicle and tire
pressures of vehicle would also introduce the error to the
system, the error can be minimized obtaining more data
from vehicle API (e.g., tire pressure indicator).

• Change of Vehicle State: The engine/gearbox efficiencies
or battery efficiencies change over time, due to aging of
vehicle or system upgrades. Hence, the energy consump-
tion model should adapt to these changes using new data
to update the coefficients.

A study is planned to be conducted in future work to provide
more comprehensive insights in diverse practical settings,
addressing the preceding issues.
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