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Abstract—Road traffic crashes have been the leading cause of
death among young people. Most of these accidents occur when
the driver becomes distracted due to fatigue or external factors.
Vehicle platooning systems such as Cooperative Adaptive Cruise
Control (CACC) are one of the results of the effort devoted to
the development of technologies for decreasing the number of
road crashes and fatalities. Previous studies have suggested such
systems improve up to 273% highway traffic throughput and
fuel consumption in more than 15% if the clearance between
vehicles in this class of roads can be reduced to 2 meters.
This paper proposes an approach that guarantees a minimum
safety distance between vehicles taking into account the overall
system delays and braking capacity of each vehicle. A l∞-
norm Robust Model Predictive Controller (RMPC) is developed
to guarantee the minimum safety distance is not violated due
to uncertainties on the lead vehicle behavior. A formulation
for a lower bound clearance of vehicles inside a platoon is
also proposed. Simulation results show the performance of the
proposed approach compared to a nominal controller when the
system is subject to both modeled and unmodeled disturbances.

I. INTRODUCTION

Road traffic crashes are the leading cause of death among
young people between 10 and 24 years old [19]. Most of
these accidents occur when the driver is unable to maintain
the vehicle control due to fatigue or external factors [1]. In
recent years, both academia and industry have been devoted
towards the development of safety systems for decreasing the
number of road accidents. Vehicle platooning systems, such as
Adaptive Cruise Control (ACC) [2] and Cooperative Adaptive
Cruise Control (CACC) [9], are examples of this class of
systems through which a vehicle regulates its own speed and
distance to the vehicle ahead based on a sensor suite and
wireless communication interfaces, respectively.

ACC systems have already reached consumer market
through radar [2] and camera [8] technologies. Such interest
in vehicle platooning has led to the development of vehicle-
specific communication protocols, such as 802.11p [10] and
DSRC [28] necessary for the development of CACC systems.
Studies have shown that CACC can improve up to 273% road
traffic throughput and significant reductions to fuel consump-
tion [26] given a high market penetration [25], [27], [17].
However, such improvements rely on the assumption CACC
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technology will significantly reduce the clearance between
vehicles. In this proposed scenario, any disturbance in the lead
vehicle behavior could lead to an accident. Therefore, stability,
performance robustness and robustness against violating the
minimum distance between vehicles must be ensured.

This paper proposes a cooperative adaptive cruise controller
based on l∞-norm robust model predictive controller capable
of rejecting uncertainties on the lead vehicle acceleration
behavior and operate close to the minimum safety distance
between vehicles. The main contributions of this work are the
formulation of such CACC system and a novel formulation of
the minimum safety distance between vehicles that incorpo-
rates the lead vehicle braking capacity.

The remainder of the paper is organized as follows: Section
II discusses related work; Section III presents the system mod-
eling; Section IV describes the applications safety and comfort
constraints; Section V addresses the proposed controller for-
mulation; Section VI reports the experiments performed and
Section VII provides the final remarks.

II. RELATED WORK

During the 1980s and 1990s, both public and private pro-
grams started funding research in intelligent transportation
systems based on fully or partially automated vehicle systems.
The main focus was on improvements for highway throughput
and vehicle safety through the creation of Automated Highway
Systems (AHS) [4].

AHS research was nearly abandoned in the 2000s
when studies changed focus from infrastructure-dependent to
infrastructure-independent automation, which resulted in the
current intelligent and autonomous vehicle research scenario.
Commercially available systems, such as Adaptive Cruise
Control (ACC) [2] and Forward Collision Warning (FCW) [8]
have focused mostly on comfort, while the safety of the vehicle
is still the driver’s responsibility.

The development of systems based on vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communications
have drawn growing interest from the research community due
to improvements in communication bandwidth and process-
ing power. Studies on automated infrastructures reappeared
and culminated in the Grand Cooperative Driving Challenge
(GCDC) [20] held in 2011, in which vehicles had to per-
form highway platooning tasks using embedded sensors and
communications among them [9]. The Karlsruher Institut für
Technologie (KIT) won the competition with the AnnieWay
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Figure 1: Representation of the ego and lead vehicle models

project. A Linear Quadratic Regulator (LQR)-based controller
was designed using all preceding communicating vehicles [9].
However, the approach proposed by this project focused only
on the headway time disregarding other safety requirements.

Tsugawa described results from heavy truck CACC studies
performed in closed tracks in Japan, in 2014 [26]. The author
developed a lateral and longitudinal automated platoon of three
heavy trucks and demonstrated fuel savings decreased when
the clearance between vehicles on the platoon increased for the
first two vehicles, while the fuel savings were constant for the
third vehicle for clearances between 2 and 20 meters. There-
fore, the technical possibilities of decreasing the distance while
maintaining vehicle safety must be investigated, specially for
a market adoption phase when most platoons will contain a
small number of vehicles. Besides the technical factors, drivers
and passengers must feel comfortable with small gaps [18].

Stanger and del Re [24] proposed the use of Model Predic-
tive Control (MPC) for the explicit incorporation of fuel con-
sumption optimization in the controller design. They penalized
the approximate fuel consumption based on a nonlinear static
fuel consumption map. The MPC approach also enabled the
use of explicit constraints to represent mechanical limits of the
vehicle. Several other studies [11], [23], [12] have proposed
other linear and nonlinear MPC approaches to account for
several preceding vehicles speed profiles and to optimize fuel
consumption.

Safety envelope boundaries are easily corrupted by distur-
bances when vehicles cruise with small clearances. Therefore,
robust or stochastic techniques should be used for the avoid-
ance of violation of safety restrictions. Robust constrained
optimal control techniques were proposed by Corona et al.
[7], who studied the use of Robust Hybrid MPC to deal with
uncertainties of the piece-wise linear approximation of the
powertrain and brake dynamics. However, they did not take
into account uncertainties related to the lead vehicle behavior.

Moser et al. [16] designed a stochastic model of the driver
behavior to improve fuel efficiency. The authors developed a
conditional Gaussian graphical model to represent the proba-
bility distribution of a vehicle behavior in a prediction horizon
of 15s combined with a Stochastic Model Predictive Control
approach.

III. MODELING

Assumption 1. The powertrain and brake dynamics of the
controlled vehicle can be approximated by an inversible

steady-state time-invariant model with no introduction of sig-
nificant uncertainties to the system.

Assumption 1 was experimentally validated in [14]. There-
fore, he powertrain and brake dynamics are abstracted from
the model, reducing its complexity while maintaining perfor-
mance.

The proposed controller was designed to regulate the ve-
hicle distance, speed and acceleration considering only the
immediate preceding (lead) vehicle. Therefore, a simplified
kinematic model of the vehicle’s longitudinal dynamics is
proposed, described in Definitions 1 and 2.

Definition 1. Let pi(t), vi(t) and ai(t) respectively denote the
position, velocity and acceleration of vehicle i. The vehicle
dynamics are represented by

ṗi(t) = vi(t)
v̇i(t) = ai(t)

(1)

as shown in both vehicles of Figure 1.

Definition 2. Consider two adjacent vehicles on a platoon. Let
the lead (preceding) vehicle states be denoted by subscript l,
the ego (succeeding) vehicle be denoted by a subscript e and
d(t) = pl(t) − pe(t) be the distance between these vehicles.
The relative dynamics are

ḋ = vl(t)− ve(t)
d̈ = al(t)− ae(t).

(2)

Let the system state as x(t) = [d(t), vl(t), ve(t)]
T and the

control input as u(t) = ae(t). The system from Definitions 1
and 2 can be written as a linear affine discrete system of the
form

xk+1 = Fxk +Guk + h (3)

where, given a sampling time Ts,

F =

1 Ts −Ts
0 1 0
0 0 1

 , G =

−0.5T 2
s

0
Ts

 , h =

 0
Tsal,k

0

 .
(4)

IV. PLATOONING SAFETY AND COMFORT
CONSIDERATIONS

This section is divided into three parts - the first defines the
minimum safety distance between two vehicles, the second
investigates its impact to small clearance assumptions and the
third addresses the comfort and safety restrictions the system
must satisfy.
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A. Minimum Safety Distance

Most economical benefits from CACC systems are related
to the assumption this technology will enable vehicles to drive
very close to each other. However, a worst-case representation
of the minimum safety distance between vehicles is required to
avoid compromising system safety and provide a lower bound
to vehicle distances.

Approaches for Platoon safety can be categorized as cen-
tralized and decentralized. The centralized approach assigns
the task of ensuring the safety of the platoon to one of its
vehicles, typically its leader. Vehicles inside a platoon can
operate in an unsafe region with respect to other vehicles while
still maintaining global safety. The decentralized approach
distributes the task of ensuring safety of the platoon to each
vehicle contained in it. Therefore, every vehicle must ensure
its safety with respect to preceding vehicles or, at least, the
immediately preceding vehicle.

The minimum safety distance concept proposed in this paper
focuses on the decentralized approach, in which every vehicle
is responsible to ensure its safety with respect to its immediate
preceding vehicle.

Assumption 2. The lead vehicle will never decelerate more
than its claimed maximum braking capacity.

Assumption 2 cannot be satisfied if the lead vehicle is
involved in a collision, and further investigation is required
for the removal of the assumption.

Figure 2: Example of the vehicle speed profiles at an
emergency situation of Definition 3, where the lead vehicle
cruises at 15m/s with a braking capacity abl = 10m/s2 and

an ego vehicle cruises at 18m/s with a braking capacity
abe = 7m/s2

Definition 3. Let φ be the sum of worst-case delays from
communication, processing and actuation. Consider the system
model from Definition 2 where both the lead and ego vehicles
respectively brake at their maximum braking capacity abl and
abe at time t and t + φ until both reach complete stop.
dsafe(t) ∈ R is said to be the minimum safety distance if

d(t) ≥ dsafe(t)⇒ ∀ε ∈ R≥0. d(t+ ε) ≥ 0 (5)

with

v̇l(τ) = al(τ) =

{
−abl , 0 ≤ τ − t ≤ vl(t)

abl
0 , otherwise

, (6)

and

v̇e(τ) = ae(τ) =

{
−abe , 0 ≤ τ − t− ψ ≤ ve(t)

abe
0 , otherwise.

. (7)

Therefore, dsafe is given by

dsafe = min
d

d

s.t. d+ min
t≤ε≤∞

{∫ ε
t
vl(τ)− ve(τ)dτ

}
≥ 0

(8)

Figure 2 shows an example of the vehicles speed profiles
for Definition 3.

Theorem 1. Consider Definition 3. dsafe has a closed form
solution

dsafe =

{
dlosafe , ε ∈ [t+ φ, t+ tminf )

max
(

0, dubsafe

)
, otherwise

(9)

where

ε∗ =
ve(t)−vl(t)+abeφ

abe−abl
dubsafe = ve(t)φ+ ve(t)

2

abe
− vl(t)

2

abl

dlosafe = (ve(t)− vl(t))ε∗ − (abe − abl ) ε
∗2

2 + abe
φ2

2 .

(10)

Proof. Let tef = φ + ve(t)/a
b
e, t

l
f = vl(t)/a

b
l , t

min
f =

min
(
tef , t

l
f

)
and tmaxf = max

(
tef , t

l
f

)
for brevity. Since (8)

shows a linear minimization with a lower bound

dsafe = max
t≤ε≤∞

{∫ ε

t

ve(τ)− vl(τ)dτ

}
. (11)

Both ve(t) and vl(t) are continuous piecewise linear functions,
therefore δv(t) = ve(t)− vl(t) is also piecewise linear and

Jdist(ε) =

∫ ε

t

δv(τ)dτ (12)

is a twice-differentiable piecewise quadratic function. It is also
worth noting that

Jdist(ε) = Jdist(∞) ,∀ε > t+ tmaxf . (13)

Since the maximization problem is not always concave but
has a small number of possible optimal solutions, the optimiza-
tion can be expressed analytically through enumeration [13].
Three possible positions for the constrained global maximum
exists: The lower optimization bound, the upper optimization
bound and a local maximum inside the feasible set. The lower
bound case can be trivially obtained as dlbsafe = 0, while the
upper bound case is

dubsafe = Jdist(∞)

=
∫∞
t
δv(τ)dτ

= ve(t)φ+ ve(t)
2

abe
− vl(t)

2

abl
.

(14)
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The latter case requires the enumeration of all {ε |
J̇dist(ε) = 0, J̈dist(ε) < 0}. The Hessian of Jdist(ε) can
be expressed as

J̈dist(ε) =


abl , 0 ≤ ε− t < φ
abl − abe , φ ≤ ε− t < tminf

abl , tminf ≤ ε− t < tmaxf , tlf > tef
−abe , tminf ≤ ε− t < tmaxf , tef >= tlf
0 , tmaxf < ε− t

(15)
which it is negative only for ε ∈ {ε | ε ∈ [t+φ, t+tminf ), abe >

abl} or ε ∈ {ε | ε ∈ [t+ tminf , t+ tmaxf ), tef >= tlf}. However,
J̇dist(ε) 6= 0 ∀ε ∈ [t+ tminf , t+ tmaxf ), therefore J̈dist(ε) has
a local maximum in ε∗ only if abe > abl and J̇dist(ε

∗) = 0,
which can be expanded as

ve(t)− abe(ε∗ − φ) = vl(t)− abl ε∗ (16)

and results

ε∗ =
ve(t)− vl(t) + abeφ

abe − abl
⇐⇒ ε∗ ∈ [t+ φ, t+ tminf ) (17)

The local optima minimum safety distance can be expressed
as

dlosafe = Jdist(ε
∗)

=
∫ ε∗
t
δv(τ)dτ

= (ve(t)− vl(t))ε∗ − (abe − abl ) ε
∗2

2 + abe
φ2

2

. (18)

Finally dsafe is the enumeration of all previous possible
maximums, which results

dsafe =

{
dlosafe , ε ∈ [t+ φ, t+ tminf )

max
(

0, dubsafe

)
, otherwise.

(19)

The safety distance concept presented in Theorem 1 is
conservative since it does not take into account any other
vehicle besides the immediately preceding one. However, it is
also the most robust since it guarantees not only the platoon
safety, but also the safety of any of its contiguous subsets.

B. Impact of Minimum Safety Distance on Cooperative Adap-
tive Cruise Control Performance

Consider both vehicle velocities are equal and in steady
steady-state, abe = abl = 9m/s2 and φ = 0.27s. The minimum
safe distance is 9.72m for ve(t) = vl(t) = 35m/s (126km/h)
and 6.94m for ve(t) = vl(t) = 25m/s (90km/h), as shown
in Figure 3.

The minimum safety distance obtained is superior to the
distances investigated in previous studies (such as [25] and
[26]), where vehicles operated down to 2m clearances at high-
way speeds. For the achievement of such clearance, the overall
delay required for vehicles with similar braking capacity would
be 80ms for 25m/s and 57ms for 35m/s. The required delays
are not consistent with state-of-the-art actuators and wireless
transmission systems, since current DSRC systems have a
worst-case delay of 22ms on benchmarks [22] and braking
systems take up to 100ms to achieve the commanded pressure.

Figure 3: The minimum distance in function of the lead
vehicle braking capacity for a ego vehicle braking capacity
abe = 9m/s2 and both vehicles cruising at 35m/s (blue line)

and 25m/s (red dashed line)

However, there are still significant benefits for CACC systems
capable of operating near the minimum safety distance, since
[26] presented an average fuel saving of 13% for heavy trucks
at 10m clearances.

Sorting the vehicles within the platoon from the least brak-
ing capacity (e.g. a heavy truck with a trailer) to the highest
braking capacity (e.g. a sport car) would decrease the overall
platoon clearance and maintain safety guarantees. However,
such sorting would result in situations where the vehicle with
the slowest braking response becomes the platoon leader and is
entitled of the mitigation of all forward external emergencies.
Therefore, there is a trade-off between the minimization of
the clearance inside a platoon and the robustness guarantees
against external incidents.

C. Safety and Comfort Constraints

The following two factors must be taken into consideration
when techniques for any type of vehicle control are investi-
gated: The vehicle must be safe at all times, and its behavior
must be comfortable whenever possible.

Safety constraints must be met at all times, regardless of
system disturbances, while comfort must be met whenever it
does not compromise the safety of the vehicle. Therefore, four
constraint sets were defined:
• Minimum safety distance set (safety);
• Time-to-contact set (comfort);
• Road speed limit set (safety),
• Acceleration limits set (comfort).
The minimum safety distance set enforces the minimum

distance to the lead vehicle, as defined in (9). This constraint
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Figure 4: Minimum safety distance constraint and its linear
convex approximation for vl = 10m/s, abe = 7m/s2 and

abl = 10m/s2

is nonlinear, but convex on d(t) and ve(t) and non-convex on
the uncontrollable vl(t).

Let f (ve(t), vl(t)) : R2 → R define the minimum safety
distance relation such that −d(t)+f (ve(t), vl(t)) ≤ 0 defines
its constraint. A first0-order Taylor approximation for the lead
vehicle speed vl(t) ≈ vl(0) + t ∗ al(0) yields

g (t, ve(t)) = f (ve(t), vl(0) + t ∗ al(0)) (20)

where g is a convex function that can be conservatively
represented by a set of linear constraints, as shown in Figure
4.

This set of linear constraints consists of one constraint for
the linear region

− d(t) ≤ 0,∀ve(t) ∈ [0, vmin] (21)

where

vmin =

√
vl(t)2abe
abl

(22)

and seven constraints between vmin and road speed limit vmax
for the nonlinear region given by Taylor approximation of
function g at a given point pi = vmin+i(vmax−vmin)/7,∀i ∈
[0, 7]

−d(t)+g(t, pi)+
g(t, pi+1)− g(t, pi)

pi+1 − pi
(ve(t)−pi) ≤ 0. (23)

Since this constraint is dependent on t, it must be defined once
for each discrete step where the system is evaluated. The set
will be compactly denoted as

− 18dk + fk + gkve,k ≤ 0 (24)

where dk and ve,k are the discrete counterparts of d(t) and
ve(t), respectively and 1i is an one-column vector of size i.

The time-to-contact constraint avoids fast approximations to
the lead vehicle that might be uncomfortable to the passengers.

Definition 4. Let time-to-contact tc(t) be the instantaneous
time required for a collision to occur between the lead and
ego vehicle if no vehicle varies its speed.

tc(t) = min τ
s.t. d(τ) = 0

ḋ(τ) = vl(t)− ve(t)
τ ≥ 0

(25)

which has a closed form solution

tc(t) = max

(
d(t)

ve(t)− vl(t)
, 0

)
. (26)

Assumption 3. A minimum value of tc, denoted by tc,min, is
considered comfortable by the driver and passengers of the
ego vehicle.

The time-to-contact constraint based on Definition 4 and
Assumption 3 is

tc,min ≤ tc(t) =
d(i)

ve(i)− vl(i)
, ∀t ∈ R (27)

which can be rewritten in the discrete canonical form as

− dk + tc,min(ve,k − vl,k) ≤ 0. (28)

The road speed limit constraint set avoids the vehicle
exceeding the maximum speed on the road. Therefore, it can
be trivially defined as

0 ≤ ve,k ≤ vmax. (29)

Finally, the acceleration constraint set limits the controller
acceleration to what is achievable given the current friction
limits and brake distribution and limits the vehicle acceleration
to a comfortable region whenever possible. For the first role,
the constraint can be defined in the canonical form as

− ae,k ≤ −abe (30)

while for the second, a slack variable sa,k will be introduced
for the creation of a soft constraint, which results

amin ≤ ae,k + sa,k ≤ amax (31)

where amin and amax define the comfortable acceleration
limits and

xk ← [xTk , sa,k]T (32)

for optimization purposes.
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All constraints presented will be represented by their generic
form Akxk +Bkuk + ck ≤ 0, where

Ak =



0 0 −1 0
0 0 1 0
−1 tc,min −tc,min 0

0 0 0 0
0 0 0 −1
0 0 0 1

−18 0 gk 0



Bk =



0
0
0
−1
−1

1
0


ck =



0
vmax

0
−abe

−amin
amax
−fk


.

(33)

V. PROPOSED CONTROLLER

This Section addresses the formulation of the l∞-norm
robust optimal control based on the min-max approach and
presents the pre-stabilizing nil-potent controller concept.

A. l∞-norm Robust Optimal Control Formulation

The optimization problem of an l∞-norm optimal receding
horizon control formulation [6] is given by

J∗(x0) = min
x,u

T−1∑
k=0

||Qxk||∞ + ||Ruk||∞ + ||P∞xT ||∞
s.t. xk+1 = Fxk +Guk + h+Wwk

Akxk +Bkuk + ck ≤ 0
(34)

where the range of k has been omitted for brevity, T is the con-
strained horizon, F ∈ RNx×Nx , G ∈ RNx×Nu and h ∈ RNx

represent the dynamics of an affine system, W ∈ RNx×Nw is
the additive disturbance matrix, Ak ∈ RNc×Nx ,∀k ∈ [0, T ],
Bk ∈ RNc×Nu ,∀k ∈ [0, T ] and ck ∈ RNc ,∀k ∈ [0, T ]
define a polytopic inequality constraint, Q ∈ RNwx×Nx

and R ∈ RNwc×Nu are full lower rank real matrices and
P∞ ∈ RNp×Nx is the cost matrix of the infinite horizon
unconstrained l∞-norm problem

||P∞x0||∞ = min
x,u

∞∑
k=0

||Qxk||∞ + ||Ruk||∞
s.t. xk+1 = Fxk +Guk + h

(35)

The problem in (34) can be represented as a Linear Pro-
gramming (LP) problem based on a relaxation of the l∞-norm
cost functional through the addition of auxiliary variables

εxk ∈ R, ∀k ∈ [0, T ] and εuk ∈ R, ∀k ∈ [0, T − 1], which
yields

J∗(x0) = min
x,u

εxT +
T−1∑
k=0

εxk + εuk

s.t. xk+1 = Fxk +Guk + h+Wwk
Akxk +Bkuk + ck ≤ 0
Qixk ≤ εxk
−Qixk ≤ εxk
Riuk ≤ εuk
−Riuk ≤ εuk
(P∞)ixT ≤ εxT
−(P∞)ixT ≤ εxT

(36)

where Qi, Ri and (P∞)i are the i-th row of matrices Q, R
and P∞, respectively.

The system should remain constrained and stable under
any possible value of w ∈ W , where W = {w | w ∈
RN , ||w||∞ ≤ 1}. Therefore, let x̄k ∈ RNx be the process
state without disturbances. The representation of both xk and
x̄k in respect to a known current state x0 = x̄0 results in

xk = F k−1x0 +
k−1∑
i=0

F k−i−1(Gui + h) +
k−1∑
i=0

F k−i−1Wwi,

x̄k = F k−1x0 +
k−1∑
i=0

F k−i−1(Gui + h)

(37)
and defining W̄i = F i−1W for brevity, the relation between
xk and x̄k is

xk = x̄k +

k−1∑
i=0

W̄k−iwi. (38)

The substitution of (38) in (36) yields

J∗(x0) = min
x,u

εxT +
T−1∑
k=0

εxk + εuk

s.t. x̄k+1 = Fxk +Guk + h

Akx̄k +Bkuk + ck +A
k−1∑
i=0

W̄k−iwi ≤ 0

Qix̄k +Qi
k−1∑
j=0

W̄k−jwj ≤ εxk

−Qix̄k −Qi
k−1∑
j=0

W̄k−jwj ≤ εxk
Riuk ≤ εuk
−Riuk ≤ εuk
(P∞)ix̄T + (P∞)i

T−1∑
j=0

W̄k−jwj ≤ εxT

−(P∞)ix̄T − (P∞)i
T−1∑
j=0

W̄k−jwj ≤ εxT
(39)

where all uncertain variables are only present on polytopic
constraints.

Theorem 2. Let p ∈ R+∞, p∗ ∈ R+∞, q ∈ RN and x ∈ X
where X = {x | x ∈ RN , ||x||p ≤ 1} and 1/p + 1/p∗ = 1
then

qTx ≤ max
||x||p≤1

qTx = ||q||p∗ . (40)
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Proof. Adapted from [5]. If both q and x are finite, there is
an upper bound to qTx given by Hölder’s inequality as

qTx ≤ ||x||p||q||p∗ (41)

by definition, ||x||p ≤ 1, therefore

qTx ≤ ||x||p||q||p∗ ≤ ||q||p∗ (42)

results in an upper bound to the constrained maximization

J(q) = max
||x||p≤1

qTx = ||q||p∗ . (43)

Let |M | be the element-wise modulus of a given matrix M.
Through Theorem 2, it follows that

Mw ≤ max
||w||∞≤1

Mw = |M |1Nw
(44)

and the robust polytopic constraint from (39) is

Akx̄k +Bkuk + ck +

k−1∑
i=0

|AkW̄k−i|1Nw
≤ 0 (45)

and analogously

Qix̄k +
k−1∑
i=0

|QiW̄k−i|1Nw
≤ εxk

≤ −Qix̄k +
k−1∑
i=0

|QiW̄k−i|1Nw ≤ εxk

(P∞)ix̄T +
T−1∑
j=0

|(P∞)iW̄k−j |1Nw
≤ εxT

−(P∞)ix̄T +
T−1∑
j=0

|(P∞)iW̄k−j |1Nw
≤ εxT .

(46)

The robust counterpart of the optimization problem from
(39) based on (45) and (46) is

J̄∗(x0) = min
x,u

εxT +
T−1∑
k=0

εxk + εuk

s.t. x̄k+1 = Fxk +Guk + h
Akx̄k +Bkuk + ck + ΦA(k) ≤ 0
Qix̄k + ΦQ(k) ≤ εxk
−Qix̄k + ΦQ(k) ≤ εxk
Riuk ≤ εuk
−Riuk ≤ εuk
(P∞)ix̄T + ΦP (T ) ≤ εxT
−(P∞)ix̄T + ΦP (T ) ≤ εxT

(47)

such that J̄∗(x0) ≥ J∗(x0) and where ΦA(k) =
k−1∑
i=0

|AkW̄k−i|1Nw
, ΦQ(k) =

k−1∑
i=0

|QiW̄k−i|1Nw
and φP (k) =

k−1∑
j=0

|(P∞)iW̄k−j |1Nw .

B. Pre-Stabilizing Nil-Potent Controller

Due to the disturbance modeled in the system, the for-
mulation presented in (47) has the following disadvantage:
the functional cost lim

T→∞
J̄∗ → ∞ and the feasible set

Ck = {xk, uk | Axk + Buk + c̄k ≤ 0} become empty as
k → ∞ if the open-loop system is unstable or marginally

stable. A possible approach for the mitigation of such an effect
is the use of a nil-potent controller [3].

Definition 5. Let xk ∈ RNx be the states and uk ∈ RNu

the control inputs of a system defined by F ∈ RNx×Nx , G ∈
RNx×Nu , such that xk+1 = Fxk + Guk. A controller K0 ∈
RNu×Nx is an i-th order nil-potent controller if

(F −GK0)n = ONx , n ∈ I, n > i (48)

where Oj is a zero column vector of size j.

Let uk = −K0xk + vk and vk be the new control input.
The system pre-stabilized by a n-th order nil-potent controller
is

x̄k+1 = (F −GK0)x̄k +Gvk + h (49)

and, given the results from (38), the system model with
disturbances is written as

xk = x̄k +

min(k,n)∑
i=1

W̄iwk−i (50)

since
W̄i = ONx

, ∀i > n. (51)

Based on (49), (50) and (47), the pre-stabilized robust l∞-
norm optimal control problem, J̄∗np(x0) is

J̄∗np(x0) = min
x,u

εxT +
T−1∑
k=0

εxk + εuk

s.t. x̄k+1 = F̃ xk +Gvk + h

Ãkx̄k +Bkvk + ck + ΦA(k) ≤ 0
Qix̄k + ΦQ(k) ≤ εxk
−Qix̄k + ΦQ(k) ≤ εxk
−RiK0xk +Rivk ≤ εuk
RiK0xk −Rivk ≤ εuk
(P∞)ix̄T + ΦP (T ) ≤ εxT
−(P∞)ix̄T + ΦP (T ) ≤ εxT

(52)

where F̃ = F −GK0 and Ãk = Ak −BkK0.
In this new form Ck ≥ Cn,∀k ∈ [0, T ]. Therefore, the

feasible set converges to a smaller robust set given by Cn
instead of becoming empty as k →∞.

VI. CONTROLLER VALIDATION

This section is divided into two parts. The first describes
the simulation framework developed for the validation of the
control law and the second reports the simulation results for
both robust and nominal controllers.

A. Simulation Framework

A simulation framework for multiple communicating vehi-
cles was developed for the validation of the proposed con-
troller based on the Robotic Operating System (ROS) [21]. It
consists of five different processes:

1) Vehicle dynamics process, which simulates longitudinal
and lateral vehicle dynamics and provides noise for state
measurements;

2) DSRC communication process, which provides realistic
delays and packet losses for V2V communication;
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Figure 7: Simulation results, (a) and (d) present the distance between both vehicles (blue line) and the minimum safety
distance (red dashed line) for the nominal and robust l∞-norm controllers, respectively; (b), (c), (e) and (f) show the lead

(blue line) and ego (red dashed line) vehicles speed and acceleration profiles for the nominal and robust controllers,
respectively

Figure 5: Simulation framework architecture

3) Vehicle behavior process, which executes a predefined
behavior profile on a vehicle;

4) Controller process, which executes the proposed con-
troller; and

Figure 6: Simulated lead vehicle speed profile
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5) Plotter process, which displays the simulation results.
The architecture is shown in Figure 5 where blocks repre-

sent processes and arrows represent message passing topics
between the processes. The simulation assumed a 22ms com-
munication delay and a 1% packet loss based on the worst
case scenario from [22].

The proposed controller was implemented using CVXGEN
[15], a code-generation tool for small LP and QP solvers. The
LP problem consisted of 80 optimization variables, 30 equality
constraints and 248 inequality constraints for a horizon of 10
time-steps.

B. Simulation results
A short-term application of CACC systems focus on high-

way driving scenarios. Therefore, the chosen lead vehicle
speed profile, shown in Figure 6, starts at 15m/s (54km/h)
performing an on-ramp acceleration of 2m/s2 until it reaches
35m/s (126km/h) at t = 10s. At this time, it maintains
constant speed for 10s, until t = 20s. It reduces speed at
−1m/s2 until reaching 25m/s (90km/h) at t = 30s. At this
time, it starts an emergency braking maneuver accelerating at
−10m/s2 until it reaches a complete stop at t = 35s. This
profile allows the validation of the proposed controller in both
nominal and emergency cases.

Disturbances were added for the investigation of the con-
troller robustness to unmodeled uncertainties. A step of ampli-
tude −3m was added to the distance between the vehicles at
t = 17s and a step of amplitude −3m/s was added to the lead
vehicle speed at t = 22s. The disturbance amplitudes were
chosen to ensure violation of the minimum safety distance for
both nominal and robust controllers.

The initial conditions and vehicle parameters used in the
simulations are shown in Table I. Weighting matrices Q and
R are given by

Q =

[
100 0 0
0 1 −1

]
, R =

[
1
]

(53)

and the uncertainty matrix is given by W =
[
0 1.2 0

]T
.

The lead vehicle had unbounded jerk while the lead vehicle has
actuators modeled by a first-order low pass with time constant
tc = 0.1s to ensure worst case performance.

Table I: Initial conditions and vehicle parameters of the
simulation

Description Symbol Value Unit
Initial distance d(0) 15 m

Initial lead vehicle speed vl(0) 15 m
s

Initial ego vehicle speed ve(0) 15 m
s

Maximum allowed speed vmax 40 m
s

Maximum acceleration amax 2.5 m
s2

Minimum acceleration amin -2.5 m
s2

Minimum time-to-contact tc,min 2 s

Worst-case system delay ψ 0.3 s

Lead vehicle maximum braking abl 10 m
s2

Ego vehicle maximum braking abe 10 m
s2

Operation frequency − 20 Hz

Simulation results for the nominal and robust controllers are
shown in Figure 7. In Figures 7-(a) and 7-(d), both controllers

the ego vehicle accelerates at the maximum allowed rate in
order to catch up and reduce the distance to the vehicle ahead
from time t = 0s until t = 4s. Where they keep a constant
clearance, close to the minimum safety distance, where the
robust controller maintains a higher clearance until t = 10s.

At t = 10s, the lead vehicle stops accelerating, so that
the ego vehicle keeps a distance close to the minimum until
the lead vehicle starts to decelerate at t = 20s. Notice the
performances of both control are similar until t = 17s, when
a distance disturbance was introduced. The robust controller
performs better in order to recover a safety distance between
the vehicles. When the lead vehicle decelerates at t = 20s,
the robust controller increases the robustness margin due to
the prediction of a slower speed ahead. The speed disturbance
at time t = 22s caused an increase to the minimum safety
distance, and both controllers responded in a similar manner.

The main advantage of the proposed robust approach is
observed at the emergency braking maneuver at t = 30s,
where it did not violate the minimum distance unlike the
nominal controller. Since its model internalized lead vehicle
acceleration uncertainties.

VII. CONCLUSION

This paper proposed an analytical formulation of the min-
imum safe distance between two vehicles and a robust l∞-
norm optimal controller for cooperative adaptive cruise control
based on such minimum distance. The formulation provides a
theoretical lower bound to vehicle clearance inside platoons
and was used for the design of a controller capable of
internalizing lead vehicle acceleration behavior uncertainties.
It guarantees the ego vehicle never collides with its preceding
vehicle if the preceding vehicle also does not collide.

Validation simulations included on-ramp accelerations,
small velocity variations and emergency braking situations,
typical of highway driving. The results demonstrate that the
proposed robust controller operates correctly in both nominal
and emergency scenarios. It was able to achieve a good
distance and speed tracking and even increased the vehicle
clearance during breaking to ensure the vehicle safety, result-
ing in a controller with intuitive behavior and robust to the
lead vehicle actions.

Future work on the controller will focus on reductions in
acceleration disturbances due to measurement noises.
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