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Traffic Sign Detection Using a Cascade Method
With Fast Feature Extraction and Saliency Test

Dongdong Wang, Xinwen Hou, Jiawei Xu, Shigang Yue, Member, IEEE, and Cheng-Lin Liu, Fellow, IEEE

Abstract— Automatic traffic sign detection is challenging due1

to the complexity of scene images, and fast detection is required in2

real applications such as driver assistance systems. In this paper,3

we propose a fast traffic sign detection method based on a cascade4

method with saliency test and neighboring scale awareness. In the5

cascade method, feature maps of several channels are extracted6

efficiently using approximation techniques. Sliding windows are7

pruned hierarchically using coarse-to-fine classifiers and the8

correlation between neighboring scales. The cascade system has9

only one free parameter, while the multiple thresholds are10

selected by a data-driven approach. To further increase speed,11

we also use a novel saliency test based on mid-level features12

to pre-prune background windows. Experiments on two public13

traffic sign data sets show that the proposed method achieves14

competing performance and runs 2∼7 times as fast as most of15

the state-of-the-art methods.16

Index Terms— Traffic sign detection, cascade system, fast17

feature extraction, saliency test.18

I. INTRODUCTION19

TRAFFIC sign detection plays an important role in intel-20

ligent transportation such as driver assistance systems,21

road maintenance and automated driving. Although signs are22

designed with distinct color and simple shape, automatic23

detection is still challenging in complex scenes, because24

the background and illumination are changing, signs may25

be distorted in color and shape, and sometimes, partially26

occluded. In addition, the image undergoes motion blur when27

the vehicle moves fast. A traffic sign detection method should28

be designed to overcome these problems to achieve high29

accuracy and reliability. Moreover, detection should be fast to30

satisfy real-time applications such as driver assistance systems.31
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Fig. 1. Proposed traffic sign detection system HHVCas. After pre-pruning by
saliency test, HHVCas has four stage classifiers. Stage I rejects windows using
a linear SVM classifier on compressed integral HOG feature and neighboring
scale awareness. Stage II employs a LDA classifier on integral HOG feature,
and Stage III uses a LDA classifier on HOG feature. Stage IV uses a nonlinear
SVM on color HOG features.

Traffic sign detection has been studied intensively in the 32

past decades and many approaches have been proposed. Early 33

methods usually exploited the color or geometric information 34

of traffic signs [1], [2]. Since the famous Viola-Jones detec- 35

tor [3] was successfully used in face detection, sliding window 36

and machine learning based methods have become preva- 37

lent. Recently, some sliding window based methods [4]–[6] 38

achieved leading performance in the competition of Germany 39

Traffic Sign Detection Benchmark (GTSDB) [7]. Nevertheless, 40

these methods are computationally expensive. 41

We aim to design a fast traffic sign detection system 42

to maintain the performance advantage of sliding window 43

based methods with significant speedup. There are three 44

main contributions in this work. First, we propose a cascade 45

framework with neighboring scale awareness for fast traffic 46

sign detection. The system has only one free parameter to 47

control the tradeoff between detection speed and accuracy, 48

while the multiple thresholds are selected by a data-driven 49

approach. Second, we design an approximation approach for 50

fast feature extraction, which leads to additional speedup. 51

Third, we propose a novel saliency test based on mid-level 52

features, which is demonstrated to be robust and effective in 53

pre-pruning windows. 54

Our detection system consists of four cascaded stages where 55

different Histograms of Oriented Gradient (HOG) feature 56

variants are used, as shown in Fig. 1. We name the system 57

as a Hybrid HOG Variants Cascade (HHVCas). The HHV- 58

Cas detector works by evaluating multi-scale hypothesized 59

windows hierarchically: each stage rejects a portion of non- 60

sign windows and the surviving windows are further evaluated 61

in the next stage with a stronger classifier. We use linear 62

1524-9050 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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classifiers for the first three stages and a nonlinear classifier63

for the last stage. The used features also have increasing64

computation complexity or dimensionality from stage to stage.65

The early stages with fast and simplified features run fast66

to eliminate apparent non-sign windows while preserving67

signs with high recall rate. The latter stages, based on more68

representative features that are computed more accurately with69

more information, provide better discrimination. The saliency70

test before the cascade can preclude a portion of windows71

from evaluation by the cascaded classifiers.72

Our experimental results on the GTSDB dataset show73

that the proposed HHVCas detector can achieve competitive74

performance compared with state-of-the-art methods and runs75

2∼7 times as fast. Compared to the recent method [8] which76

provide high accuracy and speed, our method relies on little77

color information so that it is less sensitive to illumination.78

In addition, it involves fewer artificial parameters, and thus has79

the potential of better generalization. We also demonstrated the80

promise of the proposed method on the Swedish Traffic Signs81

Dataset (STSD) [9].82

A preliminary version of the proposed method was pre-83

sented in a conference paper [10]. Since then, the work has84

been extended in several ways:85

• The method is simplified by eliminating the utilization86

of multi-resolution models in the first two stages, which87

effects in reducing artificial parameters.88

• A data-driving approach is proposed to optimize the89

thresholds in the system, leaving only one free parameter90

to select.91

• Experimental evaluation is enhanced with detailed analy-92

sis and an additional dataset.93

The rest of this paper is organized as follow. Section II94

reviews the related previous works. Section III describes the95

proposed detection method in detail. Section IV presents the96

experimental results and discussions, and Section V gives97

concluding remarks.98

II. RELATED WORK99

Traffic sign detection methods proposed so far fall into100

three categories: segmentation-based, shape-based and sliding101

window based. Segmentation-based methods commonly use102

color information to classify pixels for extracting candidate103

signs [11]–[14], or use color in preprocessing to eliminate104

irrelevant scene regions. To overcome the color sensitivity to105

illumination, the RGB color space is transformed [12] or con-106

verted to other color spaces such as HSV/HSI [13], [15],107

Lab [14] and CIEACM97 [11]. A comprehensive evaluation108

of color-based segmentation algorithms can be found in [16].109

Some methods extract candidate traffic signs as Maximally110

Stable Extremal Regions (MSERs) when using thresholds at111

several levels [8], [17]. Salti et al. [18], [19] used the MSER112

technique to extract regions that exhibit a uniform value of113

distinctive sign color, and used the Wave Equation algorithm to114

detect geometrically symmetric regions. The obtained Regions115

of Interest (ROIs) were further verified by Support Vector116

Machine (SVM) classifiers and other pruning techniques.117

Many methods have exploited the circular or polygonal118

shape of traffic signs. Barnes and Zelinsky [20] detected119

speed limitation signs using a Fast Radial Symmetry Trans- 120

form (FRST), which extracts signs by examining the peaks in 121

a parameter space voted by edge points like that in circular 122

Hough transform. Loy and Barnes [21] proposed an extended 123

FRST to detect equiangular polygonal signs by considering the 124

symmetry of target polygons. Höferlin and Zimmermann [22] 125

localized potential signs using SIFT, as a complement of 126

FRST. García-Garrido et al. [23] located circular signs using 127

FRST as well, and detected polygonal signs by locating lines 128

with Hough transform. Other Hough-like methods include 129

Vertex and Bisector Transform [24], Bilateral Chinese Trans- 130

form [25], Single Target Vote for Upright Triangles [2], 131

Single Target Vote for Upright Ellipses [2] and RANSAC for 132

Symmetric Lines Detection [26]. Some methods [27], [28] 133

simplify the sign contours using a constrained combination 134

of simple linear structures which are coded by Local Contour 135

Patterns descriptor. 136

Some shape based methods use classifier or shape match- 137

ing to verify sign hypotheses proposed by simple fea- 138

tures or image segmentation. Landesa-Vázquez et al. [28] 139

refined the hypotheses using a cascaded AdaBoost detec- 140

tor [3] where the weak learners are based on intensity 141

comparison between pixels. Liang et al. [6] applied shape- 142

specific templates to search potential signs on a transformed 143

image where each RGB triple was projected to a scalar 144

value, and then used SVM classifiers to refine hypotheses. 145

Timofte et al. [29] exploited additional multi-view 3D infor- 146

mation captured by multiple cameras to improve detection. 147

Candidates extracted in single views were verified by a 148

cascaded AdaBoost classifier [3] and combined to generate 149

3D hypotheses. 150

Sliding window based methods have been widely adopted 151

in object detection, mostly using the cascaded AdaBoost 152

classifier [3], where the weak learners often use Haar-like 153

features [30]–[32]. Bahlmann et al. [33] proposed color para- 154

meterized Haar-like features for traffic sign detection. Other 155

features used include the Edge Orientation Histograms [34], 156

quantum features [28] and Local Rank Pattern [35]. Some 157

methods [36]–[38] use simplified versions of HOG for con- 158

structing weak learners, where the gradient orientation is 159

discretized by several comparisons in horizontal and vertical 160

gradients. Specifically, Pettersson et al. [36] built HistFeat 161

features which are 2D tables derived from pairs of orientation 162

bins. Overett et al. [37] proposed LiteHOG and LiteHOG+ 163

features by projecting multiple orientations into a single scalar 164

with Fisher Discriminant Analysis. Mathias et al. [4] adopted 165

depth-2 decision trees as weak learners based on integral 166

channel features. Møgelmose et al. [39] employed the same 167

method to detect US traffic signs. Liu et al. [40] proposed two 168

variants of Local Binary Pattern and a split-flow cascade tree 169

structure to detect multiple types of signs, where a Common 170

Finder AdaBoost is designed to find the common features 171

that are shared by signs of different types. Instead of the 172

AdaBoost cascade, Wang et al. [5] designed a two-stage 173

detector in coarse-to-fine manner, with a Linear Discriminant 174

Analysis (LDA) classifier and a nonlinear SVM in two stages. 175

This approach reported appealing performance, but the high 176

computational cost remains an issue. 177
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Fig. 2. Steps of HOG computation [44]. First, the gradient of each pixel in image is computed and quantized to N orientations by bilinear interpolation.
The image plane is then partitioned into a dense grid of rectangular cells, where pixel-level features (orientation channel values) are accumulated to obtain
cell-based histograms of oriented gradients. Cell-based features are normalized within overlapping blocks, and the normalized features of all cells in a window
are concatenated into a feature vector.

It is worthy of mentioning that for generic object detec-178

tion, recent methods based on deep convolutional neural net-179

works (CNNs) [41]–[43] have reported superior performance.180

They explore learned features in deep neural networks and181

use GPUs to satisfy the very high computation demand. These182

methods reveal some insights for traffic sign detection in the183

future, but to reduce the computation cost remains an issue.184

Our proposed method detects traffic signs from sliding185

windows using a cascade framework like the Viola-Jones186

detector [3] to achieve fast detection. The key difference from187

previous methods lies in that we use strong classifiers in each188

stage of our system to achieve better tradeoff between speed189

and accuracy. Compared to the method of [5], our system190

uses more stages in the hierarchy for faster detection while191

maintaining high accuracy by using strong classifiers.192

III. TRAFFIC SIGN DETECTION193

The proposed HHVCas detector (Fig. 1) consists of four194

cascaded stages for coarse-to-fine sliding window evaluation in195

addition to a saliency test stage for pre-pruning windows. The196

Stage I rejects windows using a linear SVM classifier based197

on compressed integral HOG feature. The Stage II employs198

a LDA classifier on integral HOG feature, which is more199

representative than the one in the preceding stage and can200

prune more disturbing windows. The surviving windows are201

fed into the Stage III which uses a LDA classifier on HOG,202

which is stronger than the integral HOG. The Stage IV uses203

a nonlinear SVM with color HOG feature [5] to make final204

decisions. The Stage I also exploits the correlation between205

the windows of neighboring scales to reduce the computation206

of window evaluation. The cascade involves several thresholds207

for window rejection, which are jointly optimized on a training208

dataset, and only one free parameter is remaining to be209

selected artificially for controlling the tradeoff between the210

detection performance and speed.211

In the following, we first describe the feature extraction212

techniques for the cascade, then illustrate the techniques213

of neighboring scale awareness, parameter optimization, and214

saliency test in the sequel.215

A. Fast Feature Extraction 216

Our HHVCas system uses several different HOG variants, 217

including integral HOG [45] and its compressed version, 218

HOG [46] and color HOG [5]. 219

1) HOG: The steps of HOG computation are depicted 220

in Fig. 2. First, the gradient of each pixel in the image is 221

quantized according to orientation. The image plane is then 222

partitioned into a dense grid of rectangular cells. In each 223

cell, the pixel-level features (values of N orientation channels) 224

are accumulated to obtain cell-based histograms of oriented 225

gradients, where each pixel contributes to the cells around it 226

by bilinear interpolation. The cell-based features are further 227

normalized in larger spatial regions called blocks. Typically, 228

blocks include 2 × 2 cells and overlap by one cell. Hence, 229

each cell is normalized by four factors corresponding to four 230

blocks which it belongs to, producing a 4 × N-dimensional 231

feature vector for the cell. In a detection window, the cell- 232

based features are concatenated into a long feature vector for 233

evaluation. More details of HOG computation can be found 234

in [46]. 235

2) Integral HOG: The integral HOG is different from the 236

HOG only in the step of cell-related accumulation: each 237

pixel contributes to the nearest cell only, or saying, the cell- 238

based features are formed by hard partition, unlike the soft 239

assignment (bilinear interpolation) of HOG. The hard cell 240

assignment makes the integral HOG easily computed via the 241

integral images of oriented gradients. In our implementation, 242

we also perform normalization on per-cell aggregation as in 243

HOG. Due to the hard cell assignment, the integral HOG is 244

less discriminative than the HOG. 245

3) Compressed Integral HOG: The high dimensionality of 246

integral HOG leads to expensive window evaluation, so we 247

introduce a condensed version. Unlike in integral HOG that the 248

N-dimensional histograms of each cell are normalized by four 249

different factors to form a 4 × N-dimensional vector, we can 250

obtain a compressed vector of 4 + N-dimension, by summing 251

over both the four normalized values for a fixed orientation 252

and the N orientations for a fixed normalization factor. This 253

technique was firstly proposed by Felzenszwalb et al. [47] for 254
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TABLE I

THE PARAMETERS OF HOG VARIANTS

the HOG feature, which leads to little loss in discriminability.255

In our HHVCas system, the compressed integral HOG feature256

is used in the first stage for quick rejection of windows, and257

is expected to complement the integral HOG feature used in258

the second stage.259

4) Color HOG: For each color channel of image, HOG260

feature is calculated for each cell as in the above procedure,261

and histograms of different channels of all cells in a detection262

window are concatenated into a long feature vector.263

The parameters for the HOG variants used in our system264

are summarized in Table I. Since each window is partitioned265

into 5×5 cells, the feature dimensionality is 800 for HOG and266

integral HOG, 2400 for color HOG, and 300 for compressed267

integral HOG.268

In our system, the integral HOG feature is calculated at269

multiple scales for Stage I and Stage II evaluation. To construct270

such an integral HOG pyramid is computationally expensive271

due to the calculation of oriented gradients for each pixel.272

Inspired by the method in [48], we propose a fast strategy by273

sharing orientation channels among neighboring scales. Let I274

denote an m × n image, Is denote the scaling of I with a275

factor s, R(I, s) specify the sampling of I with factor s, and276

F denote the maps of extracted features of an image. Suppose277

we have computed F = �(I ), e.g. N gradient orientation278

maps. The scaled maps Fs can be obtained by279

Fs = �(Is) = �(R(I, s)). (1)280

Alternatively, Dollár et al. [48] proposed the approximation281

Fs ≈ R(F, s) · s−λ�, (2)282

where λ� is a feature-related parameter. Equation (2) shows283

that the N orientation maps of Is can be approximated by284

those maps of I . Dollár et al. [48] adopted this strategy for285

the fast calculation of integral channel features.286

For calculating the integral HOG feature of Is , we can287

first obtain the oriented gradient maps Fs using the general288

method (1) or the approximation (2). The latter saves much289

time by avoiding the direct gradient computation from Is , yet290

still suffers from the overhead of resampling and summation291

in each cell. We propose a further acceleration technique by292

considering the relation between F and Fs with scaled cell293

w = ws · s:294

1

|ws |
∑

i, j∈ws

Fs(i, j) ≈ 1

|w|
∑

i, j∈w

F(i, j)s−λ�. (3)295

This shows that the summation on Fs with cell ws can296

be obtained from F with scaled cell w, and vice versa.297

Fig. 3. Strategies for calculating integral HOG of different scales.
(a) Ordinary method: oriented gradient maps of different scales are calculated
independently. (b) Approximation of [48], oriented gradient maps of Is are
obtained by resampling those of I . (c) Integral HOG for Is are approximated
from the N orientation channels of I with a scaled cell w = ws · s.

In practice, the scaling effect of summation is canceled out 298

when performing local normalization across cells. So, the scal- 299

ing factor s−λ� of summation can be simply omitted and the 300

cell summation of a neighboring scale is directly taken. Fig. 3 301

shows the three strategies. Column (a) shows the ordinary 302

strategy of image scaling followed by feature map calculation. 303

Column (b) is the approximation via equation (2). The two 304

methods both calculate Fs explicitly. Column (c) shows the 305

proposed approximation: use the N orientation channels of I 306

directly for a different scale. This leads to the same features 307

as proposed in [48] and is more efficient. 308

By the above approximation, the loss of feature representa- 309

tion is negligible for small scaling factor s, but is considerable 310

when s is large. Therefore, we calculate the maps oriented 311

gradients on a set of sparse scales for an integral HOG 312

pyramid, and share the maps among neighboring scales only. 313

As illustrated in Fig. 4, the oriented gradients are calculated 314

every three scales and shared locally. The window/cell sizes 315

of the three scales differ by scaling factor s = 1.08, as shown 316

in Table I. 317

In summary, HOG feature is prevalent in the community of 318

computer vision for its good representation, but the disadvan- 319

tage is that this feature is time consuming for computation. 320

We use its simplified variants in the first stages to reject 321

most hypotheses. Then HOG and color HOG of surviving 322

hypotheses are extracted and evaluated in the last stages. 323
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Fig. 4. Strategies of constructing an integral HOG pyramid. (a) Ordinary
method: oriented gradient maps and features of difference scales are calculated
independently. (b) Method of [48]: orientation maps are obtained by scaling
those of a neighboring scale. (c) Take the channel maps of a neighboring scale
and use scaled size of window/cell.

The parameters of HOG variants are referred partly to the324

work of Wang et al. [5]. We set the windows size in the325

first two stages as 20 × 20 to detect the smallest signs in re-326

scaled images. In stage III, the window size remains 20x20 for327

incurring minimum cost in calculating HOG feature. The last328

stage handles big windows (40 × 40) for exploiting more329

discriminative information in high-resolution image, while330

the increase of computation cost in this stage is moderate331

because of small number of surviving windows. As illustrated332

in Table I, the increasing dimensionalities of features in333

stages (300, 800, 800 and 2400) correspond to increasing334

evaluation time. Though the dimensionalities of feature vectors335

in stage II and III are the same, the integral HOG in stage II336

is much more efficient in computation.337

B. Neighboring Scale Awareness for Speedup338

In addition to saving feature calculation by approximating339

feature maps from neighboring scales as described, we also340

use neighboring scale awareness to save window evalua-341

tion. It has been observed that responses of a detector at342

nearby positions (in the same or neighboring scales) are343

correlated [49], [50]. We speed up detection by exploiting344

the correlation between the detection windows in neighbor-345

ing scales. Let x be a hypothesis window at scale s in346

search space. Let N (x) be x’s neighbors in adjacent scales.347

We consider our HHVCas as a four-stage detector, in which 348

the per-stage classifier is Hk (k ∈ {1, . . . , 4}). For any 349

window x at scale s, we do not compute the score H1(x), but 350

instead estimate from the scores H1(x ′),∀x ′ ∈ N (x). Because 351

H1(x) is correlated with (actually similar to) the scores of 352

its neighboring windows, we can reject x if H1(x ′) for all 353

x ′ ∈ N (x) fall below a threshold θ S , otherwise the window x 354

is retained and fed into the next stage classifier H2. Since the 355

scores of windows in neighboring scales are used, we refer 356

to this technique as neighboring scale awareness. We apply 357

this technique only in the first stage for scoring H1, as show 358

in Fig. 1. The subsequent stages do not use neighboring scale 359

awareness because they need higher accuracy and encounter 360

far fewer windows than the first stage. 361

C. Parameter Optimization 362

The HHVCas detector involves thresholds for both per- 363

stage classifier rejection and neighboring scale awareness 364

based pruning. We optimize the thresholds jointly using an 365

unsupervised data-driven optimization approach, as inspired 366

by the work of [50] for a soft cascade. 367

We consider the thresholds for the first three stages Hk in 368

HHVCas, since the threshold in the last stage is variable for 369

tradeoff the precision and recall rate. There are two types of 370

thresholds: per-stage rejection threshold θ R
k , and neighboring 371

scale pruning threshold θ S in Stage I. The multi-stage rejection 372

thresholds are initially selected conservatively according to 373

the performance on a training image set, letting most positive 374

windows retained. These initial thresholds are denoted by θ∗
k 375

and called base thresholds. 376

Using the HHVCas with base thresholds to evaluate an 377

image set, we collect the detected windows X as quasi- 378

positives. The fraction of quasi-positives X rejected by stages 379

is called Quasi Miss Rate (QMR), given a set of thresholds. 380

If the QMR at each rejection stage is ≤ γ ′, the overall QMR 381

of the cascade detector will be ≤ γ = 1 − (1 − γ ′)K . 382

Let X1 = X be the initial set of quasi-positives and define 383

H1 = {H1(x)|x ∈ X1}. The first rejection threshold θ R
1 is 384

obtained as: 385

θ R
1 = 	H1
r − ε, where r = 	γ ′ · |H1|
, (4) 386

where γ ′ = 1−(1−γ )1/K , 	H
r denotes the r th smallest value 387

in H and ε = 10−5. For other stages 1 < k ≤ K , we define 388

Xk = {x ∈ Xk−1|Hk−1(x) > θ R
k−1} and Hk = {Hk(x)|x ∈ 389

Xk}. We can then obtain θ R
k as: 390

θ R
k = 	Hk
r − ε, where r = 	γ ′ · |Hk |
. (5) 391

The neighboring-scale awareness module is optimized by 392

considering H1. For each quasi positive x , let N (x) be 393

its neighbors in neighboring scales. We collect X S = 394

{x ′
m|H1(x ′

m) ≥ H1(x ′) ∧ H1(x ′
m) > θ∗

1 , x ′
m, x ′ ∈ N (x)}. Let 395

HS
1 = {H1(x ′

m)|x ′
m ∈ X S}. We set θ S by: 396

θ S = 	HS
1
r − ε, where r = 	γ ′ · |HS

1 |
. (6) 397

It is easy to see that with the above thresholds θ R
k and θ S , 398

the cascade detector with neighboring scale pruning has QMR 399

at most γ . In the first stage, whether to prune a quasi-positive 400
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x or not is determined by scoring H1 or by looking at the401

scores of its neighbors, and the two cases are equivalent based402

on Equations (6) and (4). This makes |X2| ≥ |X1 · (1 − γ ′)|.403

For subsequent stages, we have |Xk | ≥ |Xk−1 · (1 − γ ′)|.404

Therefore, |XK+1| ≥ |X1 · (1 − γ ′)K |. The overall fraction405

of pruned quasi-positives is at most 1 − (1 − γ ′)K = γ .406

If there are too many quasi-positives per image, we can407

conduct this procedure several rounds to obtain optimal θ R
k408

and θ S iteratively. Typically, two rounds is enough to get409

stable estimates: a QMR is picked at the first round to prune a410

fraction of quasi-positives, and then the obtained XK+1 serves411

as the initial set of quasi-positives for the second round.412

D. Saliency Test413

Preceding the cascade detector with a pre-pruning module414

based on saliency test can further speed up detection. We pro-415

pose a robust saliency test based on mid-level features (such416

as HOG) instead of on low-level features in common saliency-417

based detection. This is intuitive that a mid-level representation418

is more discriminative than a low-level one to locate candidate419

sign regions, while a low-level representation may not prune420

non-sign regions reliably though it runs fast.421

For easy implementation, we adopt the simple center-422

surround saliency [51], which is based on the assumption that423

saliency reflects the local contrast of an image region with424

respect to its neighborhood. In this case, the saliency of a425

region is computed as the distance between the average feature426

in the region and the average feature over its neighborhood.427

Let v denote a feature vector, w0 and w1 denote a center and428

a surround region centered at pixel (i, j), respectively. Let | · |429

be the area covered by a region, and D(·) denote the distance430

between two vectors, then the saliency value V (i, j) can be431

computed by432

V (i, j) = D

(
1

|w0|
∑

p∈w0

v p,
1

|w1|
∑

q∈w1

vq

)
. (7)433

Typically, multi-scale saliency is computed using several sur-434

rounding window sizes and aggregating the multiple saliency435

values:436

V (i, j) =
∑

S
Vs(i, j), (8)437

where S is the set of surrounding window sizes. Binarizing438

the saliency map V (i, j) gives a mask of image, with zero439

denoting non-saliency pixels.440

In our method, we calculate two cell-level saliency maps441

based on two types of mid-level features: compressed HOG442

and non-normalized HOG (without block-based normaliza-443

tion). In the input image, each cell (size 8 × 8) has a444

compressed HOG feature and a non-normalized HOG feature,445

both are N-dimension. The compressed HOG is obtained from446

the normal HOG feature of one cell by summing the four447

normalized values of each orientation. The non-normalized448

HOG is obtained by summing the orientation values over449

the pixels in a cell. It is not robust to illumination change,450

but helps eliminate low-contrast regions, which are unlikely451

to contain signs. The two cell-level saliency maps based on452

compressed HOG and non-normalized HOG are denoted as 453

Vh and VnH , respectively. The center region is the 8 × 8 cell, 454

while the surrounding region has three sizes of 3 cells, 5 cells 455

and 7 cells wide. The two cell-level maps are smoothed using 456

a Gaussian filter (σ = 0.5) and then re-scaled to the same size 457

as the input image. We apply thresholds Th and TnH on Vh 458

and VnH , respectively, to get two binary masks. The two masks 459

are then fused into one by AND operation, i.e., pixels that are 460

salient in both maps can survive. For a detection window, it is 461

expected to contain a sign if the fraction of salient pixels is 462

above a threshold Tarea . 463

The cell size 8 × 8 was selected empirically based on the 464

assumed minimum sign size 20 × 20 in detection. If the 465

cell size is as large as the sign size, the HOG in a cell 466

will be less discriminative to differentiate between signs and 467

background regions. In contrast, a partial region of a sign 468

which has dominant orientation is more likely to be salient 469

from background. On the other hand, too small cell size would 470

result in big HOG maps, thus leads to expensive saliency 471

computation. Empirically, the cell size can be set in between 472

6 and 10, and specifically, set as 8 × 8 in our experiments. 473

The setting of thresholds Th , TnH and Tarea is specified later 474

in the experimental section. 475

Examples of saliency test are shown in Fig. 5, where non- 476

salient pixels are displayed in black. It is seen that the sign 477

regions are well preserved while some image regions are 478

eliminated. 479

E. Summary of Detection Process 480

Since the detector involves multiple steps and techniques, 481

we summarize the processing steps in sequential as follows. 482

• Step 1: Saliency mask generation. For an input image, 483

calculate the mask image from two saliency maps, based 484

on the compressed HOG and non-normalized HOG, 485

respectively. The saliency mask labels saliency for each 486

pixel in the input image. 487

• Step 2: Feature pyramid construction. Build two feature 488

pyramids with scaling factor 1.08 for integral HOG and 489

compressed integral HOG using the proposed fast feature 490

extraction technique. To save computation, oriented gra- 491

dient channels are computed once every two scales and 492

are shared locally among neighboring scales. 493

• Step 3: Saliency test for every other scale. On a scale, 494

saliency test is adopted to pre-prune background win- 495

dows. The candidate window (size 20 × 20) is back- 496

mapped to the input image to obtain the corresponding 497

patch, of which the proportion of salient pixels is cal- 498

culated through the integral image of the saliency mask. 499

If the proportion of salient pixels in the patch is lower 500

than threshold Tarea , the window is pruned, otherwise, 501

the window is fed into the cascade detector. 502

• Step 4: Speedup by neighboring scale awareness. 503

In Stage I of the cascade, window evaluation by linear 504

SVM on compressed integral HOG is performed for one 505

scale of every two. For another scale without Stage I 506

evaluation, neighboring scale awareness is used to prune 507

candidate windows according to the scores of neighboring 508



IEE
E P

ro
of

WANG et al.: TRAFFIC SIGN DETECTION USING A CASCADE METHOD 7

Fig. 5. Examples of saliency test. In each column, the first row shows the original image, and the second row has non-salient pixels displayed in black.

Fig. 6. Sign classes in GTSDB: (a) prohibitory, (b) danger, (c) mandatory, (d) other signs which are not evaluated in detection.

Fig. 7. Sign classes in STSD: (a) prohibitory, (b) mandatory, (c) some signs that are prone to be confused with the two specified categories.

scales. Windows surviving Stage I are fed into Stage II509

and Stage III for further evaluation.510

• Step 5: Accurate detection in Stage IV. Windows surviv-511

ing Stages I, II and III are verified in Stage IV using512

nonlinear SVM on color HOG. The 20 × 20 window is513

back-mapped to the input image to re-scale the corre-514

sponding region into a 40 × 40 window for extracting515

color HOG, and given final score by nonlinear SVM.516

• Step 6: Duplicate detects suppression. Overlapping517

detects in different scales are merged by non-maximum518

suppression.519

IV. EXPERIMENTS520

We evaluate the performance of the proposed HHVCas521

detector and saliency test on two public datasets with com-522

parison to two baseline detectors. On the dataset GTSDB,523

we also compare the performance with the state-of-the-art524

results reported in the literature.525

A. Datasets526

The dataset of German Traffic Sign Detection Bench-527

mark (GTSDB) [7] consists of 600 training images (containing528

846 traffic signs) and 300 test images (360 traffic signs). 529

All the images are in high resolution of 1360 × 800 size, and 530

the size of signs varies from 16 to 128 in terms of the longer 531

side. The types of traffic signs are divided into three major 532

categories and some minor categories. According to standard 533

practice, three categories (prohibitory, danger and mandatory 534

signs) are used to evaluate detection methods. The sign classes 535

are shown in Fig. 6. 536

The Swedish Traffic Sign Dataset (STSD) was previ- 537

ously used for evaluating traffic sign recognition [9]. It has 538

3,777 annotated images. Like the partition in GTSDB, we ran- 539

domly split the images into a training set and a test set 540

in 2:1 ratio, and take the prohibitory and mandatory categories 541

in evaluation (Fig. 7), while the signs of danger category are 542

not explicitly labeled in STSD. The very small signs with 543

longer side less than 16 pixels are excluded from evalua- 544

tion. In total, there are 1,498 traffic signs for training and 545

786 signs for testing, respectively. In Fig. 7, it can be seen 546

that detection in STSD is more difficult since the targeted sign 547

categories are similar to some signs that are excluded from 548

evaluation. 549
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B. Detector Settings550

1) HHVCas: In the HHVCas detector, the parameters for551

HOG variants are described in Table I. Integral HOG pyramids552

are built with a scaling factor of 1.08. Oriented gradient553

channels are computed once every 3 scales and are shared554

locally among neighboring scales (Fig. 4). Note that this555

sharing leads to three windows sizes as depicted in Table I.556

2) Baseline Detectors: For comparison with the proposed557

method, we implemented two baseline detectors based on558

sliding window. One is a coarse-to-fine detector named as559

HOG_LDA_SVM following the method of [5]. It evaluates560

densely sampled windows in multiple scales first using a LDA561

classifier on HOG feature, and the windows surviving the first562

stage are verified using an intersection kernel SVM (IKSVM)563

on color HOG. Compared with the original detector [5],564

the baseline HOG_LDA_SVM omits the rectifying step for565

danger category and trains a single classifier for mandatory566

category as opposed to several classifiers for each specific type567

in this category. To detect signs of variable sizes, the input568

image is re-scaled with a factor of 1.08 and the parameters of569

HOG and color HOG features are the same as in [5]. These570

settings are also the same as in our HHVCas.571

The other detector named as ICF_AdaBoost is a soft cascade572

of boosted classifiers using integral channel features (ICFs),573

as described in [4]. Mathias et al. [4] applied ICF_AdaBoost574

on images of a dozen of aspect ratios by scaling the input575

image, and used a GPU to satisfy the heavy computation576

overhead. To be comparable with other detectors, we only use577

ICF_AdaBoost on the input image without changing aspect578

ratio, and report experimental results on a CPU. The feature579

channels include gradient magnitude, six oriented gradients580

and 3 LUV color channels. Each weak learner is a two-depth581

tree, where decisions are made by selecting the best channel-582

related rectangle region. By randomly choosing channel fea-583

tures and rectangle regions, a pool of 30,000 features are584

generated. The final detector is obtained by four rounds of585

training with increasing numbers of weak learners (50, 100,586

200 and 400). The ICF_AdaBoost works with a 20×20 sliding587

window and a sliding step of 4 pixels. The same scale factor as588

the HOG_LDA_SVM is used to construct an image pyramid.589

We implemented the detectors by programming in C++590

and optimized the codes using SIMD technique. Experimen-591

tal results were obtained on a single CPU of a PC with592

i7 3.6GHz core. For accelerating the HHVCas detector in593

implementation, we replaced float multiplications with integer594

multiplications in the first two stages.595

C. Training596

For training the HHVCas detector, the positive sample set is597

generated by cropping signs from training images with certain598

margin pixels and jittering by random translation, rotation and599

scaling. Negative samples are collected by randomly cropping600

square background regions which have at most 0.3 overlap601

with the ground truth signs. These two sets are used to train602

the linear SVM in Stage I. For the subsequent classifiers,603

we collect training samples by performing detection on the604

training images with the preceding classifiers. The detected605

Fig. 8. Evaluation of different QMRs. (a) evaluated QMRs, (b-d): number
of surviving windows, recall rate and testing time corresponding to different
QMRs.

signs that have large overlap (at least 0.7) with an annotated 606

sign are used as additional positives, and the false detects are 607

added to the negative set. For rejection threshold optimization, 608

the linear SVM has an initial threshold 0, and the LDA 609

classifiers for Stages II and III take the minimum scores of 610

positives as thresholds. These thresholds are referred to as 611

base thresholds θ∗
k . The optimal thresholds θ R

k and θ S are then 612

determined by the procedure described in Section III-C. Once 613

the first three stages are fixed, we bootstrap the IKSVM in the 614

last stage by collecting hard negatives iteratively, as described 615

in [5]. In the iteration, the IKSVM starts with randomly sam- 616

pled positives and negatives and threshold −1. The negative set 617

is augmented by the obtained false alarms on training images 618

and the IKSVM is re-trained. This procedure repeats until the 619

HHVCas detects no false alarms or a maximum number of 620

iterations (6 in our experiments) is reached. 621

D. Results on GTSDB 622

1) Optimal Pruning Thresholds: As described in 623

Section III-C, the rejection thresholds of the first three 624

stages of HHVCas detector are controlled by a quasi-miss 625

rate (QMR). Using the base thresholds as specified in the 626

previous section IV-C, we obtained about 5,000 quasi- 627

positives per image on average. For thresholds optimization, 628

we evaluated different QMRs in terms of the number of 629

surviving windows, recall rate and testing time for each 630

category of signs on the GTSDB training set. We used 631

50 QMRs in [0, 1] according to a logarithmic distribution, 632

with 25 of them pointed in Fig. 8(a). The numbers of surviving 633

windows, recall rates and testing times corresponding to 634

different QMRs are shown in Fig. 8(b-d). It can be seen 635

that high QMRs prune a large fraction of windows and lead 636

to fast detection speed. The recall rates keep high when 637

QMRs increase within a large range, but decrease in case of 638

excessive QMRs. Based on these statistics, we select several 639

values empirically: the 43th, 44th and 42th QMRs (0.9614, 640
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Fig. 9. Histograms of Vh for three sets of pixels. There are some interesting
observations: the values of saliency Vh varies within a fairly small range,
from 0 to 1.4; a large number of background pixels X bp

L can be rejected by

applying TnH on VnH ; the remaining background pixels X bp
H and sign pixels

X sp are both concentrated and present a separable distribution, which implies
that we can apply a threshold reliably on Vh for additional pruning; combined
with VnH , a setting of Th = 0.4 eliminates more than 40% background pixels,
yet rejects only 0.09% sign pixels, as shown by the black dotted line.

0.9673, 0.9554) for prohibitory, danger and mandatory signs,641

respectively. Corresponding to the selected QMRs, the stage642

thresholds of the HHVCas detector are used accordingly.643

2) Tuning Saliency Test: To determine the thresholds Th644

and TnH , we compute two saliency maps Vh and VnH on645

the training images. According the pixel values of VnH on646

training images, we observe that all the traffic sign pixels647

in the training images are retained with a threshold TnH =648

0.0012. To select Th , we analyze the distributions of Vh on649

the background pixels and sign pixels in training images.650

For sign pixels X sp , we only count the central rectangle651

area (0.8 of total area) of prohibitory and mandatory signs,652

while danger signs are not counted because they are triangular.653

For background pixels X bp, we count all the pixels in training654

images, where the sign pixels have little influence because655

they occupy a very small proportion. We divide X bp into two656

subsets according to TnH : X bp
L = {p|p ∈ X bp, VnH (p) <657

TnH } and X bp
H = {p|p ∈ X bp, VnH (p) ≥ TnH }. We build658

three histograms of Vh for the pixels in X sp , X bp
L and X bp

H ,659

as shown in Fig. 9. It is seen that the histograms of saliency Vh660

of background pixels X bp
H and sign pixels X sp are dispersed.661

The histograms show that a threshold Th = 0.4 makes most662

sign pixels retained (only 0.09% rejected) while more than663

40% background pixels can be rejected.664

Rejection for an image patch is made by examining the665

fraction of salient pixels with a threshold Tarea . For dense666

patches in an input image, we can calculate this fraction easily667

through the integral image of the saliency mask. This saliency-668

based pruning is not suitable for danger signs, because they669

are triangular and have many background pixels confused in670

a square search window. For selecting the threshold Tarea ,671

we test a number of values from 0.8 to 0.9, and found that there672

is hardly speedup for a value larger than 0.82. When applying673

saliency test with Tarea = 0.82 to the training images, about674

43% pixels and 63% background windows (size from 20 ×20 675

to 128 × 128 pixels) can be rejected without eliminating sign 676

regions. 677

3) Runtime Analysis: To justify the effects of neighboring 678

scale awareness, we show the detection times of HHVCas 679

without and with this technique in Table II. The time consumed 680

by Stage I and II is divided into two parts, for feature extrac- 681

tion and window evaluation, respectively. Feature extraction in 682

Stage I and II takes about half of the overall detection time, 683

and this time cannot be reduced by window pruning. If we 684

do not use saliency test, the time for window evaluation in 685

the first two stages decreases by about one-third when using 686

neighboring scale pruning. It reduces the total detection time 687

and has little influence on detection performance. 688

For effects of saliency test in Table II, the time for 689

window evaluation in stage I and II decreases by a half 690

when using saliency-based pruning. This implies that large 691

amount of windows are eliminated by saliency test. The 692

decrease is still significant in the presence of neighboring scale 693

awareness. Processing times in the last two stages are also 694

reduced, but not significantly, because the windows tested in 695

Stages III and IV are fewer and harder. Overall, saliency test 696

consumes additional 22ms and saves about 40ms for detection 697

by combining with neighboring scale awareness. 698

4) Detection Results: Table III shows the detection perfor- 699

mance in terms of Area Under precision-recall Curves (AUC) 700

and runtime time of the proposed HHVCas detector versus 701

the two baseline detectors on the test images of GTSDB, 702

and Fig. 10 shows the precision-recall curves. It can be seen 703

that our HHVCas detector achieves higher performance than 704

the baseline methods on all the three sign categories. More 705

importantly, it consumes much lest detection time. Using 706

saliency test with the three detectors, the detection speed 707

is improved while the detection performance is preserved. 708

Saliency test even improves the detection performance for the 709

mandatory category, because it precludes background patches 710

that disturb the cascade detector. Saliency test is not used for 711

signs of danger category, which are triangular. 712

In Table IV, we compare the performance of HHVCas with 713

previous methods that participated in the competition GTSDB 714

and a recently proposed method. High detection performance 715

has been achieved by the top-ranked methods [4]–[6], [18], 716

[19]. Unfortunately, these methods are not applicable for 717

real-time detection on CPU because of the low speed. Note 718

that the time reported by the method [4] was evaluated on 719

GPU. In contrast, our HHVCas detector achieves comparable 720

performance, while running 2∼7 times as fast as most of the 721

previous methods. The recent method of [8] also aims at fast 722

detection. It detects signs of three categories simultaneously, 723

so, the given time is the total time. We can see its performance 724

is promising and the speed is even faster than our HHVCas 725

detector. If we apply HHCVas for three categories together, 726

the detector can use the common integral HOG pyramids 727

across multiple categories and takes about 300ms in total. 728

In comparison with the method of [8], our HHVCas achieves 729

higher performance on two of the three categories and is 730

inferior on the mandatory category. It is noteworthy that the 731

method of [8] employs a color probability model to transform 732
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TABLE II

PERFORMANCE AND RUNTIME ON GTSDB WITH/WITHOUT NEIGHBORING SCALE AWARENESS AND SALIENCY TEST

TABLE III

COMPARISON BETWEEN HHVCas AND THE TWO BASELINES ON GTSDB WITH/WITHOUT SALIENCY TEST

Fig. 10. Precision-recall curves on GTSDB.

TABLE IV

PERFORMANCE AND RUNTIME ON GTSDB WITH COMPARISON TO STATE-OF-THE-ART

color images into probability maps, where ROIs are extracted733

by a MSER detector. Thus, it relies on reliable color to certain734

extent, which is not available in bad illumination conditions.735

In addition, the MSER extractor has several tunable parameters 736

which are influential to detection performance. On the other 737

hand, our HHVCas exploits little color information and has 738
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TABLE V

PERFORMANCE AND RUNTIME ON STSD WITH/WITHOUT NEIGHBORING SCALE AWARENESS AND SALIENCY TEST

TABLE VI

COMPARISON BETWEEN HHVCas AND THE TWO BASELINES ON STSD WITH/WITHOUT SALIENCY TEST

Fig. 11. The precision-recall curves on STSD.

only a single free parameter. For detecting three categories,739

the HHVCas has three parameters, but they can be selected740

independently.741

E. Results on STSD742

To apply the HHVCas detector on the STSD, we optimize743

the thresholds on the training set using the procedure in744

Section III-C. The details are omitted here for saving space.745

For saliency test, we use the same thresholds Th , TnH and746

Tarea estimated on the GTSDB, because these parameters are747

less dependent on training data.748

1) Runtime Analysis: Table V shows the detection times749

of HHVCas without and with neighboring scale awareness.750

We can see the processing time on images of STSD is longer751

than that on GTSDB, because the images in STSD have higher752

resolution and the size of signs varies in a larger range. The753

time for window evaluation in the first two stages can be754

reduced by using neighboring scale pruning, as is like on755

GTSDB, and this pruning technique deteriorates the detection756

performance very slightly. We can see the processing time on757

images of STSD is longer than that on GTSDB, because the758

images in STSD have higher resolution and the size of signs759

varies in a larger range. Again, it is demonstrated that saliency 760

test reduces the overall detection time, particularly reducing 761

the number of windows in Stage I and II. 762

2) Detection Results: The performance on STSD using the 763

HHVCas detector and two baselines is illustrated in Table VI 764

and Fig. 11. It is seen that the performance of all detectors 765

on STSD is worse than that on GTSDB. This is partly due 766

to the confusion between the targeted signs and the other 767

signs excluded from evaluation. Another reason is that many 768

signs, especially the “STOP” sign in prohibitory category, 769

undergo perspective deformation in plane. Table VI shows 770

that our HHVCas detector is faster than the baselines, while 771

its detection performance is superior or comparable to the 772

baselines. For all the detectors, saliency test improves the 773

speed while maintaining the detection performance. The STSD 774

was previously used for evaluating traffic sign recognition [9]. 775

Therefore, those results are not comparable with our results 776

of detection. 777

The proposed method mainly focuses on traffic signs in 778

frontal view as done in the previous works. So, it lacks 779

the flexibility of detection in scenes with substantial view 780

variation. This remains a research issue in future works. 781

In addition, the performance of our method could be improved 782
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by replacing the last stages with deep neural networks (DNNs)783

if implemented on GPU, since learned features by DNNs784

show great promise in recent works of object detection and785

recognition.786

V. CONCLUSION787

We propose a cascade detector called HHVCas for fast traf-788

fic sign detection. It uses multiple stage classifiers in coarse-to-789

fine manner. To evaluate a large number of windows at the first790

two stages, we design fast feature extraction techniques and791

use linear classifiers. The Stage III and Stage IV use features of792

increasing dimensionalities. The Stage I also use neighboring793

scale awareness to save the computation of window evaluation.794

The rejection thresholds of HHVCas are optimized jointly795

by a data-driven approach. In addition, a novel saliency test796

based on mid-level features is introduced to pre-prune sliding797

windows while maintaining detection accuracy. Experiments798

on the GTSDB dataset show that our HHVCas achieves799

competitive performance in comparison with state-of-the-art800

methods, while running 2∼7 times as fast as most of them.801

Compared with a very recent fast method, the HHVCas relies802

on little color information and has fewer free parameters.803
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Traffic Sign Detection Using a Cascade Method
With Fast Feature Extraction and Saliency Test

Dongdong Wang, Xinwen Hou, Jiawei Xu, Shigang Yue, Member, IEEE, and Cheng-Lin Liu, Fellow, IEEE

Abstract— Automatic traffic sign detection is challenging due1

to the complexity of scene images, and fast detection is required in2

real applications such as driver assistance systems. In this paper,3

we propose a fast traffic sign detection method based on a cascade4

method with saliency test and neighboring scale awareness. In the5

cascade method, feature maps of several channels are extracted6

efficiently using approximation techniques. Sliding windows are7

pruned hierarchically using coarse-to-fine classifiers and the8

correlation between neighboring scales. The cascade system has9

only one free parameter, while the multiple thresholds are10

selected by a data-driven approach. To further increase speed,11

we also use a novel saliency test based on mid-level features12

to pre-prune background windows. Experiments on two public13

traffic sign data sets show that the proposed method achieves14

competing performance and runs 2∼7 times as fast as most of15

the state-of-the-art methods.16

Index Terms— Traffic sign detection, cascade system, fast17

feature extraction, saliency test.18

I. INTRODUCTION19

TRAFFIC sign detection plays an important role in intel-20

ligent transportation such as driver assistance systems,21

road maintenance and automated driving. Although signs are22

designed with distinct color and simple shape, automatic23

detection is still challenging in complex scenes, because24

the background and illumination are changing, signs may25

be distorted in color and shape, and sometimes, partially26

occluded. In addition, the image undergoes motion blur when27

the vehicle moves fast. A traffic sign detection method should28

be designed to overcome these problems to achieve high29

accuracy and reliability. Moreover, detection should be fast to30

satisfy real-time applications such as driver assistance systems.31
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Fig. 1. Proposed traffic sign detection system HHVCas. After pre-pruning by
saliency test, HHVCas has four stage classifiers. Stage I rejects windows using
a linear SVM classifier on compressed integral HOG feature and neighboring
scale awareness. Stage II employs a LDA classifier on integral HOG feature,
and Stage III uses a LDA classifier on HOG feature. Stage IV uses a nonlinear
SVM on color HOG features.

Traffic sign detection has been studied intensively in the 32

past decades and many approaches have been proposed. Early 33

methods usually exploited the color or geometric information 34

of traffic signs [1], [2]. Since the famous Viola-Jones detec- 35

tor [3] was successfully used in face detection, sliding window 36

and machine learning based methods have become preva- 37

lent. Recently, some sliding window based methods [4]–[6] 38

achieved leading performance in the competition of Germany 39

Traffic Sign Detection Benchmark (GTSDB) [7]. Nevertheless, 40

these methods are computationally expensive. 41

We aim to design a fast traffic sign detection system 42

to maintain the performance advantage of sliding window 43

based methods with significant speedup. There are three 44

main contributions in this work. First, we propose a cascade 45

framework with neighboring scale awareness for fast traffic 46

sign detection. The system has only one free parameter to 47

control the tradeoff between detection speed and accuracy, 48

while the multiple thresholds are selected by a data-driven 49

approach. Second, we design an approximation approach for 50

fast feature extraction, which leads to additional speedup. 51

Third, we propose a novel saliency test based on mid-level 52

features, which is demonstrated to be robust and effective in 53

pre-pruning windows. 54

Our detection system consists of four cascaded stages where 55

different Histograms of Oriented Gradient (HOG) feature 56

variants are used, as shown in Fig. 1. We name the system 57

as a Hybrid HOG Variants Cascade (HHVCas). The HHV- 58

Cas detector works by evaluating multi-scale hypothesized 59

windows hierarchically: each stage rejects a portion of non- 60

sign windows and the surviving windows are further evaluated 61

in the next stage with a stronger classifier. We use linear 62

1524-9050 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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classifiers for the first three stages and a nonlinear classifier63

for the last stage. The used features also have increasing64

computation complexity or dimensionality from stage to stage.65

The early stages with fast and simplified features run fast66

to eliminate apparent non-sign windows while preserving67

signs with high recall rate. The latter stages, based on more68

representative features that are computed more accurately with69

more information, provide better discrimination. The saliency70

test before the cascade can preclude a portion of windows71

from evaluation by the cascaded classifiers.72

Our experimental results on the GTSDB dataset show73

that the proposed HHVCas detector can achieve competitive74

performance compared with state-of-the-art methods and runs75

2∼7 times as fast. Compared to the recent method [8] which76

provide high accuracy and speed, our method relies on little77

color information so that it is less sensitive to illumination.78

In addition, it involves fewer artificial parameters, and thus has79

the potential of better generalization. We also demonstrated the80

promise of the proposed method on the Swedish Traffic Signs81

Dataset (STSD) [9].82

A preliminary version of the proposed method was pre-83

sented in a conference paper [10]. Since then, the work has84

been extended in several ways:85

• The method is simplified by eliminating the utilization86

of multi-resolution models in the first two stages, which87

effects in reducing artificial parameters.88

• A data-driving approach is proposed to optimize the89

thresholds in the system, leaving only one free parameter90

to select.91

• Experimental evaluation is enhanced with detailed analy-92

sis and an additional dataset.93

The rest of this paper is organized as follow. Section II94

reviews the related previous works. Section III describes the95

proposed detection method in detail. Section IV presents the96

experimental results and discussions, and Section V gives97

concluding remarks.98

II. RELATED WORK99

Traffic sign detection methods proposed so far fall into100

three categories: segmentation-based, shape-based and sliding101

window based. Segmentation-based methods commonly use102

color information to classify pixels for extracting candidate103

signs [11]–[14], or use color in preprocessing to eliminate104

irrelevant scene regions. To overcome the color sensitivity to105

illumination, the RGB color space is transformed [12] or con-106

verted to other color spaces such as HSV/HSI [13], [15],107

Lab [14] and CIEACM97 [11]. A comprehensive evaluation108

of color-based segmentation algorithms can be found in [16].109

Some methods extract candidate traffic signs as Maximally110

Stable Extremal Regions (MSERs) when using thresholds at111

several levels [8], [17]. Salti et al. [18], [19] used the MSER112

technique to extract regions that exhibit a uniform value of113

distinctive sign color, and used the Wave Equation algorithm to114

detect geometrically symmetric regions. The obtained Regions115

of Interest (ROIs) were further verified by Support Vector116

Machine (SVM) classifiers and other pruning techniques.117

Many methods have exploited the circular or polygonal118

shape of traffic signs. Barnes and Zelinsky [20] detected119

speed limitation signs using a Fast Radial Symmetry Trans- 120

form (FRST), which extracts signs by examining the peaks in 121

a parameter space voted by edge points like that in circular 122

Hough transform. Loy and Barnes [21] proposed an extended 123

FRST to detect equiangular polygonal signs by considering the 124

symmetry of target polygons. Höferlin and Zimmermann [22] 125

localized potential signs using SIFT, as a complement of 126

FRST. García-Garrido et al. [23] located circular signs using 127

FRST as well, and detected polygonal signs by locating lines 128

with Hough transform. Other Hough-like methods include 129

Vertex and Bisector Transform [24], Bilateral Chinese Trans- 130

form [25], Single Target Vote for Upright Triangles [2], 131

Single Target Vote for Upright Ellipses [2] and RANSAC for 132

Symmetric Lines Detection [26]. Some methods [27], [28] 133

simplify the sign contours using a constrained combination 134

of simple linear structures which are coded by Local Contour 135

Patterns descriptor. 136

Some shape based methods use classifier or shape match- 137

ing to verify sign hypotheses proposed by simple fea- 138

tures or image segmentation. Landesa-Vázquez et al. [28] 139

refined the hypotheses using a cascaded AdaBoost detec- 140

tor [3] where the weak learners are based on intensity 141

comparison between pixels. Liang et al. [6] applied shape- 142

specific templates to search potential signs on a transformed 143

image where each RGB triple was projected to a scalar 144

value, and then used SVM classifiers to refine hypotheses. 145

Timofte et al. [29] exploited additional multi-view 3D infor- 146

mation captured by multiple cameras to improve detection. 147

Candidates extracted in single views were verified by a 148

cascaded AdaBoost classifier [3] and combined to generate 149

3D hypotheses. 150

Sliding window based methods have been widely adopted 151

in object detection, mostly using the cascaded AdaBoost 152

classifier [3], where the weak learners often use Haar-like 153

features [30]–[32]. Bahlmann et al. [33] proposed color para- 154

meterized Haar-like features for traffic sign detection. Other 155

features used include the Edge Orientation Histograms [34], 156

quantum features [28] and Local Rank Pattern [35]. Some 157

methods [36]–[38] use simplified versions of HOG for con- 158

structing weak learners, where the gradient orientation is 159

discretized by several comparisons in horizontal and vertical 160

gradients. Specifically, Pettersson et al. [36] built HistFeat 161

features which are 2D tables derived from pairs of orientation 162

bins. Overett et al. [37] proposed LiteHOG and LiteHOG+ 163

features by projecting multiple orientations into a single scalar 164

with Fisher Discriminant Analysis. Mathias et al. [4] adopted 165

depth-2 decision trees as weak learners based on integral 166

channel features. Møgelmose et al. [39] employed the same 167

method to detect US traffic signs. Liu et al. [40] proposed two 168

variants of Local Binary Pattern and a split-flow cascade tree 169

structure to detect multiple types of signs, where a Common 170

Finder AdaBoost is designed to find the common features 171

that are shared by signs of different types. Instead of the 172

AdaBoost cascade, Wang et al. [5] designed a two-stage 173

detector in coarse-to-fine manner, with a Linear Discriminant 174

Analysis (LDA) classifier and a nonlinear SVM in two stages. 175

This approach reported appealing performance, but the high 176

computational cost remains an issue. 177
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Fig. 2. Steps of HOG computation [44]. First, the gradient of each pixel in image is computed and quantized to N orientations by bilinear interpolation.
The image plane is then partitioned into a dense grid of rectangular cells, where pixel-level features (orientation channel values) are accumulated to obtain
cell-based histograms of oriented gradients. Cell-based features are normalized within overlapping blocks, and the normalized features of all cells in a window
are concatenated into a feature vector.

It is worthy of mentioning that for generic object detec-178

tion, recent methods based on deep convolutional neural net-179

works (CNNs) [41]–[43] have reported superior performance.180

They explore learned features in deep neural networks and181

use GPUs to satisfy the very high computation demand. These182

methods reveal some insights for traffic sign detection in the183

future, but to reduce the computation cost remains an issue.184

Our proposed method detects traffic signs from sliding185

windows using a cascade framework like the Viola-Jones186

detector [3] to achieve fast detection. The key difference from187

previous methods lies in that we use strong classifiers in each188

stage of our system to achieve better tradeoff between speed189

and accuracy. Compared to the method of [5], our system190

uses more stages in the hierarchy for faster detection while191

maintaining high accuracy by using strong classifiers.192

III. TRAFFIC SIGN DETECTION193

The proposed HHVCas detector (Fig. 1) consists of four194

cascaded stages for coarse-to-fine sliding window evaluation in195

addition to a saliency test stage for pre-pruning windows. The196

Stage I rejects windows using a linear SVM classifier based197

on compressed integral HOG feature. The Stage II employs198

a LDA classifier on integral HOG feature, which is more199

representative than the one in the preceding stage and can200

prune more disturbing windows. The surviving windows are201

fed into the Stage III which uses a LDA classifier on HOG,202

which is stronger than the integral HOG. The Stage IV uses203

a nonlinear SVM with color HOG feature [5] to make final204

decisions. The Stage I also exploits the correlation between205

the windows of neighboring scales to reduce the computation206

of window evaluation. The cascade involves several thresholds207

for window rejection, which are jointly optimized on a training208

dataset, and only one free parameter is remaining to be209

selected artificially for controlling the tradeoff between the210

detection performance and speed.211

In the following, we first describe the feature extraction212

techniques for the cascade, then illustrate the techniques213

of neighboring scale awareness, parameter optimization, and214

saliency test in the sequel.215

A. Fast Feature Extraction 216

Our HHVCas system uses several different HOG variants, 217

including integral HOG [45] and its compressed version, 218

HOG [46] and color HOG [5]. 219

1) HOG: The steps of HOG computation are depicted 220

in Fig. 2. First, the gradient of each pixel in the image is 221

quantized according to orientation. The image plane is then 222

partitioned into a dense grid of rectangular cells. In each 223

cell, the pixel-level features (values of N orientation channels) 224

are accumulated to obtain cell-based histograms of oriented 225

gradients, where each pixel contributes to the cells around it 226

by bilinear interpolation. The cell-based features are further 227

normalized in larger spatial regions called blocks. Typically, 228

blocks include 2 × 2 cells and overlap by one cell. Hence, 229

each cell is normalized by four factors corresponding to four 230

blocks which it belongs to, producing a 4 × N-dimensional 231

feature vector for the cell. In a detection window, the cell- 232

based features are concatenated into a long feature vector for 233

evaluation. More details of HOG computation can be found 234

in [46]. 235

2) Integral HOG: The integral HOG is different from the 236

HOG only in the step of cell-related accumulation: each 237

pixel contributes to the nearest cell only, or saying, the cell- 238

based features are formed by hard partition, unlike the soft 239

assignment (bilinear interpolation) of HOG. The hard cell 240

assignment makes the integral HOG easily computed via the 241

integral images of oriented gradients. In our implementation, 242

we also perform normalization on per-cell aggregation as in 243

HOG. Due to the hard cell assignment, the integral HOG is 244

less discriminative than the HOG. 245

3) Compressed Integral HOG: The high dimensionality of 246

integral HOG leads to expensive window evaluation, so we 247

introduce a condensed version. Unlike in integral HOG that the 248

N-dimensional histograms of each cell are normalized by four 249

different factors to form a 4 × N-dimensional vector, we can 250

obtain a compressed vector of 4 + N-dimension, by summing 251

over both the four normalized values for a fixed orientation 252

and the N orientations for a fixed normalization factor. This 253

technique was firstly proposed by Felzenszwalb et al. [47] for 254
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TABLE I

THE PARAMETERS OF HOG VARIANTS

the HOG feature, which leads to little loss in discriminability.255

In our HHVCas system, the compressed integral HOG feature256

is used in the first stage for quick rejection of windows, and257

is expected to complement the integral HOG feature used in258

the second stage.259

4) Color HOG: For each color channel of image, HOG260

feature is calculated for each cell as in the above procedure,261

and histograms of different channels of all cells in a detection262

window are concatenated into a long feature vector.263

The parameters for the HOG variants used in our system264

are summarized in Table I. Since each window is partitioned265

into 5×5 cells, the feature dimensionality is 800 for HOG and266

integral HOG, 2400 for color HOG, and 300 for compressed267

integral HOG.268

In our system, the integral HOG feature is calculated at269

multiple scales for Stage I and Stage II evaluation. To construct270

such an integral HOG pyramid is computationally expensive271

due to the calculation of oriented gradients for each pixel.272

Inspired by the method in [48], we propose a fast strategy by273

sharing orientation channels among neighboring scales. Let I274

denote an m × n image, Is denote the scaling of I with a275

factor s, R(I, s) specify the sampling of I with factor s, and276

F denote the maps of extracted features of an image. Suppose277

we have computed F = �(I ), e.g. N gradient orientation278

maps. The scaled maps Fs can be obtained by279

Fs = �(Is) = �(R(I, s)). (1)280

Alternatively, Dollár et al. [48] proposed the approximation281

Fs ≈ R(F, s) · s−λ�, (2)282

where λ� is a feature-related parameter. Equation (2) shows283

that the N orientation maps of Is can be approximated by284

those maps of I . Dollár et al. [48] adopted this strategy for285

the fast calculation of integral channel features.286

For calculating the integral HOG feature of Is , we can287

first obtain the oriented gradient maps Fs using the general288

method (1) or the approximation (2). The latter saves much289

time by avoiding the direct gradient computation from Is , yet290

still suffers from the overhead of resampling and summation291

in each cell. We propose a further acceleration technique by292

considering the relation between F and Fs with scaled cell293

w = ws · s:294

1

|ws |
∑

i, j∈ws

Fs(i, j) ≈ 1

|w|
∑

i, j∈w

F(i, j)s−λ�. (3)295

This shows that the summation on Fs with cell ws can296

be obtained from F with scaled cell w, and vice versa.297

Fig. 3. Strategies for calculating integral HOG of different scales.
(a) Ordinary method: oriented gradient maps of different scales are calculated
independently. (b) Approximation of [48], oriented gradient maps of Is are
obtained by resampling those of I . (c) Integral HOG for Is are approximated
from the N orientation channels of I with a scaled cell w = ws · s.

In practice, the scaling effect of summation is canceled out 298

when performing local normalization across cells. So, the scal- 299

ing factor s−λ� of summation can be simply omitted and the 300

cell summation of a neighboring scale is directly taken. Fig. 3 301

shows the three strategies. Column (a) shows the ordinary 302

strategy of image scaling followed by feature map calculation. 303

Column (b) is the approximation via equation (2). The two 304

methods both calculate Fs explicitly. Column (c) shows the 305

proposed approximation: use the N orientation channels of I 306

directly for a different scale. This leads to the same features 307

as proposed in [48] and is more efficient. 308

By the above approximation, the loss of feature representa- 309

tion is negligible for small scaling factor s, but is considerable 310

when s is large. Therefore, we calculate the maps oriented 311

gradients on a set of sparse scales for an integral HOG 312

pyramid, and share the maps among neighboring scales only. 313

As illustrated in Fig. 4, the oriented gradients are calculated 314

every three scales and shared locally. The window/cell sizes 315

of the three scales differ by scaling factor s = 1.08, as shown 316

in Table I. 317

In summary, HOG feature is prevalent in the community of 318

computer vision for its good representation, but the disadvan- 319

tage is that this feature is time consuming for computation. 320

We use its simplified variants in the first stages to reject 321

most hypotheses. Then HOG and color HOG of surviving 322

hypotheses are extracted and evaluated in the last stages. 323
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Fig. 4. Strategies of constructing an integral HOG pyramid. (a) Ordinary
method: oriented gradient maps and features of difference scales are calculated
independently. (b) Method of [48]: orientation maps are obtained by scaling
those of a neighboring scale. (c) Take the channel maps of a neighboring scale
and use scaled size of window/cell.

The parameters of HOG variants are referred partly to the324

work of Wang et al. [5]. We set the windows size in the325

first two stages as 20 × 20 to detect the smallest signs in re-326

scaled images. In stage III, the window size remains 20x20 for327

incurring minimum cost in calculating HOG feature. The last328

stage handles big windows (40 × 40) for exploiting more329

discriminative information in high-resolution image, while330

the increase of computation cost in this stage is moderate331

because of small number of surviving windows. As illustrated332

in Table I, the increasing dimensionalities of features in333

stages (300, 800, 800 and 2400) correspond to increasing334

evaluation time. Though the dimensionalities of feature vectors335

in stage II and III are the same, the integral HOG in stage II336

is much more efficient in computation.337

B. Neighboring Scale Awareness for Speedup338

In addition to saving feature calculation by approximating339

feature maps from neighboring scales as described, we also340

use neighboring scale awareness to save window evalua-341

tion. It has been observed that responses of a detector at342

nearby positions (in the same or neighboring scales) are343

correlated [49], [50]. We speed up detection by exploiting344

the correlation between the detection windows in neighbor-345

ing scales. Let x be a hypothesis window at scale s in346

search space. Let N (x) be x’s neighbors in adjacent scales.347

We consider our HHVCas as a four-stage detector, in which 348

the per-stage classifier is Hk (k ∈ {1, . . . , 4}). For any 349

window x at scale s, we do not compute the score H1(x), but 350

instead estimate from the scores H1(x ′),∀x ′ ∈ N (x). Because 351

H1(x) is correlated with (actually similar to) the scores of 352

its neighboring windows, we can reject x if H1(x ′) for all 353

x ′ ∈ N (x) fall below a threshold θ S , otherwise the window x 354

is retained and fed into the next stage classifier H2. Since the 355

scores of windows in neighboring scales are used, we refer 356

to this technique as neighboring scale awareness. We apply 357

this technique only in the first stage for scoring H1, as show 358

in Fig. 1. The subsequent stages do not use neighboring scale 359

awareness because they need higher accuracy and encounter 360

far fewer windows than the first stage. 361

C. Parameter Optimization 362

The HHVCas detector involves thresholds for both per- 363

stage classifier rejection and neighboring scale awareness 364

based pruning. We optimize the thresholds jointly using an 365

unsupervised data-driven optimization approach, as inspired 366

by the work of [50] for a soft cascade. 367

We consider the thresholds for the first three stages Hk in 368

HHVCas, since the threshold in the last stage is variable for 369

tradeoff the precision and recall rate. There are two types of 370

thresholds: per-stage rejection threshold θ R
k , and neighboring 371

scale pruning threshold θ S in Stage I. The multi-stage rejection 372

thresholds are initially selected conservatively according to 373

the performance on a training image set, letting most positive 374

windows retained. These initial thresholds are denoted by θ∗
k 375

and called base thresholds. 376

Using the HHVCas with base thresholds to evaluate an 377

image set, we collect the detected windows X as quasi- 378

positives. The fraction of quasi-positives X rejected by stages 379

is called Quasi Miss Rate (QMR), given a set of thresholds. 380

If the QMR at each rejection stage is ≤ γ ′, the overall QMR 381

of the cascade detector will be ≤ γ = 1 − (1 − γ ′)K . 382

Let X1 = X be the initial set of quasi-positives and define 383

H1 = {H1(x)|x ∈ X1}. The first rejection threshold θ R
1 is 384

obtained as: 385

θ R
1 = 	H1
r − ε, where r = 	γ ′ · |H1|
, (4) 386

where γ ′ = 1−(1−γ )1/K , 	H
r denotes the r th smallest value 387

in H and ε = 10−5. For other stages 1 < k ≤ K , we define 388

Xk = {x ∈ Xk−1|Hk−1(x) > θ R
k−1} and Hk = {Hk(x)|x ∈ 389

Xk}. We can then obtain θ R
k as: 390

θ R
k = 	Hk
r − ε, where r = 	γ ′ · |Hk |
. (5) 391

The neighboring-scale awareness module is optimized by 392

considering H1. For each quasi positive x , let N (x) be 393

its neighbors in neighboring scales. We collect X S = 394

{x ′
m|H1(x ′

m) ≥ H1(x ′) ∧ H1(x ′
m) > θ∗

1 , x ′
m, x ′ ∈ N (x)}. Let 395

HS
1 = {H1(x ′

m)|x ′
m ∈ X S}. We set θ S by: 396

θ S = 	HS
1
r − ε, where r = 	γ ′ · |HS

1 |
. (6) 397

It is easy to see that with the above thresholds θ R
k and θ S , 398

the cascade detector with neighboring scale pruning has QMR 399

at most γ . In the first stage, whether to prune a quasi-positive 400
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x or not is determined by scoring H1 or by looking at the401

scores of its neighbors, and the two cases are equivalent based402

on Equations (6) and (4). This makes |X2| ≥ |X1 · (1 − γ ′)|.403

For subsequent stages, we have |Xk | ≥ |Xk−1 · (1 − γ ′)|.404

Therefore, |XK+1| ≥ |X1 · (1 − γ ′)K |. The overall fraction405

of pruned quasi-positives is at most 1 − (1 − γ ′)K = γ .406

If there are too many quasi-positives per image, we can407

conduct this procedure several rounds to obtain optimal θ R
k408

and θ S iteratively. Typically, two rounds is enough to get409

stable estimates: a QMR is picked at the first round to prune a410

fraction of quasi-positives, and then the obtained XK+1 serves411

as the initial set of quasi-positives for the second round.412

D. Saliency Test413

Preceding the cascade detector with a pre-pruning module414

based on saliency test can further speed up detection. We pro-415

pose a robust saliency test based on mid-level features (such416

as HOG) instead of on low-level features in common saliency-417

based detection. This is intuitive that a mid-level representation418

is more discriminative than a low-level one to locate candidate419

sign regions, while a low-level representation may not prune420

non-sign regions reliably though it runs fast.421

For easy implementation, we adopt the simple center-422

surround saliency [51], which is based on the assumption that423

saliency reflects the local contrast of an image region with424

respect to its neighborhood. In this case, the saliency of a425

region is computed as the distance between the average feature426

in the region and the average feature over its neighborhood.427

Let v denote a feature vector, w0 and w1 denote a center and428

a surround region centered at pixel (i, j), respectively. Let | · |429

be the area covered by a region, and D(·) denote the distance430

between two vectors, then the saliency value V (i, j) can be431

computed by432

V (i, j) = D

(
1

|w0|
∑

p∈w0

v p,
1

|w1|
∑

q∈w1

vq

)
. (7)433

Typically, multi-scale saliency is computed using several sur-434

rounding window sizes and aggregating the multiple saliency435

values:436

V (i, j) =
∑

S
Vs(i, j), (8)437

where S is the set of surrounding window sizes. Binarizing438

the saliency map V (i, j) gives a mask of image, with zero439

denoting non-saliency pixels.440

In our method, we calculate two cell-level saliency maps441

based on two types of mid-level features: compressed HOG442

and non-normalized HOG (without block-based normaliza-443

tion). In the input image, each cell (size 8 × 8) has a444

compressed HOG feature and a non-normalized HOG feature,445

both are N-dimension. The compressed HOG is obtained from446

the normal HOG feature of one cell by summing the four447

normalized values of each orientation. The non-normalized448

HOG is obtained by summing the orientation values over449

the pixels in a cell. It is not robust to illumination change,450

but helps eliminate low-contrast regions, which are unlikely451

to contain signs. The two cell-level saliency maps based on452

compressed HOG and non-normalized HOG are denoted as 453

Vh and VnH , respectively. The center region is the 8 × 8 cell, 454

while the surrounding region has three sizes of 3 cells, 5 cells 455

and 7 cells wide. The two cell-level maps are smoothed using 456

a Gaussian filter (σ = 0.5) and then re-scaled to the same size 457

as the input image. We apply thresholds Th and TnH on Vh 458

and VnH , respectively, to get two binary masks. The two masks 459

are then fused into one by AND operation, i.e., pixels that are 460

salient in both maps can survive. For a detection window, it is 461

expected to contain a sign if the fraction of salient pixels is 462

above a threshold Tarea . 463

The cell size 8 × 8 was selected empirically based on the 464

assumed minimum sign size 20 × 20 in detection. If the 465

cell size is as large as the sign size, the HOG in a cell 466

will be less discriminative to differentiate between signs and 467

background regions. In contrast, a partial region of a sign 468

which has dominant orientation is more likely to be salient 469

from background. On the other hand, too small cell size would 470

result in big HOG maps, thus leads to expensive saliency 471

computation. Empirically, the cell size can be set in between 472

6 and 10, and specifically, set as 8 × 8 in our experiments. 473

The setting of thresholds Th , TnH and Tarea is specified later 474

in the experimental section. 475

Examples of saliency test are shown in Fig. 5, where non- 476

salient pixels are displayed in black. It is seen that the sign 477

regions are well preserved while some image regions are 478

eliminated. 479

E. Summary of Detection Process 480

Since the detector involves multiple steps and techniques, 481

we summarize the processing steps in sequential as follows. 482

• Step 1: Saliency mask generation. For an input image, 483

calculate the mask image from two saliency maps, based 484

on the compressed HOG and non-normalized HOG, 485

respectively. The saliency mask labels saliency for each 486

pixel in the input image. 487

• Step 2: Feature pyramid construction. Build two feature 488

pyramids with scaling factor 1.08 for integral HOG and 489

compressed integral HOG using the proposed fast feature 490

extraction technique. To save computation, oriented gra- 491

dient channels are computed once every two scales and 492

are shared locally among neighboring scales. 493

• Step 3: Saliency test for every other scale. On a scale, 494

saliency test is adopted to pre-prune background win- 495

dows. The candidate window (size 20 × 20) is back- 496

mapped to the input image to obtain the corresponding 497

patch, of which the proportion of salient pixels is cal- 498

culated through the integral image of the saliency mask. 499

If the proportion of salient pixels in the patch is lower 500

than threshold Tarea , the window is pruned, otherwise, 501

the window is fed into the cascade detector. 502

• Step 4: Speedup by neighboring scale awareness. 503

In Stage I of the cascade, window evaluation by linear 504

SVM on compressed integral HOG is performed for one 505

scale of every two. For another scale without Stage I 506

evaluation, neighboring scale awareness is used to prune 507

candidate windows according to the scores of neighboring 508
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Fig. 5. Examples of saliency test. In each column, the first row shows the original image, and the second row has non-salient pixels displayed in black.

Fig. 6. Sign classes in GTSDB: (a) prohibitory, (b) danger, (c) mandatory, (d) other signs which are not evaluated in detection.

Fig. 7. Sign classes in STSD: (a) prohibitory, (b) mandatory, (c) some signs that are prone to be confused with the two specified categories.

scales. Windows surviving Stage I are fed into Stage II509

and Stage III for further evaluation.510

• Step 5: Accurate detection in Stage IV. Windows surviv-511

ing Stages I, II and III are verified in Stage IV using512

nonlinear SVM on color HOG. The 20 × 20 window is513

back-mapped to the input image to re-scale the corre-514

sponding region into a 40 × 40 window for extracting515

color HOG, and given final score by nonlinear SVM.516

• Step 6: Duplicate detects suppression. Overlapping517

detects in different scales are merged by non-maximum518

suppression.519

IV. EXPERIMENTS520

We evaluate the performance of the proposed HHVCas521

detector and saliency test on two public datasets with com-522

parison to two baseline detectors. On the dataset GTSDB,523

we also compare the performance with the state-of-the-art524

results reported in the literature.525

A. Datasets526

The dataset of German Traffic Sign Detection Bench-527

mark (GTSDB) [7] consists of 600 training images (containing528

846 traffic signs) and 300 test images (360 traffic signs). 529

All the images are in high resolution of 1360 × 800 size, and 530

the size of signs varies from 16 to 128 in terms of the longer 531

side. The types of traffic signs are divided into three major 532

categories and some minor categories. According to standard 533

practice, three categories (prohibitory, danger and mandatory 534

signs) are used to evaluate detection methods. The sign classes 535

are shown in Fig. 6. 536

The Swedish Traffic Sign Dataset (STSD) was previ- 537

ously used for evaluating traffic sign recognition [9]. It has 538

3,777 annotated images. Like the partition in GTSDB, we ran- 539

domly split the images into a training set and a test set 540

in 2:1 ratio, and take the prohibitory and mandatory categories 541

in evaluation (Fig. 7), while the signs of danger category are 542

not explicitly labeled in STSD. The very small signs with 543

longer side less than 16 pixels are excluded from evalua- 544

tion. In total, there are 1,498 traffic signs for training and 545

786 signs for testing, respectively. In Fig. 7, it can be seen 546

that detection in STSD is more difficult since the targeted sign 547

categories are similar to some signs that are excluded from 548

evaluation. 549
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B. Detector Settings550

1) HHVCas: In the HHVCas detector, the parameters for551

HOG variants are described in Table I. Integral HOG pyramids552

are built with a scaling factor of 1.08. Oriented gradient553

channels are computed once every 3 scales and are shared554

locally among neighboring scales (Fig. 4). Note that this555

sharing leads to three windows sizes as depicted in Table I.556

2) Baseline Detectors: For comparison with the proposed557

method, we implemented two baseline detectors based on558

sliding window. One is a coarse-to-fine detector named as559

HOG_LDA_SVM following the method of [5]. It evaluates560

densely sampled windows in multiple scales first using a LDA561

classifier on HOG feature, and the windows surviving the first562

stage are verified using an intersection kernel SVM (IKSVM)563

on color HOG. Compared with the original detector [5],564

the baseline HOG_LDA_SVM omits the rectifying step for565

danger category and trains a single classifier for mandatory566

category as opposed to several classifiers for each specific type567

in this category. To detect signs of variable sizes, the input568

image is re-scaled with a factor of 1.08 and the parameters of569

HOG and color HOG features are the same as in [5]. These570

settings are also the same as in our HHVCas.571

The other detector named as ICF_AdaBoost is a soft cascade572

of boosted classifiers using integral channel features (ICFs),573

as described in [4]. Mathias et al. [4] applied ICF_AdaBoost574

on images of a dozen of aspect ratios by scaling the input575

image, and used a GPU to satisfy the heavy computation576

overhead. To be comparable with other detectors, we only use577

ICF_AdaBoost on the input image without changing aspect578

ratio, and report experimental results on a CPU. The feature579

channels include gradient magnitude, six oriented gradients580

and 3 LUV color channels. Each weak learner is a two-depth581

tree, where decisions are made by selecting the best channel-582

related rectangle region. By randomly choosing channel fea-583

tures and rectangle regions, a pool of 30,000 features are584

generated. The final detector is obtained by four rounds of585

training with increasing numbers of weak learners (50, 100,586

200 and 400). The ICF_AdaBoost works with a 20×20 sliding587

window and a sliding step of 4 pixels. The same scale factor as588

the HOG_LDA_SVM is used to construct an image pyramid.589

We implemented the detectors by programming in C++590

and optimized the codes using SIMD technique. Experimen-591

tal results were obtained on a single CPU of a PC with592

i7 3.6GHz core. For accelerating the HHVCas detector in593

implementation, we replaced float multiplications with integer594

multiplications in the first two stages.595

C. Training596

For training the HHVCas detector, the positive sample set is597

generated by cropping signs from training images with certain598

margin pixels and jittering by random translation, rotation and599

scaling. Negative samples are collected by randomly cropping600

square background regions which have at most 0.3 overlap601

with the ground truth signs. These two sets are used to train602

the linear SVM in Stage I. For the subsequent classifiers,603

we collect training samples by performing detection on the604

training images with the preceding classifiers. The detected605

Fig. 8. Evaluation of different QMRs. (a) evaluated QMRs, (b-d): number
of surviving windows, recall rate and testing time corresponding to different
QMRs.

signs that have large overlap (at least 0.7) with an annotated 606

sign are used as additional positives, and the false detects are 607

added to the negative set. For rejection threshold optimization, 608

the linear SVM has an initial threshold 0, and the LDA 609

classifiers for Stages II and III take the minimum scores of 610

positives as thresholds. These thresholds are referred to as 611

base thresholds θ∗
k . The optimal thresholds θ R

k and θ S are then 612

determined by the procedure described in Section III-C. Once 613

the first three stages are fixed, we bootstrap the IKSVM in the 614

last stage by collecting hard negatives iteratively, as described 615

in [5]. In the iteration, the IKSVM starts with randomly sam- 616

pled positives and negatives and threshold −1. The negative set 617

is augmented by the obtained false alarms on training images 618

and the IKSVM is re-trained. This procedure repeats until the 619

HHVCas detects no false alarms or a maximum number of 620

iterations (6 in our experiments) is reached. 621

D. Results on GTSDB 622

1) Optimal Pruning Thresholds: As described in 623

Section III-C, the rejection thresholds of the first three 624

stages of HHVCas detector are controlled by a quasi-miss 625

rate (QMR). Using the base thresholds as specified in the 626

previous section IV-C, we obtained about 5,000 quasi- 627

positives per image on average. For thresholds optimization, 628

we evaluated different QMRs in terms of the number of 629

surviving windows, recall rate and testing time for each 630

category of signs on the GTSDB training set. We used 631

50 QMRs in [0, 1] according to a logarithmic distribution, 632

with 25 of them pointed in Fig. 8(a). The numbers of surviving 633

windows, recall rates and testing times corresponding to 634

different QMRs are shown in Fig. 8(b-d). It can be seen 635

that high QMRs prune a large fraction of windows and lead 636

to fast detection speed. The recall rates keep high when 637

QMRs increase within a large range, but decrease in case of 638

excessive QMRs. Based on these statistics, we select several 639

values empirically: the 43th, 44th and 42th QMRs (0.9614, 640
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Fig. 9. Histograms of Vh for three sets of pixels. There are some interesting
observations: the values of saliency Vh varies within a fairly small range,
from 0 to 1.4; a large number of background pixels X bp

L can be rejected by

applying TnH on VnH ; the remaining background pixels X bp
H and sign pixels

X sp are both concentrated and present a separable distribution, which implies
that we can apply a threshold reliably on Vh for additional pruning; combined
with VnH , a setting of Th = 0.4 eliminates more than 40% background pixels,
yet rejects only 0.09% sign pixels, as shown by the black dotted line.

0.9673, 0.9554) for prohibitory, danger and mandatory signs,641

respectively. Corresponding to the selected QMRs, the stage642

thresholds of the HHVCas detector are used accordingly.643

2) Tuning Saliency Test: To determine the thresholds Th644

and TnH , we compute two saliency maps Vh and VnH on645

the training images. According the pixel values of VnH on646

training images, we observe that all the traffic sign pixels647

in the training images are retained with a threshold TnH =648

0.0012. To select Th , we analyze the distributions of Vh on649

the background pixels and sign pixels in training images.650

For sign pixels X sp , we only count the central rectangle651

area (0.8 of total area) of prohibitory and mandatory signs,652

while danger signs are not counted because they are triangular.653

For background pixels X bp, we count all the pixels in training654

images, where the sign pixels have little influence because655

they occupy a very small proportion. We divide X bp into two656

subsets according to TnH : X bp
L = {p|p ∈ X bp, VnH (p) <657

TnH } and X bp
H = {p|p ∈ X bp, VnH (p) ≥ TnH }. We build658

three histograms of Vh for the pixels in X sp , X bp
L and X bp

H ,659

as shown in Fig. 9. It is seen that the histograms of saliency Vh660

of background pixels X bp
H and sign pixels X sp are dispersed.661

The histograms show that a threshold Th = 0.4 makes most662

sign pixels retained (only 0.09% rejected) while more than663

40% background pixels can be rejected.664

Rejection for an image patch is made by examining the665

fraction of salient pixels with a threshold Tarea . For dense666

patches in an input image, we can calculate this fraction easily667

through the integral image of the saliency mask. This saliency-668

based pruning is not suitable for danger signs, because they669

are triangular and have many background pixels confused in670

a square search window. For selecting the threshold Tarea ,671

we test a number of values from 0.8 to 0.9, and found that there672

is hardly speedup for a value larger than 0.82. When applying673

saliency test with Tarea = 0.82 to the training images, about674

43% pixels and 63% background windows (size from 20 ×20 675

to 128 × 128 pixels) can be rejected without eliminating sign 676

regions. 677

3) Runtime Analysis: To justify the effects of neighboring 678

scale awareness, we show the detection times of HHVCas 679

without and with this technique in Table II. The time consumed 680

by Stage I and II is divided into two parts, for feature extrac- 681

tion and window evaluation, respectively. Feature extraction in 682

Stage I and II takes about half of the overall detection time, 683

and this time cannot be reduced by window pruning. If we 684

do not use saliency test, the time for window evaluation in 685

the first two stages decreases by about one-third when using 686

neighboring scale pruning. It reduces the total detection time 687

and has little influence on detection performance. 688

For effects of saliency test in Table II, the time for 689

window evaluation in stage I and II decreases by a half 690

when using saliency-based pruning. This implies that large 691

amount of windows are eliminated by saliency test. The 692

decrease is still significant in the presence of neighboring scale 693

awareness. Processing times in the last two stages are also 694

reduced, but not significantly, because the windows tested in 695

Stages III and IV are fewer and harder. Overall, saliency test 696

consumes additional 22ms and saves about 40ms for detection 697

by combining with neighboring scale awareness. 698

4) Detection Results: Table III shows the detection perfor- 699

mance in terms of Area Under precision-recall Curves (AUC) 700

and runtime time of the proposed HHVCas detector versus 701

the two baseline detectors on the test images of GTSDB, 702

and Fig. 10 shows the precision-recall curves. It can be seen 703

that our HHVCas detector achieves higher performance than 704

the baseline methods on all the three sign categories. More 705

importantly, it consumes much lest detection time. Using 706

saliency test with the three detectors, the detection speed 707

is improved while the detection performance is preserved. 708

Saliency test even improves the detection performance for the 709

mandatory category, because it precludes background patches 710

that disturb the cascade detector. Saliency test is not used for 711

signs of danger category, which are triangular. 712

In Table IV, we compare the performance of HHVCas with 713

previous methods that participated in the competition GTSDB 714

and a recently proposed method. High detection performance 715

has been achieved by the top-ranked methods [4]–[6], [18], 716

[19]. Unfortunately, these methods are not applicable for 717

real-time detection on CPU because of the low speed. Note 718

that the time reported by the method [4] was evaluated on 719

GPU. In contrast, our HHVCas detector achieves comparable 720

performance, while running 2∼7 times as fast as most of the 721

previous methods. The recent method of [8] also aims at fast 722

detection. It detects signs of three categories simultaneously, 723

so, the given time is the total time. We can see its performance 724

is promising and the speed is even faster than our HHVCas 725

detector. If we apply HHCVas for three categories together, 726

the detector can use the common integral HOG pyramids 727

across multiple categories and takes about 300ms in total. 728

In comparison with the method of [8], our HHVCas achieves 729

higher performance on two of the three categories and is 730

inferior on the mandatory category. It is noteworthy that the 731

method of [8] employs a color probability model to transform 732
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TABLE II

PERFORMANCE AND RUNTIME ON GTSDB WITH/WITHOUT NEIGHBORING SCALE AWARENESS AND SALIENCY TEST

TABLE III

COMPARISON BETWEEN HHVCas AND THE TWO BASELINES ON GTSDB WITH/WITHOUT SALIENCY TEST

Fig. 10. Precision-recall curves on GTSDB.

TABLE IV

PERFORMANCE AND RUNTIME ON GTSDB WITH COMPARISON TO STATE-OF-THE-ART

color images into probability maps, where ROIs are extracted733

by a MSER detector. Thus, it relies on reliable color to certain734

extent, which is not available in bad illumination conditions.735

In addition, the MSER extractor has several tunable parameters 736

which are influential to detection performance. On the other 737

hand, our HHVCas exploits little color information and has 738
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TABLE V

PERFORMANCE AND RUNTIME ON STSD WITH/WITHOUT NEIGHBORING SCALE AWARENESS AND SALIENCY TEST

TABLE VI

COMPARISON BETWEEN HHVCas AND THE TWO BASELINES ON STSD WITH/WITHOUT SALIENCY TEST

Fig. 11. The precision-recall curves on STSD.

only a single free parameter. For detecting three categories,739

the HHVCas has three parameters, but they can be selected740

independently.741

E. Results on STSD742

To apply the HHVCas detector on the STSD, we optimize743

the thresholds on the training set using the procedure in744

Section III-C. The details are omitted here for saving space.745

For saliency test, we use the same thresholds Th , TnH and746

Tarea estimated on the GTSDB, because these parameters are747

less dependent on training data.748

1) Runtime Analysis: Table V shows the detection times749

of HHVCas without and with neighboring scale awareness.750

We can see the processing time on images of STSD is longer751

than that on GTSDB, because the images in STSD have higher752

resolution and the size of signs varies in a larger range. The753

time for window evaluation in the first two stages can be754

reduced by using neighboring scale pruning, as is like on755

GTSDB, and this pruning technique deteriorates the detection756

performance very slightly. We can see the processing time on757

images of STSD is longer than that on GTSDB, because the758

images in STSD have higher resolution and the size of signs759

varies in a larger range. Again, it is demonstrated that saliency 760

test reduces the overall detection time, particularly reducing 761

the number of windows in Stage I and II. 762

2) Detection Results: The performance on STSD using the 763

HHVCas detector and two baselines is illustrated in Table VI 764

and Fig. 11. It is seen that the performance of all detectors 765

on STSD is worse than that on GTSDB. This is partly due 766

to the confusion between the targeted signs and the other 767

signs excluded from evaluation. Another reason is that many 768

signs, especially the “STOP” sign in prohibitory category, 769

undergo perspective deformation in plane. Table VI shows 770

that our HHVCas detector is faster than the baselines, while 771

its detection performance is superior or comparable to the 772

baselines. For all the detectors, saliency test improves the 773

speed while maintaining the detection performance. The STSD 774

was previously used for evaluating traffic sign recognition [9]. 775

Therefore, those results are not comparable with our results 776

of detection. 777

The proposed method mainly focuses on traffic signs in 778

frontal view as done in the previous works. So, it lacks 779

the flexibility of detection in scenes with substantial view 780

variation. This remains a research issue in future works. 781

In addition, the performance of our method could be improved 782
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by replacing the last stages with deep neural networks (DNNs)783

if implemented on GPU, since learned features by DNNs784

show great promise in recent works of object detection and785

recognition.786

V. CONCLUSION787

We propose a cascade detector called HHVCas for fast traf-788

fic sign detection. It uses multiple stage classifiers in coarse-to-789

fine manner. To evaluate a large number of windows at the first790

two stages, we design fast feature extraction techniques and791

use linear classifiers. The Stage III and Stage IV use features of792

increasing dimensionalities. The Stage I also use neighboring793

scale awareness to save the computation of window evaluation.794

The rejection thresholds of HHVCas are optimized jointly795

by a data-driven approach. In addition, a novel saliency test796

based on mid-level features is introduced to pre-prune sliding797

windows while maintaining detection accuracy. Experiments798

on the GTSDB dataset show that our HHVCas achieves799

competitive performance in comparison with state-of-the-art800

methods, while running 2∼7 times as fast as most of them.801

Compared with a very recent fast method, the HHVCas relies802

on little color information and has fewer free parameters.803
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