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Abstract—Research on social and mobile technologies recently
provided tools to collect and mine massive amounts of mobility
data. Ride sharing is one of the most prominent applications
in this area. While a number of research and commercial
initiatives already proposed solutions for long-distance journeys,
the opportunities provided by modern pervasive systems can be
used to promote local, daily ride sharing within the city. We
present a set of algorithms to analyse urban mobility traces and
to recognise matching rides along similar routes. These rides are
amenable for ride sharing recommendations. We validate the
proposed methodology using data provided by a large Italian
telecom operator. Assuming the full set of considered users are
willing to accept 1 Km detours, experimental results on two large
cities show that more than 60% of trips could be saved. These
results can be used to evaluate the potential of a ride sharing
system before its actual deployment and to actually support an
opportunistic ride sharing recommender system.

I. INTRODUCTION

The large-scale adoption of smart phones and networking
tools produces massive amount of data. This allows us to
observe the daily life of people in a previously inconceivable
way. A number of works focus on inferring from these data
the mobility habits of people [1], [2] and can possibly enable
innovative forms of ride sharing to reduce the number of
circulating vehicles in urban scenarios [3], [4].

While ride sharing for planned and long-distance journeys
have been proposed from some years (e.g., BlaBlaCar.com,
recent pervasive capabilities might allow ride sharing to sup-
port for short-term, local journeys within the city. Pervasive
technologies and mobile computing, in fact, can be used to au-
tomatically recognise matching rides without user interaction.
In this direction, in our research we focus on two main aspects:
(i) the methodology used to identify sharing opportunities
by analysing mobility patterns, and (ii) the evaluation of
an autonomous recommender system based on the results of
mobility pattern analysis.

As discussed in [5], mobility demand covers many aspects
of our life and even though home-work commuting is a
relevant part, other daily activities have relevant effects as well.
Accordingly, systems designed for reshaping mobility demand
need to take into account several aspects of our everyday life
including leisure and free time. Because of this, we designed
an approach to extract general mobility routines (other than
home-work commuting) to support ride sharing opportunities
during the whole day of the users.

Some previous research already proposes approaches to
extract routines from mobility data. For instance, in [3], [6]
authors exploit GPS traces for inferring users’ frequent routes
or mobility profiles. In [3] some analysis on telecom GSM data
has been performed as well. Our methodology exploits Call
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Fig. 1. The system architecture. The recommender extracts mobility
routines from data provided by a telecom operator. Then uses a matching
algorithm for identifying ride sharing opportunities.

Detail Records (CDR) collected over the cellular network as
the main source of localization and mobility data. Considering
that CDR data covers a large population of users, our analysis
can support the estimation of ride sharing potential before
its actual deployment, and an actually running system in the
bootstrap phase when the ride sharing application does not
have collected enough GPS points to infer mobility routines.
While most approaches focus on ride sharing for home-
work commutes, and match rides only at departure and arrival
locations, we provide two key innovations:

o General mobility routines identification through a proba-
bilistic model running on the whole set of available trips

o En-route travel matching supporting both driver or rider
diversions.

While it is difficult to compare results among different cities,
our algorithm for en-route pick-up and drop-off notably im-
proves ride sharing opportunities (see Table 3). This paper
proposes the design and development of a recommender
system for ride sharing structured like the one depicted in
Figure 1. More specifically:

o We discuss the mobility dataset used as input (CDR)
representing people whereabouts (Section 2).

o« We propose a methodology for extracting information
from mobility traces both in terms of home-work com-
mutes and general mobility routines (Section 3).

o We propose algorithms to match multiple users’ routines
thus enabling ride sharing opportunities (Section 4).

o We estimate the amount of rides and kilometres that could
be saved by deploying the proposed system. Experiments
show that, if users are willing to tolerate up to 1 Km
detours, 40-70% of trips and 10-40% of kilometres (de-
pending on the city) could be saved (Section 5)

II. DATASET

We obtained a mobility dataset provided by a major mobile
operator. In particular, we made use of anonymised mobility
data for about 6 million people living in Piemonte and Lom-
bardia (two italian regions) spanning one month. We focus the
analysis in the largest city of each region: Turin and Milan.



TABLE I
THE TABLE SHOWS THE STRUCTURE OF THE DATASET WE USED. USERS
SENDING OR RECEIVING CALLS OR TEXT MESSAGES ARE RECORDED AS
ONE RECORD COMPRISING THE USER (HASHED) ID, THE MMC (MOBILE
COUNTRY CODE), THE TIMESTAMP, THE CODE OF THE CELL TOWER, ITS
GEOGRAPHICAL COORDINATES AND COVERAGE RADIUS

User | MMC | Timestamp | Tower X,Y Radius
3a 223 7355286 121 (42.2,13.7) 550
3a 223 7355565 128 (42.2,13.8) 400
3a 223

Mobility data is represented by Call Detail Records (CDRs)
and Mobility Management (MM) procedure messages (i.e., In-
ternational Mobile Subscriber Identity — IMSI — attach/detach
and Location Update). CDRs are continuously collected from
mobile networks for billing purposes. A CDR is generated
each time a phone sends or receives calls or text messages.
The IMSI procedure marks the phone device as attached or
detached to the mobile network when the device is switched
on or the SIM is inserted.

CDRs and MMs messages are collected from network inter-
faces through specific sensors. CDR data represent the location
of the phone’s owner over time approximated to the antennas’
radius. Table I shows an exemplary CDR record. Each record
is composed by the user id (anonimized), the MCC (Mobile
Country Code) representing the country where the SIM card
has been activated, the timestamp, the code of the network
antenna and its coverage. It is worth mentioning that we do
not estimate cells’ coverage with Voronoi tessellation. Instead,
we represent a cell with a circle (i.e., center and radius) [7].
We used this representation for three principal reasons: (i)
the dataset we used actually describes cell’s coverage with
circles. This form efficiently approximates the accepted model
with sectored cells of 120-degrees. (ii) This representation
naturally deals with overlapping cells covering the area of
events (overlapping cells are - by definition - avoided by
Voronoi tessellation). (iii) From a computation perspective, it
is easier to deal with cells modeled as circles than polygons.

In Figure 2(a) we show the cumulative density function
(CDF) of the average number of CDR events produced by
users every day. Indeed, a large portion of users produces a
significant amount of CDR events. Specifically, the most active
10% records more than 10 CDR events per day allowing fine-
grained mobility tracking. Figure 2(b) illustrates, instead, the
CDF of the radius of gyration. It is a simple parameter defining
the displacement of the user positions from the centroid.

\/% Z:;l (pi - pcentroid)2
represents the ith position recorded for the user and pcentriod
is the center of mass of the user’s recorded displacements
obtained by: peentroia = + i ;(pi). It is worth noticing
that the first quartile usually associates with sedentary people
with 7, < 5Km. The most of the distribution (25*-75t")
percentiles might be associated with people living in cities
because peri-urban areas of major Italian cities frequently have
a radius around 15km. Users beyond the 75" percentile are,
instead, considered as commuters. Figure 2(c) shows the CDF
of the cell radius for the cities under analysis, this implicitly
defines users’ localization accuracy if they would generate

It is given by: r, = where p;
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Fig. 2. CDF of: (a) average number of (daily) CDR. (b) radius of gyration.
(c) cell radius. (d) cell radius of CDR actually produced by users.

CDRs uniformly among cells. Figure 2(d) shows the CDF of
the cell radius according to their actual use by the people
(i.e., the CDF of the cell radius of the generated CDRs).
Considering this latter measure as best reflecting localization
accuracy, it is possible to see that half of the localizations have
a radius below 700m and 90% are within 1.5Km. Although
CDR localization is less accurate than GPS, the error mar-
gins are still compatible with acceptable possible detours by
drivers and pedestrians. In general, the characteristics of CDR
data make it useful to support before-deployment evaluation
(i.e., before having a mobile app deployed) and possibly at
application’s bootstrap phase. After that, GPS traces collected
by the ride sharing app will likely outperform CDR data.

III. MOBILITY ANALYSIS

Mobility analysis is key for autonomous ride sharing system
because of its ability of predicting where a user is heading.
On the other hand, it also allows the prediction of mobility
routines where data is missing (if on a given day, the user
does not use his/her phone the system does not have any
information about the user’s whereabouts. Nevertheless, via
pattern analysis, it can infer user’s mobility on the basis of
past behaviours).

A. Home-Work Routines

In this section, we describe: (i) how we extract home
and work locations; (ii) how we evaluate the precision of
the obtained results. For each user, we identify the average
commuting hours and her daily routines.

1) Identification: In identifying home-work locations, we
adopted a clustering method similar to the one presented in
[8], [9], [10] considering all the mobility events of each user
(see Figure 3). (1) For each user, CDR events are collected. (2)
Events are then spatially clustered for identifying geographical
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Fig. 3. Relevant places’ identification (i.e., home and work). (1) Selection
of CDR events for each user. (2) Spatial clustering of CDR events. (3)
CDR events weighing considering both day, time and events nearby. (4)
Home and Work identification with the most weighted clusters.

areas. (3) Then, clusters are weighted by taking into account
of the number of days in which the user visited them. (4) The
centers of the most weighted clusters are finally labelled as
home and work places. In particular:

Clustering. Due to the design of the mobile network, geo-
graphic areas often host multiple cells. As a consequence,
events produced around the same place might actually be asso-
ciated with different cells. Unfortunately, this approach might
lead to the misrecognition of relevant places. For example,
users calling from specific places might scatter their traces
among several cells. Each one of these cells will receive only
a portion of events, thus resembling a less frequented place.
To avoid this fragmentation process, we spatially aggregated
events by making use of an agglomerative algorithm based on
geographic distance [11].

We selected this specific algorithm for the following rea-
sons: (i) those algorithms (e.g., Spectral Clustering, K-Means)
requiring the number of searched clusters are inadequate
because CDR events can be spread over large areas and an un-
predictable number of clusters. (ii) Density-based algorithms
(e.g., SOM, DBScan) do not suffer this issue solve but do
not naturally limit the clusters’ size [11]. Constraining the

clusters’s size is relevant in this context because the number of
cells that can be associated with specific positions is limited
to the cells “around” that position. Considering our aim of
clustering elements falling within a given radius from a given
place, we decided to use agglomerative clustering algorithm.
Weighting. For the sake of weighing the found clusters, we
defined two time windows one ranging from 9pm to 6am and
the other ranging from 11am to 4pm associated to “home” and
“work” respectively.

We used these rather large fixed time window for two main

reasons: (i) it is very simple, efficient and used in the majority
of the state of the art [8], [9] (ii) as CDRs are rather sparse,
approaches trying to learn user’s home and work time from
data could lead to overfitting. For each cluster, we also defined
a “home-weight” and “work-weight” equal to the number
of days in which the user produced one event at least. We
reasonably assume that home and work places are candidate to
be outliers in our weight distribution because they are visited
almost every day.
Thresholding. We then computed mean p and standard de-
viation ¢ of the obtained weight distribution and empirically
identified a threshold th = ;1 + o separating outliers from the
rest of the clusters. Once a cluster is selected, we label the
centroid of the cluster as home or work.

2) Validation and Discussion: Accuracy of home place
identification has been evaluated by comparison with data
from the national statistics office. We selected a sample of
10000 individuals and correlate the density of their homes
with resident density from census-based information. Figure 4
shows correlation results for the two regions under study (the
log-log scale has been used to reduce changes due to cities
of different sizes). Considering a linear model and forcing the
intercept to 0, we obtain a best fit: census = 369.6 - telecom
and census = 656.6 - telecom (correlation coefficient around
0.9) for Piemonte and Lombardia respectively. Further results
on the basis of a limited sample of test users (for whom
groundtruth information were available) is reported in [10].

3) Mobility Model: On the basis of the identified home
and work places, we can estimate the home-work commuting
behavior of individuals. In this section we assume that user
mobility can simply be approximated by two daily trips: one
from home to work and another from work back to home.



For the home-to-work trip, for each user and for each
day we considered the last CDR generated form the home
location followed by a CDR from the work location. We
average the time of the CDR from the home location to
estimate departure time. We average the time of the CDR
from the work location to estimate the arrival time. Vice
versa, for the work-to-home trip, we average the last CDR
time from work as departure time, the first CDR time from
home as arrival time. Finally, we compute the actual path
(Route) that connects the two locations, through a journey
planner (i.e., http://www.graphhopper.com) constrained over
the OpenStreetMap network.

Overall, each trip is described by a record with the fields:
Source Time, Source Location, Destination Time, Destination
Location, Route.

B. General Mobility Routines

As presented in the introduction, there are many routines
other than home-work commute that have an impact on the
overall demand for mobility, e.g., shopping or leisure-related
mobility. Therefore, systems aiming at reshaping mobility
demand comprehensively have to take into account also other
aspects of our whereabouts. Here, we discuss a topic modeling
approach [12] extending home-work commute. These models
identify routine characterizing the typical mobility of users.

1) Routines Identification: Following a procedure similar

o [13], [14], we first represent users’ mobility traces via bags
of words (in which each word describes a single movement
of a user — disregarding the temporal sequence of these
movements). Then, the topic modeling algorithms (i.e., La-
tent Dirichlet Allocation - LDA) identifies repeating patterns
and regularities in those words. Such patterns (called topics)
describe users’ typical mobility routines.
Bag of Words. For each user and for each day, we consider
the sequence of all the users’ CDRs. For each pair cdr; and
cdr;(j = i+1), we assign a trip from the center of the cdr; cell
to the center of the cdr; cell departing at time ¢; and arriving at
time ¢; (t; and t; being the time of the cdr;, cdr; respectively).
More specifically, we discretized both the location and the
time of CDR: (i) We partitioned the region in a grid with
square cells of 1Km side. Each CDR location is mapped to
the corresponding cell, and the cell id is considered as the word
location. (ii) We considered 24 time slots, one for each hour.
As we will describe in the following, the reason for this spatio-
temporal discretization, is to create enough overlaps in the bag
of words to allow the LDA algorithms to detect routines.

The result of this process is a bag of words each comprising
two location labels and two time labels. Each word also
stores the actual geographic coordinates (without grid-based
discretization) associated to that movement so as to precisely
localize the CDRs locations, and to compute the distance
(taking into account the road network) that is covered during
the transition. The resulting bag of words is the input data
structure for the LDA algorithm (see Figure 5).

LDA - Latent Dirichlet Allocation. LDA is a probabilistic
generative model [12] used to cluster documents according
to the word patterns (i.e., topics) they contain. LDA has two

User [ MMC Time Tower Coord Radius 0

3dd2b 222 7346286 123 (412.13.9) 450
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Fig. 5. Bag of words representation. For each pair cdr; and cdr;(j =
i+ 1) we define a word with the location of cdr;, the location of cdr;
, and the departing at time ¢; and arriving at time ¢; (t; and t; being
the time of the cdr;, cdr; respectively).

Fig. 6. The LDA model. w;; are the specific elements in the bag of words.
They are the only observable variables in the model. i € [1, M] represents
the document (day). j € [1, N] represents the j-th word (movement) in
the document. z;; is the topic for the j-th word in document i. They are
are modelled as multinomial distributions. 0; is the topic distribution for
document (day) 4, ¢; is the topic distribution for word j. These variables
are modelled with a Dirichlet distribution. « and (3 are the parameters
of the uniform Dirichlet priors.

key advantages compared to other clustering approaches (e.g.,
DBSCAN): (i) LDA is a mixed membership model allowing
documents to be represented by multiple topics; (ii) Topics
are represented as meaningful word distributions that are more
easily interpretable [13].

We emphasize that we are not proposing an extension of the
LDA model: we use it in a new way for identifying mobility
routines and ride sharing opportunities thereof. LDA is based
on the graphical model represented in Figure 6. A word w
is the unit of observable data. It represent the movement of
a user. N words describe a day of the user. Each user is
described by M documents (i.e., days). Each day is represented
as a mixture of topics z. Each topic is represented by the
list of all possible words (i.e., movements) associated to the
probability p(w|z) (i.e., topics are multinomial distributions
over words). Therefore, for each day ¢, the probability of

o T

a word w;; is given by p(wi;) = >, ; p(wij|zie)p(2it),
where T is the number of topics. p(w;;|z;;) and p(z;) are
modeled as multinomial distributions. Mixture parameters are
modeled with Dirichlet distributions with parameters « and
B. In our settings, both parameters were set to 1 representing
a uniform distribution. We use Gibbs sampling implemented
in Mallet library(http.//mallet.cs.umass.edu) to set the model
parameters. Once the model parameters have been learnt, it is
possible to rank z on the basis of p(d|z) (i.e., to extract the
topics best describing the routines of a given day).
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2) Validation and Discussion: 1t is difficult to provide
sound measures of the accuracy of the extracted topics be-
cause ground-truth information is missing (this is an open
research question in topic modeling). Therefore, we test if the
LDA model generalizes the home-work commute described
in Section 2. For each user, we computed the home and work
locations described in Section 2 with the two most probable
locations extracted by LDA associated to events during the day
(i.e., work) and during the night (i.e., home). Specifically, we
measured the distance between them (see Figure 7). Results
show that for more than 90% of the users, the distance between
these points is less than 1 km, thus validating our approach.

3) Mobility Model: Once LDA topics have been identified,
to create a mobility model of each user, for each day of the
week, we computed p(w|d) as p(w|d) = >, p(w|z)p(z|d).
This is the probability that a given trip (i.e., word) is going
to happen on a given day. This model describes how each
user tends to move from multiple locations that include and
extend home and work places. We generate mobility routines
for each user and for each day, in the form: SourceTime,
SourceLocation, DestinationTime, DestinationLocation, Route
by considering all the words with a probability grater than a
certain threshold, taking place at not-overlapping times. In our
experiments we used p = 0.3 to identify recurrent routines
(i.e., those happening 30% of days). Also in this case, we
compute the actual path (Route) that connects the two locations
on the basis of OpenStreetMap.

IV. RIDE MATCHING AND RECOMMENDATIONS

Both previous approaches generate a mobility model for
each user in the form of a set of tuples containing: OriginTime,
OriginLocation, DestinationTime, DestinationLocation, Route.
This allows to apply the same ride matching to both the
previous approaches (i.e., both for home-work commutes and
for general routines).

Our ride matching algorithm considers both en-route match-
ing (i.e., pick-up or drop-off location on the path), and both

the case in which the driver diverts form the route and the
case in which the passenger reaches a meeting location on the
driver original route.

The ride matching algorithms basically compares pairs of
mobility models to identify whether: (i) they take place at
the same time (within a certain time window), (ii) origin and
destination locations of one’s mobility are close to the route
(points) of the other one (i.e., the trip of the former user
is contained in the trip of the latter one). In the case both
conditions apply, we consider the two users as a candidate
pool. The user with the contained trip becomes the rider, the
user with the containing trip becomes the driver. We also
considered the capacity of cars by limiting aggregation to 4
users together maximum (seatCapacity parameter). Figure
8(a) illustrates exemplary matching scenarios. Assuming all
the trips proceed from left to right, trip B can be merged with
trip A (A becomes the driver, B becomes the passenger). Trip
A (or even Trip A+B) can be merged with trip C (C becomes
the driver, A and B become passengers). Trip D cannot be
merged with others. Figure 8(b) details the process of letting
driver and rider to actually encounter. In one case (passenger
diversion) the passenger walks to the pick-up location. In
another case (driver diversion - rightmost figure) the driver
diverts to reach the passenger.

Algorithm 1 - Assignment Procedure (7))
1: P < emptyPoolsCollection
2: for i € 7 do // T is the set containing the trips
3: if assigned(i) == FALSE then
for j € P do /I P is the set containing the pools
R; + getRidersAssigned(j)
if (R; < seatCapacity) and (match(i, j) ==
TRUE) then

AN AN

7: R; < R; U getUser(i)

8: assigned(i) < TRUE

9: break

10: if assigned(i) == FALSE then

11: for k #£i €T : assigned(k) == FALSE do
12: if match(i, k) == TRUE then

13: assigned(i), assigned(k) + TRUFE
14: P+ P UnewPool (i, [k])

15: break

16: else if match(k,i) == TRUFE then

17: assigned(i), assigned(k) < TRUE
18: P < P UnewPool(k,[i])

19: break
20: if assigned(i) == FALSE then
21: assigned(i), < TRUE
22: P < P UnewPool(i,]])
23: break
24: return P

The actual algorithm to compute matches on the mobility
models is described in Algorithm 1. This algorithm gives
priority to the already discovered users’ pools (lines 4-9). If the
available pools do not offer any match, the algorithm looks for
any match with the concurrent trips (by the temporal window)
not yet aggregated (lines 11-19). If none of the individual trips
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(a) Exemplary aggregation strategies for the analyzed trips. Trip B can be merged with Trip A (A becomes the driver, B becomes the

passenger). Trip A (or even Trip A+B) can be merged with Trip C (C becomes the driver, A and B become passengers). Trip D cannot be merged
with others. (b) An example of rider and driver diversions. The leftmost figure (in b) is an examples of trips being merged. In one case (passenger
diversion) the passenger walks to the pick-up location. In another case (driver diversion - rightmost figure) the driver diverts to reach the passenger.

offers a solution, then the trip is considered as a new pool for
following aggregations (line 22). As previously depicted by
Figure 1, the exploited methodology points at:

o identifying shared rides (by considering both drivers’
and riders’ diversions) that can work as a benchmark
to evaluate the possible impact of a ride sharing system
before its actual deployment (i.e., before the ride sharing
application has been installed by a critical mass of users)

o bootstrapping the system when the ride sharing applica-
tion still does not have collected enough GPS points to
infer users’ mobility routine (after then bootstrap phase,
GPS data will likely outperform CDR measures).

V. EXPERIMENTAL RESULTS

To assess our proposal, we run experiments on two large
Italian cities (i.e., Torino and Milano) taking into considera-
tions: (i) daily commutes and (ii) general mobility routines.
We considered both the case in which (iii) riders divert from
their path to reach a pick-up location, and (iv) drivers take a
detour in order to collect riders. In each of the four originating
cases, we measured the reduction in terms of the amount of
trips and km saved (see Figure 9).

In the case of riders’ diversions, we tested the matching
mechanism (see Algorithm 2) for different values of the
distance users were willing to walk (J) to reach a shared car.
For each pair of driver-rider paths, we asserted that the rider
should not walk more than ¢, and that neither the driver nor
rider have to wait more than a temporal window 7 at the pick-
up meeting point (line 10) and that the expected arrival time
of the rider should be within 7 to her/his destination time (line
12).

Results are depicted in Figure 9 (a,d). In Torino, the number
of trips could be halved by adopting a trip sharing system and
accepting to walk at most 500m to reach a shared vehicle.
In Milano, the number of trips could be halved by walking
around 1000m.

Instead, when drivers are expected to divert in picking-up
potential passengers, we have assumed that their likelihood

Algorithm 2 - Matching Mechanism with Rider Diversion
match(driver Path, rider Path)

1: T < temporalWindow

2: § < walkingT hreshold

3: Dp + getPathPoints(driver Path)

4: Ror, < getOriginLocation(rider Path)

5. Rpy, « getDestinationLocation(rider Path)

6: Ror < getOriginTime(rider Path)

7. Rpr < getDestinationTime(rider Path)

8: match < FALSE

9: for p; € Dp do

10: if (d(pi,Ror) < ¢6) and (r < |Ror —
getTimeAt(p;)|) then

11: fOl'pj #%p; € Dp do

12: if (d(pj,RDL) < 5) and (7’ < |RDT —
getTimeAt(p;)|) then

13: match < TRUE

14: break

15: if match == TRUE then

16: break

7: return match

[u—

of sharing is subjected to the impact of the diversions with
regard to the length of their original routes, when traveling
alone. Thus, in these scenarios we varied the spatial threshold
on a ratio between the expected diversion distance over the
driver’s path distance.

In Algorithm 3, we mined driver-riders matching by consid-
ering a driver maximum detour in distance equal to a certain
ratio () of her initial trip (D p) for each rider they pick-up, and
another equal detour for each rider they drop-off. Furthermore,
to assure savings on driven kilometers, we added a constraint
on the total covered distance by the driver while she shares
rides: d(Dor,pi) +d(pi, Ror) +d(Rpr,pj) +d(pj, Dpr) <
Dp (line 14). Total actual detour required to the driver in
picking up and dropping off riders must be less or equal to
her initial trip. Spatio-temporal closeness is evaluated for each
passenger at both meeting points (lines 12-14).



Algorithm 3 - Matching Mechanism with Driver Diversion
match(driver Path, rider Path)

1: T < temporalWindow

2: 0 + detourRatioT hreshold

3: Dp + getPathPoints(driver Route)

4. Dp + getPathDistance(driver Path)

5: Ror < getOriginLocation(rider Path)

6: Rpr, < getDestinationLocation(rider Path)

7

8

9

. Ror + getOriginTime(rider Path)
: Rpr + getDestinationTime(rider Path)
. Rp « getPathDistance(rider Path)
10: match < FALSE
11: for p; € Dp do
12: if (d(piyROL) < § x DD) and (T < |ROT —
getTimeAt(p;)|) then
13: for P #p; € Dp do
14: if (d(pj,RDL) <6 x DD) and (T < |RDT —
getTimeAt(p;)|) and (d(Dor,pi) + d(pi,Ror) +
d(Rpr,pj) +d(pj, Dpr) < Dp) then

15: match + TRUFE
16: break

17: if match == TRUEFE then
18: break

19: return match

In our study, we bypassed the complexity of computing
distances constrained by the road topologies by considering
spherical distances (computed in d(p;,p2) functions through
haversine formula) between origin-destination geographic co-
ordinates of the rider and their closest points covered by the
driver with her/his route. Nevertheless, final saving computa-
tions are done on the actual road topologies. Therefore, the
constraint imposed on the total covered distance by the driver
did not ensure savings on the total driven kilometers (given
the mismatch between the two distances). Accordingly, we
introduced a multiplying factor («) that addresses the issue
(i.e., it makes the spherical distance as large as the actual one:

ax[(d(Dow,pi) +d(pi, Ror) +d(Rpr,p;)+d(p;, Dpr)] < Dp

In our experiments, best results have been registered with
a = 4. A lower value of o implied an increase on the amount
of saved trips (not circulating cars) and a decrease on the
amount of saved kilometers (eventually negative). Results are
depicted in Figure 9 (b,e).

It is worth noting that interesting results have been depicted
for both the studied cities. The scenario that assumes “walking
riders” could reduce the amount of circulating cars more than
50% in Torino, while in Milano it reaches savings of 40%,
by accepting to walk at most 1000 meters to get collected
by a driver. Drivers detours, instead, produce a less efficacy
reduction of 25% on the amount of needed cars in the
best case. Thus, we can conclude that the riders’ diversions
scenario offers a more effective car pooling with regards to the
drivers’ diversions scenario. However, both scenarios depict a
reduction on the amount of needed cars and driven kilometers,
to address all the mobility needs of people. This may reduce
many issues related to traffic. The results reported by UberPool

TABLE I
EXECUTION TIME IN MINUTES OF RIDE MATCHING ALGORITHMS FOR
DIFFERENT SPATIAL THRESHOLDS)

Passenger Diversion Driver Diversion

S. Threshold | Exe. Time (mins) S. Threshold | Exe. Time
1400m 180 10% 168
1700m 189 15% 180
2000m 195 20% 190

[15] are aligned with ours.

In the last set of experiments, Figure 9 (c,f), we analyzed the
impact of time delays 7. We report the experiments on general
routines and passenger diversion (HW-routines and driver
diversion produces analogous results). Delays are expressed
in hours, as it is the discretisation used in the LDA algorithm.
Therefore, for example, 7 = 0 means that a ride should happen
in the same hour (40 - 59 minutes) of the original trip, while
7 = 1 means that a ride should happen within two hours
(£0 + 119 minutes). Results show that there is a 10% gap
between 7 = 0 and 7 = 1. While, the difference gets smaller
further increasing 7 = 1. We used 7 = 1 in this analysis.

Finally, it is worth noticing how specific features of the
cities under our evaluation led to significantly different results.
For example, in Torino the amount of trips could be halved
by asking riders to walk 500 meters while in Milano the same
saving is achievable by walking almost 1200 meters. It is
likely that the reasons of these different reported behaviors are
mainly placed in the different structure of the cities, topology
of the road networks, spatial distribution of key locations (i.e.,
home and work places).

For example, differently from the most of Italian cities
having a set of main radial roads culminating in the very city
center, Torino has a Roman structure. Indeed, the most relevant
roads cross each other at 90 degrees following the traditional
Roman Castrum. This difference with Milano, which instead
has a radial structure, might explain a portion of the observed
differences. A better understanding of these factors, might
lead to the definition of policies and guidelines to help in re-
designing more efficient urban environments for large-scale
ride sharing systems.

From the perspective of computational costs, all the ex-
periments have been conducted on a single node octa-core
i7-3770@3.40GHz CPU with 24GB DDR3 RAM. Clustering
and LDA algorithms can be easily parallelized by dividing
users among the cores. Since each user is analyzed in isolation
the computation can be evenly divided. Our implementation
process 10000 users in 6.5 minutes.

The ride matching algorithm is more computationally in-
tense as in the current version matches all the 75000 trips
across each other (currently with only minimal optimizations).
Results for different values of spatial thresholds are reported
in Table II.

The algorithm has an execution time that grows linearly
with the parameter settings. Moreover, since users’ routines
are rather stable, this analysis can be computed once in a
while (e.g., on a monthly basis) so the execution time remains
acceptable even for larger number or trips. We are currently
improving our algorithms to run on a Apache Spark cluster
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Fig. 9. Experimental results for both Torino (a,b,c) and Milano (d,e,f). In Torino, with riders diversions (a), the number of circulating vehicles can
be reduced more than 50% by joining ride sharing and walking at most 1km to get a lift. The same scenario in Milano (d) offers to save up to
the 40% of the needed cars. While, with drivers diversions, both in Torino and Milano (b,e), cars can be reduced up to 15% in Torino and more
than 20% in Milano by accepting a maximum diversion (for each rider picked-up) around 10% of the original recurrent trip. Plots (c,f) show the
impact of time delays (0 means in the same hour) in the matching process.

TABLE III
TABLE SUMMARISING RECENT RESEARCH WORKS AIMING AT
QUANTIFYING THE BENEFITS OF ADOPTING LARGE-SCALE SHARING
SYSTEMS IN VARIOUS GEOGRAPHIC AREAS.

Study City Trips saved
Alexander, Gonzales [16] Boston 38%
Bicocchi, Mamei [17] Torino 35%
Cici et. al. [18] Madrid 50%
Santi et. al. [19] New York 95%
Uber (UberPool) [15] N/A 32%
Trasarti et. al. [3] N/A 55%

and take advantage of a parallel computation pipeline for the
ride matching algorithm.

VI. RELATED WORK

The first applications promoting car pooling and ride sharing
have been developed almost 20 years ago. One of the first
car pooling service - Mitfahr-Zentrale - was deployed in
1998. One of the most popular - BlaBlaCar - was launched
in 2003. Nowadays, the vast majority of systems propose
sharing rides on planned and long (> 100km) trips. The well
known BlaBlaCar enables peer-to-peer ride sharing among
users, which can get and offer rides with a bid based approach
similar to eBay. While this platform has spread around many
countries, and it is grounded on a massive user base, it still
requires direct inputs from its users to identify matching rides,
thus the task of seeking for matching mobility needs and
capabilities is not fully automated.

Recently, the popular ride sharing applications Uber
(www.uber.com) and Lyft (www.lyft.com) introduced a feature
allowing any users (instead of registered drivers only) to share
trips with other strangers. In select cities where Uber’s version,

UberPool, is available, Uber confirmed to Venturebeat that the
service reduces traffic congestion by roughly 55 percent [15].

All these systems require users to explicitly enter requests
for rides, and to explicitly enter travel availabilities (e.g.,
BlaBlaCar) or being notified about nearby requests (e.g., Uber
and Lyft). The ride sharing platform we present, instead,
autonomously looks for sharing opportunities by analyzing
recurrent user’s routines.

A. Mobility analysis for Ride Sharing

Recently, several works tried to estimate the benefits of
large-scale ride sharing platforms in terms of trips, vehicles,
or congestions saved. Results have been summarised in Table
IIT and discussed below.

In [16], authors explore the impact of ride sharing adoption
on congestion using mobile phone data. They extract average
daily origin-destination (OD) trips from mobile phone records
and estimate the proportions of these trips made by auto
and other non-auto travellers. Next, they match spatially and
temporally similar trips, and assume a range of adoption rates
for auto and non-auto users, in order to distill ridesharing
vehicle trips. Assuming 50% adoption rate, they found: num-
ber of vehicles -19%, vehicles mile traveled -11%. They also
studied the impact on traffic congestion obtaining a reduction
of congested traffic time by 35%. The main difference between
this and our work is that they focus on home-work commute
only, while our LDA approach extracts also general routines.

In [18] authors analyse users’ localizations collected by
mobile phones to enable ride sharing among people with
overlapped mobility routines on a daily base. The total number
of circulating cars could be halved at the expense of 1 Km
detours, if people that share the same home and work areas
would also share their private cars. Thanks to the approach in



the mobility routine identification provided by the proposed
topic model, the work we presented here goes further by
identifying both general routines and home-work commutes.

Using graph matching algorithms over New York, in [19]
authors found that 95% percent of all taxi trips could be
shared, without significantly increasing waiting times. These
results are also due to the regular grid topology of New York.

In [3] authors analyse GPS data to extract users’ mobility
profiles (i.e., frequent paths) via scan statistics and clustering
mechanisms. Then they run ride sharing experiments obtaining
that 32% of trips could be saved if users a willing to walk
for 2.5Km to reach the ride and tolerate up to 1 hour
delay. Authors generalize the analysis to GSM data (CDR)
reporting larger ride shareability due to inaccuracies in the user
localization both in space and time (i.e., inaccuracies soften
the spatio-temporal matching constraints). The algorithms we
propose for mobility analysis and ride matching are novel
with respect to this proposal. For example, we consider both
the cases of driver and rider diversion to the pick-up/drop-off
point. In general, a direct comparison between the algorithms
is difficult as results strongly depend of the data being used
and the city plan and mobility routines. However, our results
are in line with previous findings.

In our previous works described in [17], [20], we evaluated
already the ride sharing potential in Torino. However, in those
works we did not taken into account en-route meeting points
for riders pick-up and drop-off, but only similar departure
and arrival locations were considered. Under that limit, we
obtained 35% trips saved for maximum passengers walking
threshold of 1 kilometer. Our current approach improves that
result by considering en-route meeting points and using the
actual roads topology. Moreover, we better compare results
deriving from the other ride sharing scenario of drivers detours,
and between the ones obtained for home-work commutes and
the ones concerning generalised mobility routines.

B. Ride Sharing and Applications

Hall and Qureshi in [21] develop a probabilistic model that
evaluates the likelihood that a person will successfully find
a ride-match within a set of potential ride matches. Dynamic
Ride-sharing (DR) is envisioned as an automated process by
which individuals find ride matches on a trip-by-trip basis.
They examine the DR concept on both a theoretical basis
and on an actual implementation in Los Angeles. Specifically,
their paper investigates the likelihood that the user of a DR
system would be successful in finding a ride match. This
paper shows that dynamic ride sharing is a viable concept.
The same authors also report the lack of communication and
social norms, among other obstacles, which concur to the low
utilization rate of ride sharing support services.

In [22], authors evaluate the issue further, by proposing a set
of social enablers for ride sharing. Many efforts in these direc-
tions were made by analysing social and psychological aspects
of individuals while solicited through persuasive technologies
[23] capable of influencing behaviors and coordinating crowd-
sourced activities. We believe that these aspects, beside the
analysis of incentives and reputation mechanisms [23], influ-
ence the practical applicability and success of ride sharing

systems relevantly, and we consider to deeper investigate on
this issue in our future works.

On this line, the work in [24] considers a combination of
intelligent repositioning decisions and dynamic pricing for the
improved operation of shared mobility systems. Specifically,
they apply incentives mechanisms to a shared bicycle system
(but similar approaches could be applied to car as well) to
encourage users to park bicycles at nearby under-used stations,
thereby reducing the expected cost of repositioning them.

The work in [25] presents network flow technique to system-
atically develop a long-term many-to-many car pooling model.
Long-term car pooling is defined as the sharing of a private
vehicle by more than one user who need to reach a destination
following a semicommon route between the individuals’ points
of origin and destination in a specific period. Authors employ a
network flow technique to systematically develop a long-term
many-to-many car pooling model. The model is formulated as
a special integer multiple-commodity network flow problem.
Results confirm the usefulness of the model and the heuristic
algorithm and that they could be useful in practice.

An interesting application scenario for ride sharing systems
is tackled in [26]. This work describes the last-mile trans-
portation scenario: the movement of people and goods from
a central hub to a final destination, as a challenging topic
in implementing eco-friendly transport systems. In this work,
they propose and design a system platform for mitigation
of vehicle distribution in an electric vehicle (EV) sharing
scheme for last-mile transportation. Although they focus on
a completely different set of challenges, their approach can be
coupled with our sharing mechanism to improve performance.

In [27] authors propose a method which aims to best utilize
ride sharing potential while keeping detours below a specific
limit. The method specifically targets ride sharing systems
on a very large scale and with a high degree of dynamics
which are difficult to address using classical approaches known
from operations research. For this purpose, the road network
is divided into distinct partitions which define the search
space for ride matches. They also proposed a novel agent-
based approach for match making among drivers. They test the
algorithm for taxi sharing in Singapore. The outcome shows
that the number of trips could be reduced by 42%.

In [28], authors propose another option to ease traffic
problems by exploiting participatory social interactions. They
depict a crowd-sourced parking service that collect and update
the occupancy data of parking slots in the city. They focus
on a different case study, but we think that crowd-sourcing
can act as a complementary tool to the automatic process
of extracting mobility profiles (i.e., places and routines) we
propose. Furthermore, authors, confirms that the expected
participation rate is a key factor when designing a sharing
system: a system with a lower expected participation rate will
place a higher burden in individual participants.

VII. CONCLUSION

The set of algorithms depicted in our work can support an
urban-scale recommender system in the identification of ride
sharing opportunities by mining mobility traces collected from



telecom operators. Obtained results can help estimating the
potential of a ride sharing system before its actual deployment
and in supporting the actual operation of the system especially
in the bootstrap phase where other data (e.g., GPS) may be
missing. While a number of research works and companies
proposed ride sharing services for planned and sporadic trav-
els which cover long distances, our approach makes use of
the novel opportunities offered by pervasive technologies to
bring ride sharing on everyday trips at an urban-scale, which
occur frequently and usually cover short-medium distances.
Experimental results showed how the traffic can be decreased
and its related issues mitigated thanks to our feasible approach.

This work also showed that the same ride sharing approach
might have different results on different cities (Milano and
Torino have been taken as examples). This fact might suggest
that specific urban features such as road topology and the
distribution of residential or working areas impact on large-
scale sharing systems. On these basis, in our future work,
we plan to analyse other cities for the sake of identifying
policies and best practices allowing sharing systems to be
readily adopted in urban environments.
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