
Road Scene Content Analysis for Driver Assistance and Autonomous Driving 

 

 

 

 

 

A dissertation presented to 

the faculty of 

the Russ College of Engineering and Technology of Ohio University 

 

 

In partial fulfillment 

of the requirements for the degree 

Doctor of Philosophy 

 

 

 

 

 

 

Melih Altun 

May 2015 

©2015 Melih Altun. All Rights Reserved.  



2 

This dissertation titled 

Road Scene Content Analysis for Driver Assistance and Autonomous Driving 

 

 

 

by 

MELIH ALTUN 

 

 

has been approved for 

the School of Electrical Engineering and Computer Science 

and the Russ College of Engineering and Technology by 

 

 

 

Mehmet Celenk 

Professor of Electrical Engineering and Computer Science 

 

 

 

Dennis Irwin 

Dean, Russ College of Engineering and Technology 



3 

ABSTRACT 

ALTUN, MELIH, Ph.D., May 2015, Electrical Engineering and Computer Science 

Road Scene Content Analysis for Driver Assistance and Autonomous Driving 

Director of Dissertation: Mehmet Celenk 

This research aims to develop a vision based driver assistance system that 

achieves scene awareness using video frames obtained from a dashboard camera. A 

saliency image map is formed with features pertinent to the driving scene. This saliency 

map, based on contour and motion sensitive human visual perception, is devised by 

extracting spatial, spectral and temporal information from the input frames and applying 

data fusion. Fusion output contains high level descriptors for segment boundaries and 

non-stationary objects. Following the segmentation and foreground object detection 

stage, an adaptive Bayesian learning framework classifies road surface regions and the 

detected foreground objects are tracked via Kalman filtering. In turn, this oversees 

potential collisions with the tracked objects.  Furthermore, the vehicle path is used in 

conjunction with the extracted road information to detect deviations from the road 

surfaces. The system forms an augmented reality output in which video frames are 

context enhanced with the object tracking and road surface information.  

 The proposed scene driven vision system improves the driver’s situational 

awareness by enabling adaptive road surface classification, object tracking and collision 

estimation. As experimental results demonstrate, context aware low level to high level 

information fusion based on human vision model produces superior segmentation, 

tracking and classification results that lead to high level abstraction of driving scene.  
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1. I	TRODUCTIO	 

The first chapter presents the motivations, objectives and the significance of this 

dissertation research. 

 

1.1 Making Intelligent Vehicles Scene Aware  

Most people who grew up with the science fiction culture of 80’s expected 

futuristic concepts such as self driving cars to become reality sometime in early 2000’s. 

Although not seeing these cars around after three decades is a bit disappointing, 

intelligent vehicle research exhibits potential towards this goal. Over the years cars have 

become safer, faster, more fuel efficient, and somewhat intelligent with the new driver 

assistance systems. There is even some encouraging progress on autonomous vehicles.  

Yet these autonomous vehicle prototypes are far from being commercially available. In 

order to produce these intelligent vehicles that can drive themselves in virtually every 

situation, they need to be able to perceive their environment well, adapt to changing 

conditions and find general solutions to problems. This is how human intelligence 

behaves and in order for the machines to be good at human tasks, artificial intelligence 

(AI) must simulate this natural intelligence. Developing new methods to achieve this task 

is one of the important motivations behind this research. Of course, an intelligent vehicle 

that can easily pass the Turing test [1] is well beyond the scope of this research. Yet, 

Computer Vision (CV) and learning methods developed in this research can become the 

visual system, or in other words, the eyes of an intelligent vehicle.  

The purpose of this research is to develop a scene aware driver assistance system 

by using CV methods with inputs obtained from a dashboard camera only and no other 
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remote sensing devices. The works in this field focus on specific problems such as road 

line and lane detection [2], vehicle detection and tracking [3], etc. So far not much work 

has been done on generating a fully structured description of the driving scene. This is 

mainly due to the difficulty of mimicking human perception with CV algorithms, which 

brings us back to developing better AI approaches issue.  

The reason why AI methods for image understanding have not achieved 

significant developments over the past few decades is not the lack of proper methods. For 

almost any problem multiple methods have been developed, each with varying 

performances under different conditions. Take image segmentation for example. There 

are methods based on clustering [4] [5], texture [6], edges [7], etc. For video 

segmentation there are also methods that involve motion detection [8]. Given the right 

conditions, any one of these methods can outperform others. However, these conditions 

cannot be generalized. Therefore it is impossible to pick a prevalent solution. Yet, when 

there are multiple solutions to a problem AI researchers usually go with one of the 

possible methods and claim their method can beat other methods. Human intelligence 

works with a quite contrary manner though. Human mind considers all possible solutions 

to a problem and based on the conflicts and agreements of those solutions, it forms an 

answer. To see our environment and to identify objects, we do not pick a single source of 

information from color, edge, texture and motion. We form our perception by using all 

available information as a whole. This approach used by natural intelligence can be 

useful for AI methods as well. 

In image understanding problems color, texture edges, etc. form the low-level 

features. Between the low level image features and high degree abstraction that describes 
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the scene contents there is usually a semantic gap [9]. Individual low level features are 

not sufficient to close this semantic gap. The focus of this research is to combine the 

results of multiple image processing methods in a methodical manner that will yield 

useful, high-level list of image contents. Simply put, the CV methods developed in this 

research focus on producing a general solution by combining solutions of multiple 

methods.  It is the hope of the researchers that this work will form a substantial step 

towards identification of high-level semantic objects in a scene. 

 

1.2 Driver Assistance Systems and Intelligent Vehicles 

As of year 2014 there are many car models with driver assistance systems such as 

parking assistance, lane departure warnings, emergency brake assistance, adaptive cruise 

control, etc. [10]. Furthermore, autonomous car prototypes are being developed by 

Google [11] and many major automobile manufacturers. These vehicles contain several 

different sensors such as global positioning system (GPS), Radio detection and ranging 

(Radar), Light detection and ranging (LIDAR), etc. Figure 1.1 displays a drawing of 

Google car with the sensors on board. Moreover, these autonomous cars are being 

designed in such a way that they will be able to communicate with other autonomous cars 

in their vicinity and form sensor networks [12].  
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Figure 1.1: Google Car with multiple sensors [13] 

 

Humans on the other hand, use their eyes to perceive their environment and to 

assess the driving scenery. They do not have lasers. They do not emit or receive radio 

waves and ultrasonic waves. They do not have an internal GPS. Additionally, they 

certainly do not have a telepathic link to nearby drivers. Yet, they can drive the cars by 

using visual information only. Therefore, the question naturally arises; Is it possible to 

come up with a system that sees its environment with a single dashboard camera instead 

of using all those sensors? 

If a system connected to a camera can mimic a driver’s vision, it should be 

sufficient for intelligent vehicles and driver assistance systems. This research aims to 

develop a system that depends only on visual data flow and no other sensory information 

such as Radar or LIDAR. The system will be able to identify road surface and 
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background objects as well as the foreground objects. The segmentation of these objects 

is enabled by combining low level spatial, spectral and temporal data obtained from 

camera video stream into higher level descriptors. Segmented regions are identified by 

classifying them into learned categories. The system detects and tracks the foreground 

objects just like a human driver following the motion and position of other nearby cars.  

Learning and classification are performed by Bayesian inference methods and tracking is 

performed by Kalman filtering. The combined output of segmentation, learning and 

tracking will form a driving scene description which will model the environment in a 

fully structured way. Fig.1.2 demonstrates a simplified representation of the proposed 

system. A block diagram of the proposed system can be seen in Fig. 1.3. Context 

enhanced output image can be shown on a dashboard display, or on a head up display 

(HUD). These technologies can be seen in Fig. 1.4. 

 

 

Figure 1.2: Simplified system representation 
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Figure 1.3: Overall diagram of the proposed system 

 

1.3 Potential Benefits of Learning Road Patterns and Surrounding Environment 

with a Computer Vision application 

The major contribution of this research is achieving scene segmentation. The task 

of combining spatial, spectral and temporal information is accomplished through 

information fusion. In order to bridge the “semantic gap” mentioned earlier, low level 

features are combined into high level descriptors. These descriptors are then used for 

segmentation and learning. This process produces very promising results where the 

semantic gap is closed – something that has not been achievable by use of low level 

features only. Combining multiple methods to obtain a better solution approach produces 

better features for segmentation, object tracking and region learning, resulting in better 

scene understanding.  
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Another contribution of this dissertation is the removal of the necessity for non 

visual sensory devices (such as LIDAR) on advanced driver assistance and automated 

driving systems. The proposed system only consists of a visual camera and a device with 

enough computational power to carry on computer vision operations. Utilization of such 

systems will simplify the implementation of intelligent cars and driver assistance 

systems. In addition, making driver assistance systems more affordable will enable more 

consumers to obtain vehicles with those assistance systems and potentially reduce the 

number of accidents.  

 

 

Figure 1.4: Dashboard (left) and head up displays (right) [14] 
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2. BACKGROU	D 

This chapter provides brief descriptions of data fusion, computer vision and 

machine learning methods used in this research. Also a review of current research in 

driving assistance systems and intelligent vehicles is presented. 

 

2.1 Data Fusion: Better Features to Learn 

Machine learning (ML), is one of the most substantial branches of Artificial 

Intelligence (AI).  It contains many algorithms for classification problems, including 

neural networks (NN), support vector machine (SVM) and expectance maximization 

(EM).  ML also includes non parametric methods such as k-nearest neighbor (k-NN). 

Each one of these methods finds extensive use in practice.  However, each has mostly 

been applied to the areas where it is most effective; so far there has been no method that 

works well in all applications. With so many widely used methods already in existence, a 

promising approach is to focus on the feature set, or, in plain words, what needs to be 

learned. Until now, the features used for learning and classification have been low level. 

Such features leave gaps in the semantics of classification; the higher conceptually 

positioned an object is, the harder it is to classify it with low level features. If we consider 

the image segmentation and understanding problems, as mentioned in the previous 

section, low level features are not capable of closing the “semantic gap”. Consider the 

example of vehicle vision: at the lower end we have the raw video stream from a 

traveling car. Spectral, spatial and temporal information can be obtained from the video 

stream with common methods. However, the information is limited and inadequate for 

obtaining a meaningful scene description such as identification of the road, other cars and 
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background. In order to reach the expected high-level semantic description, the gap must 

be closed by information that contains high level concepts formed by combining low 

level information. They must belong to a conceptual set that make sense to humans. As 

an anecdote, our brains work in similar fashion. They find all potentially helpful features 

and combine them into a meaningful set, which then is used to identify actual objects. 

In computer science terms, incorporating data from multiple sources into a single 

output is called information fusion or data fusion [15] [16]. The purpose of data fusion is 

to generate information that surpasses the individual sources used for fusion. When 

applied to images (i.e., image fusion) these methods find applications in military target 

detection and tracking [17], surveillance [18] [19], remote sensing [20], medical imaging 

[21], etc. Fusion needs a basis, which is a set of shared attributes used as a guide to merge 

the information content into one meaningful presentation. Among other methods [15], 

fusion can be based on entropy, fuzzy logic, wavelets and principal component analysis 

results. Image fusion involves images obtained from two or more different sources. For 

example: cameras operating on different spectral bands (i.e. visual camera, infrared 

camera, ultraviolet camera, etc.). Fig. 2.1 demonstrates how fusing images in multiple 

spectral bands can be useful in low light conditions.  

In this study fusion operation is carried out with images obtained from a single 

camera. Each video frame from the camera goes through three different analysis 

procedures. These procedures are spatial, spectral and temporal analysis. These analysis 

procedures produce various low level image features such as color clustering, local 

variance, texture energy and optical flow. In order to obtain an image with higher 

information content, these low level features are combined in such a way that the images 
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with higher information contents obtain higher weights. The level of information that a 

low level image contains is measured by its entropy. Therefore, the fusion operation 

proposed in this research is entropy based adaptive fusion. The output of this fusion 

operation is a saliency image that shows the important parts of the input image. These are 

the parts that a human observer will pay attention to.  This saliency image will be 

discussed in more detail in the next section. The saliency image enables the detection and 

tracking of objects in the scene. Saliency image and the detected objects form the higher 

level descriptors that are required to close the semantic gap. Figure 2.2a depicts this 

semantic gap and Fig. 2.2b shows how this gap is closed with higher level descriptors. 

 

 

Figure 2.1: Visual (a), long wave IR (b), near IR (c) night time driving images and 

wavelet based fusion (d) [10]. 

 



 

Figure 2.2: Bridging the semantic gap with data 

 

: Bridging the semantic gap with data fusion and object detection
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fusion and object detection 
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Now let’s investigate how this high level information containing saliency image 

can be formed from low level features. From a theoretical point of view, ideal 

information fusion methods find and utilize more informative sources. If an image or, 

part of an image is more informative than the others, it will be given more weight 

compared to the other sources while forming the fused output. Hence, the challenge in 

information fusion is to measure the information content of a source. A good starting 

point is to use Shannon’s entropy. Just like the entropy in thermodynamics, entropy used 

in information theory is a measure of chaos and randomness. Shannon’s entropy is the 

most common entropy measure in information theory. It is given by: 

 

    � =  ∑ ��log� ����     (2.1) 

 

where pi is the probability of selected data level.  

High entropy means high randomness. The higher the randomness of a data 

stream, the less likely it is to have useful information. This is a very simple approach 

which, as shown later, does not always hold. However following this approach may lead 

to better ones. 

The fused image must have more contribution from those features to maximize its 

information content. The fusion operation must look like: 

 

     �� =  ∑ �(��)� ��    (2.2) 

 

Here If is the fused image, Ii is an image representing one of the feature maps 

(spatial, spectral and temporal) and f(Hi) forms a coefficient as a function of feature map 

entropy.  
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A more generalized version of eqn. (2.2) would be 

     �� =  ∑ �����      (2.3) 

where f(Hi) is replaced by the coefficient α. Probability distribution of fused image is 

given by its normalized histogram  

    ����� = ����(�, �)� = ����(��(�, �))   (2.4) 

The entropy of this distribution is given by Shannon’s formula: 

       ����� =  ∑ ����� � !� ���"#�    (2.5) 

       ����� =  ∑ �(∑ ����� ) � !�$�(∑ ����� )%&�     (2.6) 

We want to find the optimum α vector that maximizes �����. We expect optimum 

α to give us the If that contains the most information.  Therefore, we need to find the 

partial derivative of ����� w.r.t α and set it to zero.   

        
''� ����� = 0     (2.7) 

This will give us the critical points.  Using second derivatives we can find the 

minimums among these critical points and pick the global minimum.  

        
''� ����� =  ''� ∑ ����� � !2 1����� = ∑ ''� ����� � !2 1����� = 0    (2.8) 

    ⟹ �,-� ∑ �′���� /�0 1�����2 + 14 = 0    (2.9) 

where p’(If) is the partial derivative of p(If) w.r.t. α and ln is the natural logarithm.  
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Surely we need to add constraints to this optimization problem and solve the 

problem subject to these constraints.  

      
''� ����� + 51 ''� 61(�) + 52 ''� 62(�) + ⋯ = 0  (2.10) 

where ci is a constraint and λi is a Lagrange multiplier.  

The constraints need to be defined. We know sum of normalized histogram of the 

fused image must equal one: 

     ∑ �����8 = 1      (2.11) 

Here k is the range of intensity values. Same goes for the input features: 

     ∑ �(��)8 = 1      (2.12) 

There are corner cases such as a blank input image. If there is an input with zero 

entropy (i.e. (�9) = 0 ) its contribution will dominate: 

         �9 = 1      (2.13) 

And 

         �� = 0   ∀� ≠ 9    (2.14) 

That means we have to add the constraint: 

     �(��) > 0 ∀�     (2.15) 
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What about non-zero inputs with very little information in them, such as images 

with only a few non-zero pixels or periodic images? These will generate low entropy 

values and a similar condition may arise. We need to change the previous constraint to:  

       �(��) > = ∀�     (2.16) 

How can we define a lower limit to entropy? What is the entropy value boundary 

between meaningful information and lack of information? Picking an arbitrary limit will 

surely lead to controversial results.  Clearly, a better approach is needed. Entropy of a 

single source is not sufficient to measure information content relative to other sources. 

In order for a probabilistic data to be informative, we need circumstances (i.e., 

joint or conditional probabilities with other variables) that set the background. A thought 

experiment can be done to follow this idea. Assume we are in January and we consider 

the chance of snowfall.  

       >(�0 ? �0 @A0BAC�) =  �    (2.17) 

The entropy of a single event is given by: 

    �(�) =  � !� �D(E-FG �- HI-JIKL)      (2.18) 

Any number we use to replace x will not represent much information by itself 

because we don’t know anything about location or any other relevant information. Now 

let’s say we are in Athens, Ohio:  

      >(�0 ? �0 @A0BAC� | N�ℎP0�, Q� ) =  �1   (2.19) 

 

We know some winter days in Athens are snowy. So given that condition, p1 will 

have some information value.  Now consider another example: 
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   >(�0 ? �0 @A0BAC� | N06ℎ CA!P, NR ) =  �2  (2.20) 

 

This time we know the probability will be very close to one and it will contain 

little or no information: 

     � = � !�1/1 = 0    (2.21) 

In fact, snowfall in Alaska during winter is hardly a surprise for anybody.  Now 

consider this example: 

   >(�0 ? �0 @A0BAC� | T � N0!P�P�, UN ) =  �3  (2.22) 

 

p3 will be very close to zero given the climate of Southern California. If 

meteorological findings indicate a real chance of snow, the amount of information is 

enormous. This leads to the theory that, a good information measure should use 

background knowledge and frequency of events together.  

As mentioned before, simple entropy is not sufficient to quantify information 

content. However, with the new found hindsight, conditional entropy or mutual 

information can provide a better information measure. A similar concept was studied in 

[22]. The entropy based information fusion approach in [22] starts with the entropy of 

sources rather than the entropy of the fused output. 

 

 

 

 

Figure 2.3: Illustration of conditional entropy and mutual information 

H(X) H(Y) 

HM(X,Y) H(X/Y) H(Y/X) 
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The inputs X and Y can have common information and information exclusive to 

one of them (i.e., mutual information and conditional entropy). Starting with two sources 

if we want to emphasize the redundant information in our fused output we must 

maximize mutual information: HM(X,Y). If we want to emphasize information specific to 

individual sources we need to maximize conditional entropies: H(X/Y) U H(Y/X) where U 

is the union operator and / is the set complement operator.  

This suggests that mutual information between images that represent different 

features must be maximized to find the best combination of those images.  

 

 

Figure 2.4: Two sample histograms. 

 

Assume we start with two inputs with the histograms shown in Fig. 2.4. The fused 

image will be combination of the two: 

     �� = ��1 + W�2    (2.23) 

 

Finding optimal If boils down to finding the ratio of α and β coefficients for I1 and 

I2.  Since the output is going to be normalized this can be further reduced to: 

p(I1) p(I2) 
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     �� = ��1 + �2     (2.24) 

 

Next we need to select which of the two inputs is going to be scaled. Mutual 

information is going to be maximum when the two images are most similar, which also 

means when their histograms are most similar.  

I1 has more variance compared to I2. Therefore, we can pick an α<1 value and use 

it to scale I1 and squeeze its histogram or we can pick α>1 and use it to stretch the 

histogram of I2. If we use α>1 then some of the pixels in I2 will be scaled beyond the 

maximum brightness level allowed. We are going to either lose those pixels or limit them 

to max value (1 or 255, etc). The histogram modifier functions will look like one of the 

cases below. 

 

 

 

 

 

Figure 2.5: Histogram modifier functions with α>1 

 

Either case will introduce non-linearity and result in information loss. Thus, we 

should select α<1 and scale I1 (the one with the larger variance) to squeeze its histogram 

and make it look like I2.  

Our aim is to maximize mutual information HM(α I1, I2 ) with respect to α.  

  
''� ��(��1, �2) = 0      (2.25) 

α 
in 

out 

in 

out 

α 
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''� ∑ ∑ �(��1, �2)� !2 �(��1,�2)�(��1)�(�2)�2�1 = 0   (2.26) 

where p(α I1, I2 ) is the joint histogram of two images.  If we follow the math from here 

we will see that finding a 2D distribution as a function of I1 and I2 without loss of 

generality is quite difficult. Moreover, as eqn. (2.28) shows multivariate mutual 

information calculation is complicated.  

                ��(�1, �2, … , �Y) = ��(�1, �2, … , �Y−1) − ��(�1, �2, … , �Y−1| �Y)    (2.27) 

To eliminate such complications mean square error (MSE) between feature maps 

can be utilized. [23] states that there is a differential relation between Mutual information 

and minimum MSE. [23] investigates input and output of transmission channels with 

Gaussian noise. Although it investigates a different topic, there are quite a lot of 

similarities and they basically claim Mutual information and MSE are very relevant. 

They derive the equations below which define the relation between MSE and Mutual 

Information. 

 
[[ E-K �\(9, ]) =  �� ���(9|])   (2.28) 

 �\(9, ]) = �� ^ ���(_)`_E-Ka     (2.29) 

What is claimed in this research is, for a specific scaling factor, the difference 

between two images to be fused will be minimum. Hence, the redundancy between 

images will be maximized. 

        �� =  �∗�� +  �CC C     (2.30) 

The approach in [23] is, given an input X a communication channel and an output 

Y, output will be some noise plus X scaled by signal to noise ratio (snr). 
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  ] = √�0C 9 + d     (2.31) 

The two approaches are parallel in this aspect. Therefore minimizing MSE 

between feature map histograms can generate similar results to mutual information 

approach.  

 ��� = �e ^ $�f"�(8) − �"�(8)%�`8�gha    (2.32) 

We can model probability distributions as Gaussian mixtures and T=1 since 

histograms are normalized:  

                               = ^ i∑ 6� d(8|�j�, �k�) − ∑ l̀  d�8mjl , kl�l� n�`8�gha   (2.33) 

Now minimize MSE w.r.t α, subject to ∑ 6� = 1�  and ∑ `o = 1o  

ppf ^ i∑ 6�  d(8|�j� , �k�) − ∑ l̀  d�8mjl , kl�l� n�`8�gha − 5� ppf (∑ 6� − 1� )  − 5� ppf �∑ l̀ − 1l � = 0   (2.34) 

Constraints are not dependent on alpha so they drop out. Note also that the second 

Gaussian mixture is not dependent on alpha as well.  

     = ^ ppf i∑ 6�  d(8|�j� , �k�) − ∑ l̀  d�8mjl, kl�l� n�`8�gha = 0   (2.35) 

         ^ ''� $q1(8, �) − q2(8)%2`818=0 = ^ 2$q1(8, �) − q2(8)% ''� q1(8, �) `8 = 018=0   (2.36) 

This suggests the trivial solution:  

  $q�(8, �) − q�(8)% = 0     (2.37) 

Alternatively, considering G1 is a normalized probability distribution, hence,  G1(k) ≥ 0 

for k ϵ [0,1] and as α increases, stretching histogram values will monotonically decrease, 

generalized mean value theorem for integration can be applied [24].  

       2 $q�(6, �) − q�(6)% ^ ''� q1(8, �) `8 = 018=0    (2.38) 
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where c is a constant within the interval [0,1]. The term outside the integration operation 

is a constant and can be omitted: 

     ^ ''� q1(8, �) `8 = 018=0      (2.39) 

Eqn. (2.37) suggests G1 and G2 are identical, which is highly unlikely. Solving eqn. 

(2.39) is the more likely to produce results. Eqn. (2.39) is sufficient for Matlab 

evaluation. However, this can be further evaluated:  

            ^ ''� q1(8, �) `8 =18=0 ^ ''� ∑ 6� �f r�√�s� exp w −0.5 1g&f z�� 2�{  `8 =18=0 0   (2.40) 

          ^ ∑ 6� &�f|r�}√�s�  exp w −0.5 1g&f z�� 2�{ (��k�� + � 8 j� − 8�)`8 =18=0 0  (2.41) 

The first part is a scaled Gaussian and due to the negative sign it is negative, i.e.,  

 
−6��4k�3√2�  exp � −0.5 18−� j�� 22� < 0      (2.42) 

which leads to: 

 ^ ∑ (��k�� + � 8 j� − 8�)� `8 = 018=0    (2.43) 

This suggests, alternative to Eqn. (2.38). Gaussians can be fitted to histogram data and α 

can be directly calculated.  For a single Gaussian α evaluates to: 

  � = z g ± �z���r�� r     (2.44) 

The histograms of the features we extracted are indeed uni-modal almost all the 

time. Hence, by looking at the mean and variance, α can be computed.  

Setting partial derivative w.r.t α to zero will give us the critical points. We need to 

select which of these critical points are minimizers of the MSE.  The definition of a local 

minimum is given as: 

   �(�∗) ≤ �(�), ∀� � (�∗ − =, �∗ + =)    (2.45) 
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Given the interval (�∗ − =, �∗ + =) is continuously differentiable up to second order, 

   �f(�∗) = 0       (2.46) 

indicates �∗ is a critical point, and  

  �ff(�∗) > 0     (2.47) 

indicates �∗ is a local minimum. But, given these conditions we do not need to take the 

second derivative. As Fig. 2.6 demonstrates if the first derivative is continuous, the 

second condition tells us a local minimum will be a negative to positive zero crossing at 

�∗ location.  

 
 

 

 

Figure 2.6: Finding local minimums with derivatives 

 

With this MSE based fusion method, relative information content of two sources 

can be found. By finding the coefficient that minimizes the error between two feature sets 

using Eqn. (2.39) and finding a negative to positive zero crossing, information common 

to both sources can be emphasized. The following chapters will demonstrate how this can 

be extended to multiple sources of information.  

 

2.2 Mimicking Human Vision with Computer Vision 

To come up with a computer vision method that mimics human vision we first 

have to have an understanding of how human vision works. By finding out important 

f(α) 

α
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f '(α) 

α
* 

f ''(α) 

α
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steps in our perception, we can find reasonable features that will be essential in defining 

scene contents and closing the semantic gap mentioned earlier.  

The light receptors in the human eye are located at the retina, which forms the 

inner surface of the eye. The receptor cells around fovea, where lens focuses light rays, 

are mostly cone cells that are sensitive to color. Rod cells are in mainly concentrated 

around the periphery of fovea. These receptor cells are more sensitive to light intensity. 

The image that forms on the fovea is the center of our gaze. This is where most of the 

visual information comes from. The emphasis on this region can be understood by 

examining the connections of receptor cells and neurons. In this central region most 

receptor neuron connections are one to one where as in the peripheral vision regions 

many receptors are connected to one neuron [25]. It is not hard to guess that our attention 

goes to where we directly look.  

Our eyes automatically cluster similar colors and intensities. Neurons connected 

to receptors that receive similar hue and intensity levels fire at the same rate. Therefore, 

perception begins at the receptor layer by separation of these spatial regions. But what 

captures our attention most are the transitions in color and intensity. These regions with 

high contrast form the region boundaries, or contours of an object.  The importance of 

contours in human perception can be seen easily. When people are asked to draw an 

object, whether these people are toddlers or professional painters, they start by drawing 

the contours of an object. The phenomenon was first observed by Ernst Mach. According 

to his theory the perceived image is the actual image minus the Laplacian of the image 

multiplied with a coefficient, as shown in Eqn 2.48. This has a sharpening effect on the 



35 

perceived image [26]. In fact, finding zero crossings of an image Laplacian is an effective 

edge detection method in image processing.  

 ���K�����[(�, �) = �(�, �) − 6∇��(�, �)   (2.48) 

On the retina layer the effect of this is, neurons near the positive side of a 

transition get exhibited and fire more intensely, whereas the neurons on the negative side 

of the transition get inhibited. This phenomenon is now known as Mach band and it 

forms the basis of contour vision Fig. 2.7 demonstrates this effect in 1D.  

 

 

Figure 2.7: Illustration of sharpened transitions due to Mach effect 

 

Humans also detect textures and texture changes easily. One of the most 

significant works on texture segmentation [6] lists texture components as periodicity, 

directionality and randomness. When our eyes detect small changes in contrast in 

periodic, directional or random manner, we recognize that as a texture. Over a large 

region these contrast changes add up and become easy to recognize. Although texture 

properties are spectral rather than spatial our perception clusters textures same way it 

clusters color and intensity, and finds boundaries between different textures. Boundaries 

of textures are added to our contour vision. 
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Another observational variable that is emphasized in human vision is motion. 

There are tracking neurons in visual system that fire upon detection of motion. The faster 

the observed object goes the more exhibited these neurons become [26]. This explains 

why moving objects immediately catch our attention.  

Detected contours from colors, intensity and texture, plus the motion get 

synthesized and become our visual stimulus. The combined output of these visual 

features forms a map showing where most of our attention goes in a scene. Continuous 

long curves in this map depict the boundaries of regions, whereas blobs with high 

concentration of contours or motion define foreground objects. Therefore, at the retinal 

receptor layer, not only segmentation is done but also object-ground distinction is made. 

However, recognition of detected objects does not occur until observed image is 

transmitted to the visual cortex. The brain completes the last step of perception by 

carrying out recognition of known objects and classification of known backgrounds [25]. 

When this mental construction step is completed visual perception turns into cognition 

and we understand what we see. 

With computer vision methods, similar to human eye, spatial (color, intensity) and 

spectral (texture) information can be extracted. Moreover, motion detection algorithms 

such as optical flow can find temporal changes just like the tracker neurons in our eyes. 

When these data are combined using the image fusion methods mentioned in previous 

section, the result will be a saliency map showing object and region contours as well as 

objects in motion.  This saliency map models the visual stimulus after synthesis of 

spatial, spectral and temporal information. From this saliency map, objects of interest can 

be extracted by blob detection algorithms such as Difference of Gaussians (DoG) or 
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Laplacian of Gaussians (LoG). Also, by using the contours in the saliency map, regions 

in an image can be segmented. Detected blobs and segments form the higher order 

features that can be used by learning and classification algorithms.  

Just like the optic nerves transferring clustered regions and object ground 

information to the visual cortex, the resulting segments are sent to classification 

algorithms which are trained to find certain regions. Detected objects can be processed by 

object recognition and tracking algorithms to have a better understanding of the scene. 

These last steps simulate the mental construction in the visual cortex and complete the 

scene modeling. Fig. 2.8 compares visual perception model described here with the 

proposed system.  
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Figure 2.8: Revisit of overall system diagram with comparison to visual model 
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2.3 Learning from Observations 

Once high level features are obtained through information fusion, these features 

can be learned to categorize objects. Many machine learning methods have been 

developed for various classification problems. Among these, Bayesian-based inference 

algorithms have become mainstream in ML research due to their practical applicability. 

Besides they are the more compatible human learning than any other learning [27]. 

Conditioning is an important part of human learning. Our beliefs are based on available 

information and they can change in the presence of new information. Strong evidence 

against our thoughts can easily change our way of thinking. Bayes’ decision theory [28] 

formalizes this with conditional probabilities.  

Bayesian learning is good model for general human learning and human visual 

system is no exception for that. Studies indicate the way the visual perception works can 

be modeled by Bayesian inference [29] [30]. Bayesian learning provides a good 

rationalization for mental construction in visual cortex.  

Another important notion presented in [31] is Bayesian learning methods can 

work without the presence of negative examples. This is not the case for most other ML 

methods such as neural networks, support vector machines (SVM), nearest neighbor 

algorithms etc. Consider the two feature, two class sample dataset in Fig. 2.9. A dataset 

like this can be learned by SVMs and perceptrons. However, as can be inferred from Fig 

2.10a, an SVM method needs to choose support vectors from both classes to find the 

maximum margin separation. A perceptron needs inputs from instances of both classes in 

order to update its decision boundary. 
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Figure 2.9: A sample two class data set in a 2D feature space 

 

When a Bayesian method such as Maximum Likelihood is utilized learning can be 

achieved by finding models that fit classes. These models can be based on statistical 

properties such as mean and variance. Fig 2.11 depicts maximum likelihood learning with 

class probability distributions formed by training data. Contrary to other learning 

methods Bayesian learning can be applied to a single class (i.e. no negative training 

instances) as shown in Fig. 2.12. 

 

 

Figure 2.10: SVM learning (left) and perceptron learning (right) 
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Figure 2.11: Illustration of maximum likelihood learning 

 

In the multiclass case, when class models are formed, a test instance can be 

classified using the conditional probabilities. The decision based on conditional 

probabilities can be formulized as the eqns. (2.49a) and (2.49b). Fig. 2.13 illustrates this 

classification step. 

 >(U�|�) > >(U�|�), ��U�    (2.49a) 

    >(U�|�) < >(U�|�), ��U�    (2.49b) 

 

 

Figure 2.12: Maximum likelihood learning with a single class 
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Figure 2.13: Maximum Likelihood classification with conditional probabilities 

 

 As discussed in the previous section, lower level image features can be utilized to 

segment the image and extract foreground objects. From the segmented image, important 

regions such as road surface can be learned and identified by using Bayesian learning 

methods. With proper features a maximum likelihood method should be able to find 

regions that are important for the driver. If there are multiple segments with common 

properties, these regions can be grown by merging them after being classified under the 

same class. Image region recognition and classification is a subject of object ontology 

[32] [33]. Ontological properties of segmented regions such as shape, position, color, 

size, etc. can be used as features for learning and classification.  

Another important aspect of this research is the detection and tracking of 

foreground objects. Based on the past observations, a predicted path for these objects can 

be found and possible collisions can be detected. The obtained positions of these 

foreground objects in each video frame can be considered as observations. The actual 

positions and motions of these objects are their states. As the time progresses, these states 

change. Predicting the correct state of an object based on past observations can be 

achieved by learning.  
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When there are multiple states, defining state transitions by conditional 

probabilities and selecting a possible next state based on those probabilities is a direct 

application of Bayes decision theory. Systems such as the one shown in Fig. 2.14 are 

called Bayesian networks [27]. 

 

 

Figure 2.14: A sample Bayesian network depicting states and transition probabilities as a 

directed graph 

 

Markov Chains and their variation Hidden Markov Models (HMM) are directly 

derived from Bayesian networks [28]. When we have a sequence of states their state 

transitions can be stated in terms of their probabilities. Consider the Bayesian system in 

Fig 2.14. The probability of observing a state sequence {x1, x3, x3, x2} is given by the 

joint probability: 

 

  >(���, ��, ��, ���) = >(��)>(��|��)>(��|��)>(��|��)  (2.50) 

 

In fact state sequence of a Markov Chain can be formulized by:  

 

 >(9 = ��(��), … , �(��)�) = >��(��)� ∏ >��(����)|�(��)��&��h�   (2.51) 
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In the case of HMM, states are not directly visible but there are possible 

observations associated with each state. Fig. 2.15 illustrates a Hidden Markov process 

where there are hidden states and observations.   

 

 

Figure 2.15: Hidden Markov Model as sequence of observations and hidden states. 

 

HMMs are widely used for temporal pattern recognition. An HMM sequence can 

be formulated as: 

 

    >(Q) = ∑ >(Q|9)>(9)�     (2.52) 

 

where the probability of getting a specific sequence of observations is defined by 

conditional probability of getting the specific observations given a specific state 

sequence, summed over all possible state sequences. Although the formulation is simple, 

calculations grow exponentially as the number of possible states and observations 

increase. Finding the most probable sequence of states is an even harder problem. 

 

    9� = AC!�A��>(9|Q, �)    (2.53) 

 

Here, X is the sequence of states, O is the sequence of observations and φ is the model 

that includes states transition probabilities and the probability of observations from 
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specific states. Viterbi algorithm [28] can find that optimal solution without too much 

computational complexity. However, for driving scenarios where the number of possible 

states and observations are practically infinite, these methods are not applicable. To find 

a Bayesian model that that fits our needs we need to explore the Markov process models.  

Consider Fig 2.16. When a hidden variable is selected the next possible state is 

given by conditional variables. Possible observations are also given by conditional 

probabilities.  

 

 

Figure 2.16: Possible observations and state transitions for a given state 

 

By obtaining the same set of probabilities from each hidden state, a state 

transition and a measurement matrix can be formed as in Eqns. (2.54) and (2.55). Using 

these matrices, the observations and predicted state transitions can be found by a linear 

set of operations.  
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   � =  �>(��|��) . .>(��|��)   >(��|��)  ∶  >(��|��) . .  ∶ >(��|��)�
�×�

   (2.54) 

 

   � =  � >( �|��) . .>( �|��)   >( �|��)  ∶  >( \|��) . .  ∶ >( \|��)�
\×�

   (2.55) 

 

A state vector would look like: 

 

     9 = � >(��)>(���):>(��) �
�×�

    (2.56) 

 

Observations and state predictions will be given by: 

 

     9���� = � ∙ 9�     (2.57) 

     �� = � ∙ 9�     (2.58) 

 

where 9���� is the predicted next state and Z is the observation matrix.  

If this system was deterministic instead of probabilistic, we would see whole 

numbers, rules and formulas in these matrices instead of probabilities. It is in fact 

possible to start with a deterministic system model and add uncertainty parameters that 

would diffuse the state transition and observation probabilities within themselves. 

Consider adding a process uncertainty parameter w to Eqn (2.57). 
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 9���� = � ∙ 9� +  ?    (2.59) 

 

As opposed to prediction equation in (2.57), which returns a vector of 

probabilities for each state, deterministic model in (2.59) will return a single expected 

state. The extra uncertainty parameter, however, will lead to a covariance matrix P which 

estimates the accuracy of the prediction.  

 

    >���� = � ∙ >� ∙ �e +      (2.60) 

 

Here Q is the process noise covariance obtained from w. 

Similar to prediction equation, observation in (2.48) will receive a measurement 

uncertainty parameter v.  

 

     �� = � ∙ 9� + ¡    (2.61) 

 

 The prediction error can be calculated using this observation: 

 

     ]� = �� − � ∙ >����    (2.62) 

 

An estimate of the accuracy of the observation can be calculated by finding the 

covariance matrix of the prediction error. 

 

     �� = � ∙ >���� ∙ �e + ¢   (2.63) 

 

Here R is the measurement uncertainty covariance obtained from v.  
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By now it should be obvious that this modified Markov model has become the 

prediction and error measurement steps of a Kalman filter. As stated in [34] Kalman 

filters are in fact related to HMMs and many other mixture models. Even though Kalman 

filters use a set o linear equations instead of a probabilistic state space, the underlying 

principles are the same and they are based on Bayesian decision theory.  

Kalman filter provides an excellent model that has temporal tracking and 

estimation capabilities. Just like HMMs it is based on the Bayesian inference principals, 

which is compatible with the human cognition. Also, contrary to HMMs, it uses a set of 

linear equations to get the predicted output, instead of a searching a vast state space for 

an optimal solution. 

 

2.4 Related Intelligent Vehicle Research 

Intelligent vehicles research has started more than two decades ago. Although the 

first examples did not go beyond primitive methods for segmentation and lane detection 

[35] it has quickly grown in the last fifteen years. Although most of the research focuses 

on automobiles, [36] indicates some research activities also go around heavy trucks, 

busses and other forms of public transportation and also military vehicles. Majority of 

intelligent vehicle research in the literature is in line with the current autonomous vehicle 

design trends, which involve multiple sensors and sensor networks. Studies such as [37] 

[38] provide frameworks for combining a group of sensors such as LIDAR, radar, GPS, 

etc. Detection rate can benefit from using a variety of sensor but costs will go up as the 

number of built in sensors increases. These sensors usually work independent of each 

other and they may generate warnings and notifications at different times. [39] argues 
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some of these notifications may not carry much significance for the driver and proposes a 

sensor data fusion method that generates more informative warnings and notifications. 

Works such as [40] [41] focus on sensor networks and multi vehicle cooperative driving. 

Such approaches enable trajectory planning to avoid collisions. However, [10] argues 

that, with vehicles and sensors being produced by various different companies sensor 

interoperability will be a challenge for sensor networks.  

On the other hand, vehicle detection methods that use vision only systems have 

also been presented in the past with varying performances. The system in [42] is a vehicle 

detection method depends on the presence of vehicle shadows and the symmetrical 

appearance of the vehicles. Symmetrical appearance can be a strong feature most of the 

time. However, this feature fails when vehicles are viewed from sideways and diagonal 

angles. Similarly the method proposed in [43] cannot detect objects with reflective 

surfaces. The methods in [44] [45] can detect and track objects, estimate collisions and 

give warnings. Both methods perform well in low speed urban environments but they 

cannot adapt to highway speeds. Lane detection and tracking systems have also [2] [46] 

been widely studied. However they are prone to failures when lane markers are occluded 

by other vehicles and they are useless on roads with no lines such as dirt and gravel 

roads.   

Some vision based methods use edge features to detect vehicles. The proposed 

method in [47] uses edge based constraint filters to find cars. A recently published 

vehicle detection and collision warning system [3] uses vertical as well as horizontal 

edges and shadows under the vehicles as features. The method achieves an impressive 

detection ratio of 97%. 
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The proposed method in this dissertation also uses edges and car shadows as 

vehicle descriptor features. Unlike the other methods, the edges are obtained from 

combined contours from spatial and spectral features instead of simply obtaining the edge 

map of the grayscale input. Moreover, relative speed, which is a temporal feature, is also 

added to increase detection. Vehicles travelling at much lower velocities and vehicles 

going in the opposite direction will have significant relative speed and they are much 

more likely to be detected when this relative speed is utilized.  

Our research aims to accomplish more than just detecting vehicles. We also 

identify the road surface in this research. A key ingredient is proper scene segmentation, 

which is achieved through feature fusion. Substantial research studies have been 

published on segmentation and scene understanding. Few of them focus on feature fusion 

and incorporation of temporal elements. For instance, [48] uses fusion of directional 

spatial features such as Eigen vectors, gradients and temporal saliency for vehicle 

detection from air. In [49] optical flow and a pixel based similarity metric are utilized to 

segment road scenes. [50] also uses optical flow for traffic analysis using a fixed camera 

directed at an intersection. Color clustering and local binary patterns (LBP) as a texture 

descriptor are employed for road scene segmentation in [51]. The method presented in 

[52] generates large feature vectors using motion boundary histograms (MBH) to classify 

road scenes. Some of these methods such as the latter case turn out to be inefficient for 

video processing due to the size of their feature space.  

As mentioned in the previous sections, the method developed in this research 

utilizes spatial spectral and temporal information fusion for segmentation and object 

detection. Previous works explored combining pairs of these three information sources 
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such as spatial and spectral [51], spatial and temporal [48] or spectral and temporal [49]. 

There are also methods that combine texture and motion with color information which is 

a spatial feature [53] [54]. These methods use structural tensors to extract texture and 

motion information and attempt to segment the image based on feature vectors obtained 

for all pixels. These are parametric models and they require apriori information such as 

number of segments and class means. These requirements cause unsupervised clustering 

to be very difficult. In most cases they can only segment the image into two regions.  

Furthermore, none of the previously applied fusion methods are based on a human 

perception model. The fusion result of our work simulates the visual stimulus formed by 

the retinal receptor layer in order to enable better segmentation and scene understanding 

based on Bayesian inference.  

The final output of this work is a context enhanced scene that displays the tracked 

objects, road surface, and the background by highlighting road and foreground objects. 

The output can be considered as an augmented reality since it contains information that 

was not readily available in the original video frames. There are some works focused on 

creating meaningful augmented reality scenes for driver assistance. [55] relies on 

classical lane detection techniques such as line direction and vanishing point detection to 

find the road surface. [56] uses a commercially available range finding device to indicate 

the direction of nearby obstacles with arrows. In this project, road surfaces are identified 

by Bayesian learning and classification. The foreground objects are not just found but 

also tracked to estimate their trajectory and give warnings in case of a possible collision 

risk. 
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The main reasons that set this research apart from previously published work are: 

using a combination of multiple low level features to obtain better scene descriptors and 

aiming complete scene understanding instead of focusing on a specific task such as 

vehicle detection and tracking.  

  



53 

3. EXTRACTIO	 OF LOW LEVEL FEATURES 

This chapter explains how spatial, spectral and temporal features are obtained 

from the video stream input. This step is in essence similar to the responses of nerves 

connected to the cone and rod receptors in the eye. 

 

3.1 Extraction of Spatial Information 

Spatial features are obtained by analyzing the video frames based on color and 

intensity. 

3.1.1 Color Clustering and Finding Cluster Contours 

The first step in obtaining spatial information is finding pixels with similar colors 

and clustering them. In order to group pixels of similar color into clusters a clustering 

algorithm needs to be applied. Although k-Means Clustering [27] is a commonly used 

method, selection of optimal number of clusters (k) requires multiple calls to this method 

eventually increasing computational workload. Instead a fast converging histogram based 

thresholding method is preferred in this work. The selected clustering method is a 

variation of work presented in [57]. With this method Otsu threshold is applied 

recursively. Given an image histogram Otsu’s method [58] finds an optimal threshold and 

divides the image into a dark and a light class. The optimal threshold is selected in such a 

way that it minimizes the between class scatter value 

 

 � = ∑ >�(ja − j�)���h�     (3.1) 

 

where Pi is the class probability µ0 is the global mean and µi is the class mean. Each time 

a histogram is separated into a lower and a higher histogram Otsu algorithm is called 
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again on these lower and higher histograms and the segment is divided into further 

smaller segments until one of the stop conditions occur. These conditions are: 

1. Class probability becomes too small: 

 

  Pi < θ1      (3.2) 

 

2. Class means get too close: 

 

  | µi – µj | <θ2     (3.3) 

 

3. A class mean gets close to the class threshold 

 

  µi – li-1<θ3    or    li+1 – µi <θ3    (3.4) 

 

whereθ1,θ2, θ3 are thresholds, li-1 is the intensity level that separates class Ci from Ci-1 and 

li+1 is the intensity level that separates Ci from Ci+1. 

An important point here is the selection of color space where clustering will be 

applied. RGB color space is good and efficient for displaying colors on screens. 

However, works such as [4] has shown that RGB is not very linear in terms of 

representing distances between colors. Clustering with color spaces that use polar 

coordinates performs much better due to more accurate color coordinate representations. 

In this work HSV color space is chosen for color clustering. Recursive Otsu segmentation 

is applied to each channel of the HSV image. A sample frame clustered by this method 

can be seen below in Fig 3.1. 
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Figure 3.1: Original Frame and recursive Otsu color clustering result 

 

As mentioned in the previous chapter what is important for human perception and 

also for the proposed visions system here is the contours of this clustered image. To find 

those contours an edge detection process is applied to the clustered image. The edge 

detection method in this context is the Sobel edge detector [25]. Sobel edge detector is 

the discrete approximation of magnitude of the image gradient given as: 

 

 |∇�(�. �)| =  £1p"(¤,L)p¤ 2� + 1p"(¤,L)pL 2�
   (3.5) 

 

The discrete approximations to partial derivatives are given by: 

 

   
p"(¤,L)p¤ ≅ �(�, �) ∗ �¤(�, �)   (3.6) 

 

   
p"(¤,L)pL ≅ �(�, �) ∗ �L(�, �)   (3.7) 

 

where * is the convolution operator and Hx and Hy are horizontal and vertical Sobel 

operators: 
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 �¤ =  ¦−1 −2 −10 0 01 2 1 §                   �L =  ¦−1 0 1−2 0 2−1 0 1§  (3.8) 

 

When edge detection is applied to the color clustered image, contours of the 

clusters will be obtained. The resulting contour image of the color clustered sample frame 

is depicted in Fig 3.2. 

 

 

Figure 3.2: Contours of the color clustered image 

 

3.1.2 Finding Local Variance 

Local variance is another important spatial feature. It is calculated as: 

 �,F�I,_�IK(�, �) = ¡AC(�E(�, �))   (3.9) 

where Is is a N by N subsample of I(x,y) around a selected pixel. Local variance is applied 

to grayscale images in order to find the contours of different intensities. 

Local variance is a strong contour descriptor. In regions where image intensity 

chances abruptly, local variance will be much higher compared to uniform regions. 

Although local variance is listed as a spatial feature, it also contains some texture 
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information. In uniform image regions local variance will be close to zero. In regions 

with texture local variance will be higher due to the variations in pixel intensities. In that 

sense it can be considered as a hybrid feature but the contributions from edges are much 

higher than the contributions from texture.  

Fig. 3.3 displays the input frame reduced to grayscale and its local variance. Since 

local variance itself is a contour descriptor, no other edge detection step is necessary.  

 

 

Figure 3.3: Grayscale input frame and its local variance map 

 

3.2 Extraction of Spectral Information 

There are several methods that can be used to find different textures in an image. 

Some of these methods are: maximum probability, image moments, contrast, 

homogeneity, and entropy measures [59]. All of these methods use co-occurrence 

matrices for their calculations.  Gray level co-occurrence matrices are statistical measures 

about repeating nature of pixel levels having similar values [28]. Gray level co-

occurrence matrices have to be calculated for four directions (0°, 45°, 90°, 135°) and as 

the number of gray levels increase, co-occurrence matrices become more complex. 
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Texture detection methods based on gray level co-occurrence matrices are memory 

intensive and slow.  

Another possible method to locate different textures is finding different energy 

levels in local regions. There are many methods to compute image energies. Transform 

energies are preferred in this research due to their easy and fast calculation. Parseval’s 

theorem and energy relationship of cosine transform indicate signal energy is preserved 

after discrete Fourier transform (DFT) and discrete cosine transform (DCT) [25]. 

Moreover, by separating the DC component, energy due to gray level and energy due to 

transitions can be found. 

 

3.2.1 Discrete Fourier Transform Energy 

The DFT of a small @ by @ image sub-block can be calculated as: 

 

 �(8�, 8�) = ∑ ∑ �(0�, 0�)P&l1�©ª 2g«-«P&l1�©ª 2g�-��&�-�ha�&�-�ha   (3.10) 

 

for  0 ≤ 8� ≤ Y − 1 and 0 ≤ 8� ≤ Y − 1. 

The total energy spectral density of the sub image is given by: 

 

   �� =  ∑ ∑ i�(81, 82)�∗(81, 82)n�&�g�ha�&�g�ha    (3.11) 

 

where I
*
 is the complex conjugate of I. Here the power of the DC component I

2
(0,0) 

represents energy due to mean intensity level in that region. If DC component is removed 

we will find the energy due to gray level changes. This corresponds to textural energy 

where there are no significant edges in intensity.  
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  ��′ =  ∑ ∑ i�(81, 82)�∗(81, 82)n −�&�g�ha�&�g�ha $�(0,0)%�  (3.12) 

 

When these sub image blocks are repeated for the entire image with intervals of 

N, the combined DFT gives the periodogram of the image. Periodogram  is basically 2D 

extension of  spectrogram in 1D signals. The energy of this periodogram gives us the 

spectral energy content of local regions in the image. 

Fig 3.4 shows the DFT energy for the sample video frame calculated with the 

method above. The resulting image shows similar spectral energy levels on road surface 

and the sky portion of the image. Spectral energy is significantly higher in the region with 

trees.   

 

 

Figure 3.4: Discrete Fourier Transform energy for the sample frame 

 

3.2.2 Discrete Cosine Transform Energy 

Discrete cosine transform of an N by N sub image is given as: 

 U(8�, 8�) = ∑ ∑  4�(0�, 0�)6 � 1 s��2 8�(20� + 1) 6 � 1 s��2 8�(20� + 1)�&�-�ha�&�-�ha  (3.13) 
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for 0 ≤ 8� ≤ Y − 1 and 0 ≤ 8� ≤ Y − 1. 

The energy of the transformed block is given by: 

 

 �� = �� �«�� ∑ ∑ ?�(8�)?�(8�)$U(81, 82)%��&�g�ha�&�g�ha   (3.14) 

 

where ?�(8�) =  ¬ 0.5 , 8� = 0   1 , 1 ≤ 8� < Y­ 
 

Again if we remove the DC component, we will find the textural energy due to 

gray level changes: 

 ��′ = �� �«�� (∑ ∑ ?�(8�)?�(8�)$U(81, 82)%��&�g�ha�&�g�ha −  0.25 $U(0,0)%�)   (3.15) 

 

Fig 3.5 displays the DCT spectral energy content for the sample video frame. The 

result is more detailed than the DFT spectral energy image. Different energy levels of the 

sky, forest and road portions can clearly be seen.  

 

 

Figure 3.5: Energy map obtained from discrete cosine transform for the sample frame 
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To obtain a segmentation based on textural energy, cosine transform energy map 

is clustered using recursive Otsu method, which is also used in color clustering. 

Following this step contours are extracted from the clustered image. The results of 

clustering and contour extraction for the sample frame are shown in Fig 3.6. 

 

 

Figure 3.6: Texture segmentation with DCT energy and respective contours 

 

3.3 Extraction of Temporal Information with Optical Flow 

Temporal analysis is performed by calculating the optical flow of video sequence. 

Optical flow is a powerful tool for detecting motion in a video. Regions containing 

moving objects in a video can be identified with optical flow. In addition to motion 

detection, the direction and magnitude of this motion can be calculated with optical flow. 

Many methods have been proposed for computation of optical flow [60] [61] [62]. For 

real time performance requirements a method with low computational cost is selected. 

The approach for optical flow is mostly parallel to the method proposed in [63]. It begins 

by calculating the spatiotemporal gradient of the video sequence I(x,y,t). Then the 
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gradient is smoothed by a 3D Gaussian filter using 3D linear convolution as in equations 

(4) and (5). 

 

   ∇�(�, �, �) = /p"(¤,L,�)p¤ p"(¤,L,�)pL p"(¤,L,�)p� 4′

   (3.16) 

  

   ∇�®®®(�, �, �) = ¯�(�, �, �) ∗ �(�, �, �)   (3.17) 

 

Here, H is the 3D Gaussian function, * is the convolution operation and the symbol ’ 

represents transposition operation. After this step the tensor matrix is obtained using the 

smoothed gradient vector.  

 

° = ∇�®®® ⋅ ∇�®®®′ = ¦�� �� �²�� �� �³�² �³ ��§   (3.18) 

 

Following the calculation of tensors, the velocity vectors are calculated using 

parameters t1 through t6, which are the elements of the symmetric tensor matrix.  

 

   ¡¤ = �´�|&�µ���«��&�|�   and  ¡L = �µ�|&�´�«�«��&�|�    (3.19) 

 

Finally the velocity vectors for each pixel coordinate are smoothed by a 2D 

median filter [25] to obtain the final x and y component values of optical flow vector 

field. In Fig 3.7 two consecutive frames are displayed. Fig 3.8 represents the optical flow 
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calculated by the input frames. Notice the hue indicates the direction as shown by the 

small circle on the lower right corner and brightness indicates magnitude of the motion.  

 

 

Figure 3.7: Consecutive video frames as input to optical flow 

  

 

Figure 3.8: Optical flow calculated from frames in Fig. 3.7. Notice the difference 

between the flow of the background and the car travelling in opposite direction. 

 

This concludes the feature extraction part. The next chapter will explain how 

extracted spatial, spectral and temporal information are combined into a saliency image 

with image data fusion.   
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4. DATA FUSIO	 A	D IMAGE SEGME	TATIO	 

The previous chapter focused on extracting different types of information from 

input video frames. In this chapter the focus will be on putting these information back 

together in such a way that the amount of information is maximized. The final goal of 

this research is to construct a context enhanced output that will increase the situational 

awareness of the driver. The first step in this process is obtaining enhanced features to 

use in segmentation and object detection. These enhanced features must be more 

informative than the lower level features, otherwise they will not be effective in closing 

the semantic gap mentioned in previous chapters.  

 

4.1 Data Fusion 

The process of combining multiple sources of data into a more informative form 

is called data fusion. When these data sources are images, the process is called image 

data fusion or image fusion in short. There are multiple approaches for fusion [15]. Some 

fusion methods rely on fixed set of rules or fuzzy logic. This approach is called decision 

level fusion. Others such as principle component analysis (PCA) fusion extract some 

values (major eigenvalues for example) and use them as coefficients to combine pixels or 

sub blocks with certain ratios. This approach is called pixel or data level fusion. Another 

possible fusion method is feature level fusion, which examines the information content of 

features and combines them accordingly. 

Since we are mainly dealing with image features such as spatial, spectral and 

temporal features, the selected approach in this research is feature level fusion. The next 

step after selecting fusion level is the selection of fusion method. Ideally the features with 
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higher information must have more contribution to the fused output compared to other 

features with less information. In chapter 2 we started with an entropy based approach to 

measure information content and derived a fusion model that uses mean square error 

(MSE). Starting with two images I1 and I2 we found a method to combine their 

information by scaling one of them in such a way that emphasizes their common 

information.  

       �� = ��1 + �2      (4.1) 

The parameter α is calculated by minimizing the MSE between two image histograms: 

 ��� = �e ^ $�f"�(8) − �"�(8)%�`8�gha    (4.2) 

The local minimums are given by finding the negative to positive zero crossings of the 

equation: 

  ^ ''� >�1(8, �) `8 = 010      (4.3) 

As stated earlier there are multiple image features coming from spatial, spectral 

and temporal elements of the video sequence. The spatial, spectral and temporal feature 

fusion model is based on human vision. Humans look for contrasts in motion, color, 

intensity and texture and combine them to identify the contours of objects. Therefore, the 

proposed scene segmentation worked by combining those features in a way that 

emphasized the contours common to all or most of them. Maximizing the mutual 

information between image features or minimizing their differences (MSE) should 

provide such results. In fact, [23] claims that mutual information and minimum MSE are 

connected with a differential equation: 

       �\(9, ]) = �� ^ ���(_)`_E-Ka     (4.4) 
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These findings suggest if we find the MSE of two image histograms versus the 

scalar α and integrate, we should have a scaled version of mutual information. Matlab 

results confirm this relation.  

To demonstrate consider I1 and I2, edge and color features extracted from the 

sample frame respectively.  

 

 

Figure 4.1: I1, edge features of the sample frame and its histogram 
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Figure 4.2: I2, color features of the sample frame and its histogram 

 

Since I1 has greater variance it will be scaled with alpha coefficient to match I2 

histogram. Fig. 4.3 shows MSE of their histograms versus alpha: 

 

 

Figure 4.3: MSE{p(α I1) | p(I2) }  vs. α 
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The next plot overlays ^ ''� �(� �1(8)) `818=0  on MSE plot. According to our 

optimization when this statement equals zero, it is a critical point for MSE.  

 

 

Figure 4.4: ^ ''� �(� �1(8)) `818=0  and critical points. Positive to negative zero crossings 

(shown with red lines) are local minimums and negative to positive zero crossings (cyan 

lines) are local maximums. 

 

This shows critical points of MSE can be found accurately and we do not have to 

search the entire α ϵ [0,1] interval but rather find the critical points to find min MSE. 

When the result is compared with the Mutual Information versus alpha plot we 

find that one of the local maxes is at α=0.64, which is found to be min MSE generating 

value as shown in Fig 4.5. 
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Figure 4.5: HM(α I1, I2) vs. α 

 

When the sum of the MSE is plotted versus alpha as in Fig. 4.6, we obtain results 

that look similar to Mutual Information plot in Fig 4.5. This demonstrates the differential 

relation between Mutual Information and MSE.  

 

 

Figure 4.6: ∑ ���(�)�  vs � 
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The example demonstrates how the two images are combined by finding an 

optimal scaling coefficient. We combine more than two images however. As mentioned 

earlier this would complicate things if mutual information was used for fusion. With the 

minimum MSE approach we keep the image with smaller variance constant and scale the 

intensity of the other image. By extending this approach we can select the image with the 

minimum variance (among edges, variance, colors, optical flow, spectral energy, etc) and 

find a scaling factor for the others.  

This gives a scaling rate (α
*
) for each feature map and the scaling rate for the one 

with the minimum variance will be 1. The fused image will be given by: 

       �� = �min_¡AC + ∑ ��∗���        where  �� ≠ �min_¡AC     (4.5) 

Resulting fused image is given in Fig. 4.7. 

 

 

Figure 4.7: Fused saliency image from low level features 

 



71 

 

Figure 4.8: Overall feature extraction and fusion process 
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Fused image in Fig. 4.7 emphasizes all the important regions in the video frame. 

The road boundaries, the tree line, the road barrier on the right and the two cars are 

clearly visible. Fused feature images can be treated as saliency images. It is a 

combination of all features that stand out to human eye. Fig. 4.8 summarizes feature 

extraction and fusion process.   

 

4.2 Image Segmentation 

Segmentation based solely on color or texture clustering usually produces less 

than perfect results as seen in Figs. 3.1 and 3.6. Although they contain considerable 

amount of information, they are not sufficient for a good segmentation result. The fused 

saliency image in Fig. 4.7, on the other hand, clearly shows the boundaries for significant 

regions in the image. This can be exploited for better image segmentation. To achieve 

that, the saliency image is first thresholded to extract region boundaries. The resulting 

binary image shows boundaries for regions such as sky, trees and the road. The 

boundaries at this stage are very wide and coarse. However, they are sufficient to obtain 

the major regions in the image. Regions separated by boundaries are labeled as seen in 

Fig. 4.9. The major regions seen in the image are the sky, the trees, the road, the region 

between road shoulder and the barrier, and also the dashboard of the car. The gray 

portions are marked as unknown. These unknown labeled regions need to be assigned to 

a neighboring segment or to a new segment. For example, gray pixels on the horizon 

either belong to the segment with sky or the segment with the trees. The large gray blob 

on the left, which is mostly the passing car, should have its own segment.     
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Figure 4.9: First stage of image segmentation with the major regions 

 

In the next stage a combination of contours from texture and color clustering is 

used to obtain another segmentation map, which can be seen in Fig 4.10. This second 

segmented image has much more regions but it does not have coarse boundaries and 

unassigned regions. Next it is compared with the segmented image with all the major 

regions. In the second segmented image if two selected pixel coordinates from different 

segments belong to the same segment in the first segmented image, then the two 

segments are merged.  

 

 

Figure 4.10: Finer segmentation before region growing step 
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Not all segments in the second segmented image will be matched with a segment 

from the first image. These are the segments that are fully under unknown portions in the 

coarse segmented image. The mask for these segments is displayed in Fig 4.11a. The 

nearby segments in Fig4.6a are morphologically merged and Fig 4.11b is obtained. New 

segments are assigned to these regions. Fig 4.12 shows the segments after all merging 

and new segment assignments. 

 

 

Figure 4.11: Unknown regions in the intermediate segmentation step 

 

 

Figure 4.12: Segmentation after unknown regions are assigned 
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A final region growing step is applied to segments with small sizes. They are 

assigned to their nearest neighbor in terms of color and texture, unless they are on a high 

saliency region. The resulting overall segmentation for the sample frame is illustrated in 

Fig 4.13. Fig 4.14 shows the segment boundaries overlaid with the video frame. Figure 

4.15 summarizes the segmentation process. 

 

 

Figure 4.13: Segmented driving scene after final region growing 

 

 

Figure 4.14: Input video frame with segment boundaries 
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Figure 4.15: Video frame segmentation steps 
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4.3 Blob and Vehicle Detection 

4.3.1 Blob Detection with Gaussian Scale Space 

In the previous section fused saliency image helped us find the significant region 

boundaries in the image and enabled segmentation. Fused saliency image holds another 

key information for this research.  The objects on the road are clearly indicated in the 

saliency image with their dense edges and motion. When compared to their low intensity 

neighborhood, these regions stand out. Humans can easily see these regions, but for a 

computer vision algorithm to detect these, a blob detection algorithm is necessary.  

In this research Gaussian scale space (GSS) approach is chosen for blob detection. 

GSS is commonly applied to images for scale invariant image matching and detection of 

blobs in selected scales (or sizes) [64]. GSS is a family of images obtained by 

progressively blurring an input image with Gaussian filters. Consider the convolution 

operation with a Gaussian 2D symmetrical Gaussian below: 

 

    � ¹��, �, kl� = �(�, �) ∗ q(�, �, kl)   (4.6) 

 

    � ¹��, �, kl� = �(�, �) ∗ �� srº P&»¼�½¾�� ¿º� À
   (4.7) 

 

Here the scale of the filtered image � ¹ is given by σj, which is the variance of the Gaussian 

in both dimensions. As scale parameter σj gets progressively larger, smoother images are 

obtained. GSS is constructed by applying a Gaussian smoothing filter up to a certain 

scale and recording the set of smoothed images. The result is a 3D image, the three 

dimensions being x, y, and scale.   
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 From this point two approaches can be used to find blobs in an image, difference 

of Gaussians (DoG) and Laplacian of Gaussians (LoG). The DoG is obtained as: 

  
ÁÁσ

q(�, �, k) ≈ r∆r (q(�, �, k + ∆k) − q(�, �, k − ∆k)  (4.8) 

 

When DoG filter is applied to an image: 

 

 �(�, �) ∗ ÁÁr q(�, �, k) = ÁÁr $(�(�, �) ∗ q(�, �, k)% = ÁÁr � ¹(�, �, k)  (4.9) 

 

       
ÁÁr � ¹(�, �, k) ≅ rº∆r i� ¹��, �, kl + ∆k� − � ¹��, �, kl − ∆k�n   (4.10) 

 

By taking ∆σ = (σj – σj-1) / 2, Eqn. 4.10 can be reduced to: 

 

   
ÁÁr � ¹(�, �, k) ≅ �� i� ¹��, �, kl� − � ¹��, �, kl&��n   (4.11) 

 

Therefore, DoG of a GSS image can be found by going through the entire scale 

space (σmin to σmax) and taking the differences of consecutive blurred images. A local 

minimum is observed on DoG when a blob radius roughly matches �2 kl. By finding 

these local minimums, blobs with different sizes contained in an image can be found.  

Another method for finding blobs with GSS is using LoG. LoG is obtained by: 

 

   ∇�q(�, �, k) =  p�p¤� q(�, �, k) +  p�pL� q(�, �, k)  (4.12) 

 

Applying LoG filter to an image yields: 

 

 �(�, �) ∗ ∇�q(�, �, k) = ∇�$(�(�, �) ∗ q(�, �, k)% = ∇�� ¹(�, �, k)  (4.13) 
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   ∇�� ¹(�, �, k) =  p�p¤� � ¹(�, �, k) +  p�pL� � ¹(�, �, k)  (4.14) 

 

Much like the Sobel operators for directional derivatives there are finite impulse response 

(FIR) filters that provide good discrete approximations to Laplacian [25].   

 

    �� =  ¦0 1 01 −4 10 1 0§   �� =  ¦1 1 11 −8 11 1 1§  �� =  ¦−1   2 −1  2 −4   2−1   2 −1§  (4.15) 

 

Any of these filters can be used to obtain the LoG of a scale space image.  

 

    ∇�� ¹(�, �, k) ≅ � ∗ � ¹(�, �, k)    (4.16) 

 

Similar to DoG a local minimum on LoG indicates a blob with a size around 

�2 kl. After applying both methods to scale space of fused saliency image, LoG is 

observed to produce slightly better results. An important parameter while finding the 

blobs in saliency image is the range of scales. This range must be carefully selected. 

Since saliency image mainly consists of relatively thin contours rather than large blobs, 

detection of these contours must be avoided. Fig. 4.16 illustrates what happens when σmin 

is too small and contours get detected.  
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Figure 4.16: Thin edges get picked up by the blob detector when σmin< 10 

 

Fig. 4.17a shows blob detection results when σmin issue is fixed and 4.17b displays 

blobs after being thresholded at the selected scale. Note the red dots at the center of each 

frame marking the blobs represent the centroids of the blobs.  

 

 

Figure 4.17: Detected blobs in the saliency image and their rough shapes 
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4.3.2 Finding Vehicles Among Detected Blobs 

Blob detection with LoG finds the regions of interest in saliency image. However, 

some of these blobs might belong to the background and not carry relevant information. 

As stated in section 2.4 Related Intelligent Vehicle Research, vehicle features such as 

horizontal edges and shadows have been the most useful features for identifying vehicles. 

In addition to these features we have utilized relative motion obtained from optical flow, 

as a third useful feature.  

To find the vehicles, first the edge map of the region around a detected blob is 

obtained. In order to find horizontal edges, directional filters such as Gabor filters [28] 

[65] can be utilized. Another possible method is taking the Hough transform of the edge 

map [59]. Hough transform can identify lines in an image by their angles and length. 

Each line produces an intersection of curves.  These points where Hough curves intersect 

can be found by searching local maximums. Hough transform coordinates of a local 

maximum indicates the angle of the corresponding line and its distance to the origin in 

image coordinates. Horizontal edges are strong indicators of vehicular features. 

Therefore, if the Hough transform of the edge map produces more local maximums near 

the angles 0° and 360° that means most of the lines are horizontal, or near horizontal. Fig 

4.18 displays the edge map of a blob containing a car and its Hough transform. This is the 

car on the left side of the sample frame.  
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Figure 4.18: Edges of an image region containing a car and its Hough transform 

 

Another important feature for finding vehicles in images and videos is the 

shadow. In daylight conditions all vehicles form a shadow over the road surface. This 

shadow can be detected by averaging the grayscale blob image in x direction. The result 

is a projection of the image on y direction. For blobs containing a vehicle, this projection 

will show a local minimum near its end. This is where the intensity levels drop as the 

shadow of the car becomes apparent and rise again afterwards. For the car example given 

in Fig 4.19a, average gray levels clearly indicate a shadow as seen in Fig 4.19b.    
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Figure 4.19: Selected region and its average intensity in y direction. 

 

A third feature used for vehicle identification is the average optical flow of the 

selected region compared to the average flow of a larger region around it. The more 

relative motion the blob has compared to its surroundings, the more likely it is to be a 

vehicle. Therefore, the difference in average flow magnitude is taken as a vehicle 

identification feature. The feature is calculated as: 

 

  N¡!. �� ?Å���PCP06P =  �Æ« ∑ |¡Ç(�, �)| − �Æ� ∑ |¡Ç(�, �)|È�È«  (4.17) 

 

where ¡Ç is the optical flow vector field, R1 is the selected blob region, A1 is the area of 

this region, R2 is the region around R1 and A2 is the area of R2. Fig 4.20 illustrates this 

feature on the optical flow frame obtained from the sample input.  
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Figure 4.20: Optical flow of a blob and the region around it 

 

By combining these three features a confidence level is calculated. If this 

confidence level is above a certain threshold, region containing the selected blob is 

marked as a vehicle. Fig. 4.21 shows the vehicle identification results for the sample 

frame. Of the five blobs detected in previous step, two of them are correctly identified as 

cars. Fig. 4.22 summarizes blob detection using Gaussian scale space and vehicle 

detection processes. 

 

 

Figure 4.21: Results of vehicle detection on sample frame 
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Figure 4.22: Blob and vehicle detection steps 
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5. BAYESIA	 I	FERE	CE BASED LEAR	I	G A	D OBJECT TRACKI	G 

 In Chapter two we defined computer vision and learning approaches based on 

human visual perception and cognition. As mentioned before the construction of visual 

stimuli, clustering similar regions and object ground distinctions occur in the retinal 

layer. These processes correspond to low level feature extraction and generation of fused 

saliency image, segmentation and blob detection in our method which were explained in 

previous chapters. The recognition of known regions, objects and tracking of these 

objects however, occur in the visual cortex section of the brain [26]. It is certain that for 

our method to succeed we need learning methods that are compatible with the ones that 

humans use. In this chapter, the application of learning and estimation methods based on 

Bayesian decision theory to the results of segmentation and object detection methods will 

be covered. The learning and classification mechanisms will ultimately help us identify 

regions in the scene and track objects.  

 

5.1 Road Surface Identification with Progressive Maximum Likelihood 

So far we have segmented the driving scene into various background regions and 

foreground objects. The background regions include the road, the sky and possibly the 

various elements of the scenery such as buildings in a city, fields, forest, desert, 

mountains, etc. Among all these regions the one that matters most to the driver is the 

road. Therefore, segments that belong to the road surface must be identified first. The rest 

of the background regions do not carry as much importance and they can be grouped 

together. Merging non-road objects into a single background region actually simplifies 

the learning task greatly. Instead of learning all the possible background types, the 



87 

method only has to learn how to classify roads surfaces. When road surfaces are learned, 

the classification step will categorize all segmented regions into road and non-road 

classes. The result will be a final region growing steps that merges all road segments into 

a single region and merges all other background segments into another region.   

In Chapter 2 under Learning from Observations section, we discussed that a 

suitable Bayesian learning method for segment identification could be Maximum 

Likelihood algorithm. As mentioned in the same section, region identification in images 

is a subject of object ontology. Therefore, ontological features are needed to achieve 

learning and classification. These ontological features can be position, size (area), color, 

and shape of the region as given in [32]. The features selected for maximum likelihood 

learning in this research are position, area, color, and shape of the regions as seen in Fig. 

5.1.  

 

 

 

 

 

 

 

 

Figure 5.1: Ontological features used for Maximum Likelihood classification 
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These features can be obtained by examining the values and distributions of pixels 

in each segment. Area and position of regions can be extracted directly from raw image 

moments of a segment [28]. These moments are obtained by: 

 

    ��É =  ∑ ∑ �(�, �)���ÉL¤     (5.1) 

 

From 5.1, if we obtain a region mask  

 

   �(�, �) = ¬ 1, ��, �� ∈ ¢  0,  �ℎPC?��P­    (5.2) 

 

where R represents selected region, area of a region is simply m00 which is simply the 

number of pixels in R. The area centroid will be given by: 

 

     ��¹, �®� =  ËÌ«ÍÌÍÍ , ÌÍ«ÌÍÍÎ    (5.3) 

 

Color features can be calculated by taking the average of pixel RGB and Hue 

values in the selected region. Although taking hue value might seem redundant, the fact 

that hue is independent of brightness makes it a strong feature in cases where illumination 

can affect the outcome of the classification. For example a region of road covered by a 

shadow of a tree or illuminated with the headlights of an approaching car will have 

different colors than the rest of the road, yet their average hue should not differ much. 

Also, the relation between RGB and Hue is non-linear. Therefore hue needs to be a 

separate feature if it is going to be utilized.  

The last ontological feature used for classification is the shape of the region. 

There are possible methods to quantify the shape of a region such as Fourier descriptors, 
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invariant features, etc. However, for simplicity only the aspect ratio of the region is 

utilized in this work. Aspect ratio is obtained by dividing maximum extend of the region 

in x direction by its maximum extend in y direction.   

These ontological features are high level image features towards scene 

understanding. These features could not have been obtained if lower level features had 

not been utilized for creating higher level descriptors such as segmented images or 

extracted foreground objects.  

If features for similar regions are assumed to have Gaussian distributions, classes 

can be modeled by their means and covariance [28]. Training stage of maximum 

likelihood algorithm is as simple as calculating these statistical values. In order to classify 

road regions an initial training set is required. To provide generality the training set is 

formed by taking several feature vectors from multiple videos with different road 

characteristics. These roads with different characteristics include, separated highway, 

county roads, busy town streets, etc. as well as similar roads under different weather and 

illumination conditions. With this initial training set classification of road and non-road 

regions can begin as soon as the first video frame.    

For classification Bayesian decision theory is used as formulized by the Eqn (5.4). 

At the classification stage conditional class probabilities are compared. If a test instance 

is more likely to belong to one class then the other, the instance is assigned to the more 

likely class.  The likelihood of x belonging to a class Ci can be found by the discriminant 

function yi(x). The discriminant function, given in eqn. (5.5) is a similarity measure 

between test instance x and the class Ci. 
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P(C1|x0) ≶ P(C2|x0)       (5.4) 

 

  ��(�Ç) = − �� (�Ç − jÇ�)eÐ�&�(�Ç − jÇ�) − �� ln(|Ð�|) + ln (>(U�)) (5.5) 

 

Here Σi represents the covariance of class Ci and µi represents the mean of Ci. (5.5) is a 

variation of Mahalonobis distance between test instance �Ç and the class mean jÇ�.The 

derivation of this function from a priori class probabilities is given in Appendix A.  

As the ego vehicle travels, the driving scenery is expected to change. In order for 

the system to be adaptable to these changes, test instances that are close to the road class 

mean (i.e. high similarity measure) are added to the training set. If all new additional 

training samples are held in the training set, the learning model will converge to a very 

general model with a full memory of different road structures. Although this might 

reduce the number of misclassified road segments, it might also increase the number of 

false positives by making the model more inclusive than it actually needs to be. A 

solution to this issue is found by introducing an age parameter to the training instances. In 

fact many works that use Gaussian or mixture models for segmentation and region 

extraction, such as [66] [67], have similar learning rate parameters. These learning rate 

parameters give more emphasis to recent training samples to ensure temporal 

adaptability. 

 With this progressive learning method, while the video frames progress and new 

training instances are added to the road model, features that are older than a certain limit 

are removed from the model. In other words old road patterns are forgotten. This ensures 

that the model converges to the recent road conditions and adapts to the changes. The 
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diagram in Fig. 5.2 depicts this progressive maximum likelihood method. The result of 

applying region identification method to the sample frame can be seen in Figs. 5.3 and 

5.4.  

 

 

 

Figure 5.2: Progressive maximum likelihood learning and classification 
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Figure 5.3: Segmentation of the scene and the classification result for the road model 

 

 

Figure 5.4: Overlay of classification result on the sample frame 

 

5.2 Foreground Object Tracking with Kalman Filtering 

In Chapter 2 we made the connection between Kalman filters and Bayesian 

inference methods via Hidden Markov Models. Kalman filters are indeed state estimation 

methods based on past observations. Foreground regions extracted by blob detection 

methods may not be true representations of the actual positions of objects due to 

shadows, illumination, motion blur and distortions due to camera sensors. Kalman filters 

can not only provide a better estimate of the positions of these objects, due to the 
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temporal nature of the data, they can also find the velocity of the objects and track their 

positions.   

Kalman tracking begins with the prediction stage. The predicted state vector is 

obtained by multiplying state transition matrix with the current state and adding noise 

parameter. The predicted uncertainty matrix is obtained by combining current uncertainty 

matrix with the state transition matrix and the process noise covariance as given below.  

 

9���� = � ∙ 9� +  ?    (5.6) 

     >���� = � ∙ >� ∙ �e +     (5.7) 

 

The state vector has six parameters: x, y positions, size of the blob, change in x, y 

per frame, which gives the velocities vx vy, and the change in blob size.  

 

   9� =  i�, �, N, ¡¤, ¡L , N′ne
    (5.8) 

 

The contents of the other Kalman vectors and matrices are presented in Appendix B.  

The next step in Kalman filtering is the calculation of error and Kalman Gain. The 

observation vector is formed by the measurement matrix, a measurement vector from 

blob detection and measurement noise.  

 

     �� = � ∙ 9ÑÒ + ¡    (5.9) 

 

Prediction error is calculated by subtracting measurement matrix times the 

prediction from the result of (5.9).  
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     ]� = �� − � ∙ 9����    (5.10) 

     �� = � ∙ >���� ∙ �e + ¢   (5.11) 

 

The covariance of this prediction error is given by adding measurement noise 

covariance to the combination of uncertainty and measurement matrices (5.11).  The 

prediction error covariance is utilized in calculation of the Kalman gain.  

 

     R� = (>���� ∙ �e) ∙ ��&�
   (5.12) 

 

Kalman gain adjusts the ratio of contributions from predictions and 

measurements. High Kalman gain values imply more confidence on the model and the 

predicted state. With low Kalman gain values, the updated state tends more towards the 

measurement. The update equations for the state vector and the uncertainty matrix are 

given below. 

 

     9��� =  9���� + R� ∙ ]�   (5.13) 

             >��� = (� − R� ∙ �) ∙ >����   (5.14) 

 

As stated in (5.8) Kalman model predicts positions and velocities as well as the 

size of the blobs. Position information provides a more accurate representation of the 

tracked object location. Velocity can be utilized to find the future path of the object and 

detect possible collisions. With the given position and velocity information the current 
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trajectory of object can be calculated.  If the calculated trajectory points towards the ego 

vehicle that indicates the object carries a collision risk.  

Another important feature of using Kalman filter for object tracking is its ability 

to deal with missing information. If a tracked object does not get detected by the 

detection methods due to noise, occlusions or imperfections in the detection approach, 

Kalman filter can continue tracking the object with predictions only. In this case the filter 

will only use the model to predict the position and velocity of the object and it will not 

use its measurement and update parts. When the tracked object gets picked up by the 

detection algorithms again, the filter will continue to compare its predictions with the 

measurements and update its state estimate.    

 

 

 

Figure 5.5: Kalman tracking results for the two vehicles in the sample frame 
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Fig. 5.5 displays the trajectories of the two vehicles on the sample frame, which 

are obtained by tracking both objects over five frames. The trajectories indicate the car in 

front is travelling forward with a roughly equal speed and not changing its position 

relative to the ego vehicle. The car on the left is travelling in the opposite direction and it 

will go out of the camera field of view from the left side. Fig. 5.6 depicts an overview of 

Kalman filter method used in this research.  
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Figure 5.6: Block diagram of the Kalman Filter implementation 
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6. CO	TEXT E	HA	CED SCE	E GE	ERATIO	 

In the previous chapters we described computer vision and pattern recognition 

methods for video analysis. These methods started with extraction of low level 

information such as color, spectral energy and motion. By combining these information 

into more advanced descriptors and applying learning methods we achieved high level 

information such as road surface extraction and tracking of foreground objects. The last 

step in obtaining a high level abstraction of the video frames that will lead to scene 

understanding is the combination of these high level information.  

The main objective of driving is to keep the vehicle on the road while keeping a 

safe distance to nearby objects until we reach our destination. A driver assistance system 

must be able to provide that information. This information can be in context augmented 

video frames that combine the region identification and object tracking data. Also, based 

on the tracking data, a system must estimate the trajectory of objects and be aware of any 

collision risks. This chapter will cover a context enhanced scene generation method based 

on the object detection and tracking data as well as the road surface identification data.  

 

6.1 Overlaying Road Surface, Vehicle Detection and Tracking Data 

So far we have already located vehicles in the scene, tracked their motion and 

identified the road surface. In order to build a context enhanced frame we need all these 

information. Also, since we have an estimate of the vehicle motions, we can use that 

information to mark regions that are near or on the path of the other vehicles. These 

marked regions will represent the high collision risk areas that the driver needs to avoid. 

To obtain these regions we use the velocity vector estimates from Kalman output. If the 
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detected object has a positive vy velocity component, hence moving towards the bottom 

of the frame, a gradient is formed starting with the lower boundary of the region with 

detected region and extending to a length proportional to the magnitude of the velocity 

estimate. Orientation of this gradient region is parallel to the velocity vector estimate. 

Fig. 6.1 illustrates this high collision risk regions for the cars in the sample video frame 

along with the boundaries of the regions containing vehicles and their estimated motion.   

If vy is not positive, which means object is not closing in on the ego vehicle, a 

small region behind the object is still marked as a high risk area in order to remind the 

driver to leave a safe distance and not follow too close. 

 

 

Figure 6.1: Vehicle locations and high collision risk regions 
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When the object locations and high risk regions are combined with the road 

surface information, a region mapping as shown below in Fig. 6.2 is obtained.  

 

 

Figure 6.2: Region mapping that displays road surface, object locations, their predicted 

realtive motions and high collision risk areas 

 

Perhaps the best way to display this information is to overlay it on the visual 

frame and enhance its contextual information. Fig. 6.3 displays the context enhanced 

video frame. The context enhanced frame clearly shows the safe regions on the road and 

informs the driver not to go into regions marked with red where the ego vehicle can end 

up in the path of another vehicle.  The driving scene supplemented by the contextual 

vehicle and road information can be considered as an example of augmented reality.  
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Figure 6.3: Context enhanced video frame 

 

6.2 Detection of Possible Collisions and Road Departure 

With the predicted relative velocities of objects in the driving scene and their 

locations, it is possible to find whether or not they are in a collision course with the ego 

vehicle. However, this is not straightforward since these velocities and locations are in 

projected camera coordinates instead of real world coordinates. Therefore, we need to 

find the extent of the ego vehicle and the road in front of the vehicle in camera 

coordinates. The perspective transformation can be achieved by using the pin hole 

camera model [64]. Consider the example in Fig. 6.4. Point P in the scene will be 

projected to the point p on the focal plane of the camera. The x coordinate of p , lx’ , can 

be calculated by using focal distance f, and x, z coordinates of P; lx and lz. From similar 

triangles (6.1) gives the value of lx’ in terms of f, lx and lz. Similarly (6.2) can be derived 

for calculating the projection in y, z coordinates.  
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Figure 6.4: Transforming a scene into perspective projection 

 

     
,¼′� =  ,¼,Ó    (6.1) 

,¾′� =  ,¾,Ó    (6.2) 

 

Overall coordinate transformation is given by: 

 

   (�, �, Ô) ⇒ 1¤∙�Ö , L∙�Ö , �2   (6.3) 
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 With, perspective transformation it is possible to find the equations for the two 

dashed lines, L1 and L2, in Fig. 6.4, which form the boundaries for the road right in front 

of the car. Anything within these lines is in the path of the vehicle.  

Let us assume the camera is 1.5m above the road surface and located halfway 

between both sides of the vehicle. Assume the center of the camera sensor is the origin 

and focal length is 0.1m. If we also assume the car width W is 2 meters, the parametric 

line equations for L1 and L2in 3D world coordinates will be: 

 

    T�:  � = −1   � = −1.5   Ô = �   (6.4) 

      T�:  � = 1   � = −1.5   Ô = �   (6.5) 

 

Applying (6.3) to L1 and L2 with f = 0.1 gives:  

 

  T�:  � = − ��a� � = − �.²�a� Ô = �    (6.4) 

     T�:  � = ��a� � = − �.²�a� Ô = �    (6.5) 

 

Changing parametric equations into Cartesian givesL1 and L2 in perspective projection 

plane: 

 

    T�:  � = �� �     (6.6) 

    T�:  � = − �� �     (6.7) 

 

Even though values from an actual implementation might produce different 

equations, the assumed values for camera height, focal length and vehicle width are 

reasonably average values. Therefore, using (6.6) and (6.7) for collision and road 
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departure warnings should perform well.  Fig 6.5 illustrates the L1 and L2 in camera 

perspective coordinates. The triangle formed by L1, L2 and the lower boundary of the 

camera image corresponds to the path of the vehicle (assuming the vehicle is going 

straight), which is represented by the shaded region in Fig 6.4. 

 

 

Figure 6.5: Width and path of the vehicle after perspective transformation 

 

Fig. 6.5 shows that the width of the vehicle is 2/3 of the total image width. Since 

we already have predicted motion vectors and location of objects we can suggest that any 

object that moves towards the center two thirds of the lower image boundary is a 

collision risk. Therefore, with this method collision detection is as simple as solving the 

intersection of two lines.  
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For the road surface departure, the area selected as the path of the car is compared 

with the road surface recognition results. Ideally road surface coverage over the vehicle 

path region should be 100%. If this ratio drops below a certain percentage it is a strong 

indication that the vehicle is going, or about to go off road. Since the road ahead of the 

vehicle might be occluded by another vehicle, regions occupied by vehicles are also 

counted as road surface in this calculation. Figs. 6.6 and 6.7 illustrate collision detection 

and road surface departure detection methods.  

 

 

Figure 6.6: Detection of possible collisions based on estimated object motions 
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Figure 6.7: Illustration of road departure detection by comparison of detected road 

surface and vehicle path. Dark green triangle represents the path of the vehicle. It must 

overlap with the road or other vehicles; otherwise outcome is resolved as road departure. 
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7. RESULTS 

This chapter presents the results obtained by the computer vision and machine 

learning methods discussed in this dissertation. The methods described herein have been 

implemented with MATLAB and its image processing toolbox on a personal computer. 

The methods are tested on several daytime driving videos taken on various types of 

roads, and on different weather conditions. The roads include city streets highways and 

county roads. The weather conditions include sunny, overcast, rainy and snowy weather. 

The video lengths differ from under one minute to several minutes. Tested video 

resolutions are 640x480 and 1280x720. Another dataset from [68] is also used to obtain 

accuracy results using ground truth frames. The results show consistency as long as the 

camera is focused on the road ahead, there are no obstructions in front of the camera and 

no significant camera shake occurs. Sample frames obtained from these videos can be 

seen in Fig 7.1. 

 

 

Figure 7.1: Sample Frames from the videos used in the research 

 

Overall the performance of the fusion, segmentation, vehicle detection, road 

surface classification and object tracking results are measured. The results are promising 
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for almost all videos examined. The only video where segmentation and object detection 

methods produce poor results is taken under rainy conditions, where the camera is unable 

to focus on the road due to raindrops on the windshield and camera view is frequently 

blocked by the windshield wipers. Even though the input frames obtained from that video 

are deemed unreliable, they demonstrated that unimpaired sight is vital for vision systems 

as it is for human drivers.  

 

7.1 Data Fusion and Image Segmentation and Blob Detection Results 

In Chapter 3 the methods for extracting low level image features were presented 

and in Chapter 4 these low level features were fused using entropy. The purpose of image 

data fusion is to come up with a fused dataset that is more informative than the 

components used for fusion. Minimizing mean square error (MSE) between features to be 

combined maximizes information common to all sources (i.e. redundant information). 

This improves segmentation and road detection results. As shown later in road detection 

results, high detection accuracy is achieved.  

Segmentation results exceed many known color, texture and intensity based 

segmentation methods. As the saliency image carries more information than the low level 

features, segmentation and region growing based on fused saliency generates far better 

results than the methods that rely on a single spatial or spectral feature. Moreover, blob 

detection from fused saliency images generates blobs from the most prominent regions of 

the frames. These prominent regions often correspond to parts of the frame with the 

highest motion and textural complexity. These regions, in a sense, capture the attention of 

the vision system just as they would capture the attention of a person. These in fact 



109 

confirm our initial claim that, utilizing information fusion to combine low level features 

into high level descriptors lead to better results. Figs. 7.3 to 7.6 demonstrate these 

saliency, segmentation and blob detection results. 

 

 

Figure 7.2: Fused saliency, segmentation and blob detection for the given video frame 
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Figure 7.3: Fused saliency, segmentation and blob detection for the given video frame 

 

 

Figure 7.4: Fused saliency, segmentation and blob detection for the given video frame 
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Figure 7.5: Fused saliency segmentation and blob detection for the given video frame 

 

Notice the complicated background in Fig. 7.6. Due to the dark shadows of the 

trees, the road is segmented into multiple regions instead of one. Segmentation is 

inadequate in such cases. Therefore learning and recognition algorithms are required for 

proper road surface detection. Figure 7.7 illustrates the failed segmentation case 

mentioned earlier. In this case the image being out of focus was already causing 

problems. When the wiper swipes the windscreen, its motion dominates the saliency map. 

Following segmentation and blob detection operations are not very accurate after that.  
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Figure 7.6: Failed segmentation and blob detection due to windscreen wiper 

 

Apart from Fig 7.7, we see segmentations and blob detections display high 

accuracy. Segmentation results are compatible with the original images and blob 

detection highlights regions involving vehicles or background regions with dense texture.  

 

7.2 Vehicle Detection Results 

The vehicle detection methods applied in this research are mostly parallel to the 

ones in recent vehicle detection research. As stated in Chapter 2, detecting parallel edges 

and shadows under the vehicles are common approaches for most published work in this 

field. However, optical flow is added as an additional feature and search is limited to high 

saliency blobs in this research. Table 7.1 summarizes the number of vehicle detections 

for the sample videos used in this research. 
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Table 7.1: Vehicle detection ratios for the sample video sequences 

Video Name Detected # of Vehicles Actual # of Vehicles 

IMG_0608_001.avi 1 1 

IMG_0770.avi 12 12 

M4H00005_2.avi 3 3 

M4H00005_7.avi 15 16 

IMG_0990.avi 3 4 

IMG_0768.avi 11 11 

IMG_0769.avi 15 16 

IMG_0931.avi 0 0 

IMG_0610.avi 5 5 

Total 65 68 

 

 

The detection ratios given in Table 7.1 suggest an overall detection accuracy of 

95.6% which is in par with the state of the art vehicle detection methods [3] [69] [70]. 

The missed vehicles in all three cases are far away from the ego vehicle and they are 

travelling in the same direction. The ego vehicle never gets close enough to capture 

enough features to detect them. All vehicles travelling in opposite direction and parked 

on both sides of the roads are detected with the proposed method. There are a few cases 

of false detections. These can potentially be avoided with the addition of some new 

features. One of these false detections and a few of other detection results are shown in 

Fig. 7.8. 
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Figure 7.7: Sample vehicle detection results. Notice the upper left image has a fence by 

the road highlighted as a vehicle along with two cars in the image. 

 

7.3 Road Surface Classification and Road Departure Detection 

In this research a dynamic Bayesian inference method is developed for learning 

and classification of road surfaces. As explained in detail in Chapter 5, the method uses 

maximum likelihood to train road models and test the segments in order to classify them 

as road surface or background.  

The results of the classification can be seen in Figure 7.9. Even though 

classification accuracy heavily depends on the outcome of segmentation, a well trained 

model can compensate for minor flaws. For example in Fig. 7.6 the road is segmented 

into multiple regions due to shadows from nearby trees. Since these regions have similar 

ontological properties, which generate high similarity measure when compared with the 

road class model, they are all classified as roads. Fig. 7.9 depicts road classification 

results from multiple video frames.  
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Figure 7.8:  Road surface classification results. The first row displays frames from 

sample videos. Second row is the segmentation results and the third row displays road 

surface classification results. The last row overlays the detected road surfaces on visual 

frames. 
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Figure 7.9: Road surface departure detection results. The first row displays frames from a 

sample video. Second row is the segmentation results and the third row displays road 

surface classification results. The last row shows road surface departure results, where 

red color indicates road departure. 

 

In Fig. 7.10 road surface departure detection results, based on method defined in 

Chapter 6, are shown. In this figure sample frames from a video portion, where the ego 

vehicle goes over a snow covered road portion to join a side road, are shown. Snow 

covered road section is not recognized as road and as the road coverage over vehicle path 

reduces, the method detects that as a road departure. Later, as the vehicle joins the side 

road, departure warning ceases.  
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Another set of experiments were done on a data set from [68]. Some video frames 

on this dataset are manually segmented to form ground truth. Although this sort of 

ground truth formation can be considered subjective, as long as people who do the 

segmentation abide certain set of rules based on common sense, results will be consistent 

with small variations within statistical error margins.  

 The ground truth images are color coded. Purple tones indicate road and lane 

markings. Red regions are buildings, yellow is vegetation and gray is the sky. By 

searching the purple colors on the ground truth images, road surfaces can be obtained.  

The segmented images, shown previously, do not have such color coding. Colors 

only indicate label numbers which are arbitrary. The road surfaces are found by 

classification using ontological features as explained in chapter 5.   

Figures 7.11, and 7.12 demonstrate the results obtained from aforementioned 

dataset. Dataset contains four different video sequences. Two sample frames from each 

are shown here. The first row is the input scene. The second row is the saliency frame 

extracted with the new information fusion method. 3
rd

 row is the segmentation result. 4
th

 

row contains the extracted road surface from segmented image. The next row shows the 

ground truth for the input frame. It is followed by the road surface extracted from the 

ground truth. The last row shows the augmented scene output with segmentation results. 
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Figure 7.10 Sample frames (row 1), their saliency (row 2), segmentation results (row 3), 

road detection results (row 4), ground truth (row 5), ground truth of road surface (row 6) 

and augmented scene results (row 7).  
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Figure 7.11: Sample frames (row 1), their saliency (row 2), segmentation results (row 3), 

road detection results (row 4), ground truth (row 5), ground truth of road surface (row 6) 

and augmented scene results (row 7). 
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The accuracy of road detection is obtained by comparing the road elements in 

ground truth image (road, lane markers) to the extracted road surface from segmentation 

image. Measured accuracy is given by: 

  ¢ A` ÅP�P6�� 0 N66BCA6� =  �\ � ∑ ∑ �(�, o)�&�lha\&��ha    (7.1) 

where M and @ are image dimension and f is given by: 

  �(�, o) = 1  �� �È(�, o) = �×(�, o),    �(�, o) = 0  �ℎPC?��P    (7.2) 

Here IR is the segmented road binary image and IG is the ground truth for road 

surface. 

Accuracy measurements are taken for a series of frames in each video and 

averaged to give the overall accuracy. 

Table 7.2 below summarizes the road surface extraction accuracy on four videos.  

Figures 7.12 and 7.13 compare road detection results and ground truth of road surfaces. 

  

Table 7.2: Road surface detection accuracy results 

Video 

Sequence 

Road Detection 

Accuracy 

Standard 

Deviation 

005VD 0.9728 0.0194 

0006R0 0.9769 0.0208 

0016E5 0.9773 0.0264 

0001TP 0.9074 0.0762 
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Figure 7.12 Sample frames (row 1), road detection results (row 2), ground truth of road 

surface (row 3) and comparison of detection results with ground truth (row 4). Gray 

regions show mismatches.  
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Figure 7.13 Sample frames (row 1), road detection results (row 2), ground truth of road 

surface (row 3) and comparison of detection results with ground truth (row 4). Gray 

regions show mismatches. 
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As seen below detected road surfaces (2
nd

 row) and ground truth (3
rd

 row) show 

great resemblance. The last row shows the segmentation results and ground truth 

overlaid. White regions are the parts marked as road on both segmented image and 

ground truth. Black regions are the non-road segments in both images. The gray parts 

show mismatches. The gray regions constitute a very small part of the entire overlaid 

image. As indicated in Table 7.2 overall accuracy is above 90% for all four videos. Three 

of them are actually around 97% accuracy. The last video is taken on overcast weather 

with not much light to increase contrast. This results in lower detection accuracy.  

 

7.4 Kalman Tracking &Collision Detection Results 

Kalman filter is implemented to track and estimate the motions of detected 

objects. With blob and vehicle detection methods, which were made possible by high 

level descriptors obtained from information fusion, we can obtain parameters for Kalman 

filter. The filter used in this project is a second order filter. Therefore, it estimates the 

velocities of objects as well as their position. This helps us predict the direction they are 

headed as well as a more accurate location than the centroids obtained from the blob 

detection.  
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Figure 7.14: Sample video sequence for Kalman tracking 

 

Fig 7.15 illustrates Kalman tracking for two objects in the scene given by the 

frames in Fig. 7.14. Of the two objects, one is travelling in the same direction as the ego 

vehicle at about the same speed. Hence, its relative position does not change much. The 

other object is travelling in the opposite direction and its relative speed is gradually 

increasing due to perspective. This can easily be visualized with Kalman tracking as 

shown in the Kalman estimated position plot overlaid with the video frame.  
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Figure 7.15: Kalman tracking of two vehicles 

 

As discussed in Chapter 6, the information obtained from Fig. 7.12 helps us 

predict the trajectory of tracked vehicles. The objects headed for the ego vehicle are 

immediately marked as a collision risk. Unfortunately (for the researcher, fortunately for 

the drivers) there were not very many possible collision events in the sample video 

dataset. Fig. 7.17 shows the event with the highest collision potential, where the driver of 

the car in front brakes hard and rapidly comes to a stop. The ego vehicle quickly closes in 

before coming to a stop as well. During that interval, the car in front seems to be going 

towards the ego vehicle due their relativistic motion. 
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Figure 7.16: Frame sequence with a high collision risk event 

 

The implemented method detects the estimated velocity vector of the tracked 

object points towards the ego vehicle. To display the detection, the frame marking the 

detected vehicle turns from green to red as shown in Fig. 7.17. In a real implementation 

there may be audio or tactile warnings as well for the driver. 

 

 

Figure 7.17: Object is detected as a collision risk 
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7.5 Context Enhanced Scene Outputs 

Context enhanced frames contain the highest level information formed in this 

research. Since context enhanced frames embody real world information plus additional 

information obtained by the system they can be considered as augmented reality video 

frames. Identified road surfaces, tracked objects and their estimated trajectories are 

displayed in these augmented reality outputs along with the image components from the 

original frame. A few of these context enhanced scene results are displayed in Figs. 7.18-

7.21. The results exhibit fairly good depictions of the driving scenes.  

 

 

Figure 7.18: Context enhanced scene for the collision risk instance in Fig. 7.17 
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Figure 7.19: Context enhanced scene in winter driving conditions 

 

 

Figure 7.20: Context enhanced scene in a residential area intersection 
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Figure 7.21: Context enhanced scene with road surface departure detection 

 

7.6 	oise Immunity 

To measure how well the method does under noisy conditions we introduced 

artificial Gaussian noise into a sample frame and measured segmentation accuracy with 

varying degrees of noise. 11 copies of the original frame are made with progressively 

worsening noise. There is approx. 5 dB SNR drop on each example. Figures 7.22 to 7.24 

show those frames and segmentation results along with the comparison to ground truth. 

The first image is the original frame, followed by noisy frames. The second row is the 

segmentation and the 3
rd

 row is the road surface detection result. In this example, the 

same white Gaussian noise with zero-mean and different variances are introduced to all 

color channels indiscriminately. In the event of different noise sources 

contaminating color channels differently, the presented experimentation needs to be 

carried out on the vector-valued color video function as being aimed to pursue in 

our future research work.  
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Figure 7.22: Segmentation and road detection results of original image (1
st
 column – 

image 0) samples degraded with Gaussian noise (images 1, 2 and 3). 

 

Each test image except for the first one is degraded by a Gaussian white noise of 

varying strength. The signal to noise ratio (SNR) is calculated by: 

     �Y¢ = 10 � !�a 1 DØDª2     (7.3) 

Where PS and PN represent signal and noise power respectively. 
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Figure 7.23: Segmentation and road detection results of samples degraded with Gaussian 

noise (images 4, 5, 6 and 7). 

 

Signal power is given by the mean square of the image intensity.  

          >Ù = �\� ∑ ∑ ��(�, o)�&�l\&��ha      (7.4) 

Since Gaussian noise is a zero mean random process, its power is given by its 

variance: 

 

         >� = ¡AC(Y) = k��    (7.5) 
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Figure 7.24: Segmentation and road detection results of samples degraded with Gaussian 

noise (images 8, 9, 10 and 11) 

 

The following plots and table show the SNR of each noisy frame and accuracy of 

road detection on these frames. As the results indicate even with a 50dB overall drop in 

SNR, accuracy decreases only by about 20%. Even when the segmentation suffers from 

extreme noise injected into the frames, road surface extraction is still generating plausible 

results.  
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Figure 7.25: SNR of 11 noisy sample frames 

 

 

Figure 7.26: Accuracy of road detection versus image number and image SNR 

 

Table 7.3: Noise immunity results 

image SNR accuracy 

0 original 0.9901 

1 64.60 0.981 

2 56.08 0.9846 

3 45.57 0.8423 

4 39.64 0.895 

5 35.42 0.9374 

6 31.58 0.8141 

7 28.48 0.7969 

8 25.08 0.8002 

9 21.73 0.805 

10 18.74 0.7998 

11 15.55 0.7758 
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8. CO	CLUSIO	S A	D FUTURE RESEARCH 

The motivation behind this dissertation is combining multiple approaches for an 

image understanding problem, in order to solve it much more effectively. As stated 

earlier, human vision combines spatial, spectral and temporal data for visual perception. 

Instead of using one of these sources, combining all of the available information yields 

better results for human perception and cognition. Similar approach can be beneficial for 

computer vision as well. Forming an approach to a problem based on the conflicts and 

agreements of different methods can generate solutions that are much more general than 

solutions obtained with a single method. 

The main contribution of this research is the formation of a computer vision 

approach that produces higher level image descriptors by fusing low level image features 

together. These high level descriptors can close the semantic gap in image understanding 

problems. Utilization of high level features lead to better segmentation, better tracking 

and eventually better scene understanding. Experimental results of this work indicate 

mimicking human vision to achieve a computer vision based driver assistance system 

produces highly robust results. This confirms our initial premise that AI can benefit from 

simulating natural intelligence.  

The objective of this research is the formation of a computer vision based driver 

assistance system, which can be utilized in autonomous vehicles as well. Apart from the 

current driver assistance design trends, this method only uses a visual camera instead of 

various range finding sensors. Such an implementation will reduce the complexity of 

intelligent vehicle designs as well as their costs. There are existing vision only driver 

assistance systems. But these are aimed at specific tasks such as lane detection systems. 
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Development of a more comprehensive visual system will be a big step towards scene 

awareness. 

The method described in this dissertation begins by obtaining low level spatial, 

spectral and temporal features from video frames. These features are fused into a saliency 

map that highlights object contours, heavy textures and motion. Information fusion based 

on optimizing minimum square error between image features maximizes the redundant 

information contained in the saliency map. Based on this saliency map images are 

segmented into regions. Moreover, blobs containing high information content are found. 

Detected blobs that show vehicular features are marked as vehicles and tracked by a 

Kalman filter. Segmented regions on the other hand, are compared with a learned road 

model.   This road model dynamically updates itself as new roads appear with the 

changing scenery. Tracked objects and segments identified as road surfaces are utilized in 

generation of context enhanced video frames. 

Context enhanced scene outputs, which are the end results of this research, forms 

a high degree abstraction of the scene, where the things that matter the most to drivers are 

detected and highlighted. These include road surface, vehicle positions and trajectories, 

detection of potentially hazardous situations such as collision risk and road surface 

departure. All these information are combined with the actual scene forming an 

augmented reality output. The results are highly informative for a driver as well as a 

potential vision only intelligent driving system. Presented results demonstrate the 

effectiveness of combining multiple visual features together in order to acquire more 

informative features. As the ground truth comparisons indicate road surface detection 

accuracy is over 90%. Moreover, the proposed method performs well under noise, not 
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losing much accuracy even with SNR drops of 50dB. Combining features from an image 

sequence to analyze a driving scene shows a comprehensive computer vision system can 

be employed in realization of multipurpose driver assistance systems and autonomous 

vehicles, without any additional sensors.  

All experimentation on this research is carried out with daytime driving videos. In 

the future these methods can be improved to work with nighttime driving scenarios as 

well. Integration of infrared cameras can further improve the nighttime performance of 

the system. Another possible development is the use of stereo cameras to obtain depth 

perception.  Stereo vision can significantly increase the information content of the video 

frames.  Objects can be detected and tracked better when their distances to the ego 

vehicle are known. A rough estimate of object depths can be obtained with mono vision 

(single camera) systems as well. However, this requires inverse perspective 

transformation. Including inverse perspective transformation to this method can be 

another future research direction. 

Along with night time and stereo vision, our method is open to many other 

possible developments.  With the rapid advances in intelligent vehicle research and 

development, more vehicles will be equipped with driver assistance systems and these 

systems will eventually be replaced with fully autonomous vehicles. With this trend, the 

need for scene aware vision systems will be more and more essential.  We hope that 

using information fusion in order to simulate human perception and cognition will be a 

substantial foundation for future intelligent vehicle research.  
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APPE	DIX A: DERIVATIO	 OF MAXIMUM LIKELIHOOD FROM BAYES 

RULE 

Let us start with the assumption that we have two classes with a priori probabilities P(C1) 

and P(C2). Class probability distribution functions (pdf) are then given by: p(x|C1)and 

p(x|C2). For a given x to find the probabilities P(C1|x) and P(C2|x)and find out which one 

is more likely we need Bayes rule. According to Bayes rule if individual probabilities are 

known, a conditional probability can be derived from the other: 
    >(U�|�) = �(¤|Ú�) D(Ú�)�(¤)     (A.1) 

Bayesian decisions are made with inequalities. For a given event x0 if probability of C1 is 

higher than C2, x0 belongs to class 1. 

  

P(C1|x0) ≶ P(C2|x0)    (A.2) 

 

Starting with the inequality in (A.2)and applying Bayes Rule gives: 

   >(U�|�) ≶ >(U�|�) = �(¤|Ú«) D(Ú«)�(¤) ≶ �(¤|Ú�) D(Ú�)�(¤)   (A.3) 

 

    �(�|U�) >(U�) ≶ �(�|U�) >(U�)   (A.4) 

 

Since the features are assumed to have normal distributions and there are multiple 

features, the classes are modeled by multidimensional Gaussian probability distributions 

as in 

   >(�|U�) = �(�s)Û/��|Ü�|  P&«�(¤Ç&zÝÝÇ�)ÞÜß« (¤Ç&zÝÝÇ�)
  (A.5) 

where x is the feature vector, n is the number of dimensions,Σi is the class covariance 

matrix and µi is the class mean. Then (A.4) can be rewritten as: 



146 1(2�)-/��|Ð�|  P&«�(¤Ç&zÝÝÇ«)ÞÜ«ß«(¤Ç&zÝÝÇ«)>(U�) ≶ 1(2�)-/��|Ð�|  P&«�(¤Ç&zÝÝÇ�)ÞÜ�ß« (¤Ç&zÝÝÇ�)>(U�) 

           (A.6) 

To simplify, natural logarithms of both sides are taken: 

− 02 ln(2�) − 12 ln(|Ð�|) − 12 (�Ç − jÇ�)eÐ�&�(�Ç − jÇ�) + ln (>(U�))
≶ − 02 ln(2�) − 12 ln(|Ð�|) − 12 (�Ç − jÇ�)eÐ�&�(�Ç − jÇ�) + ln (>(U�)) 

           (A.7) 

The first term − -� ln(2�) is a constant and it will be the same for all classes. It can be 

ignored. − �� ln(|Ð�|)  and  ln (>(U�)) are class dependent constants 

Bayesian discriminant function (i.e., similarity measure) is then given by: 

  ��(�Ç) = − �� (�Ç − jÇ�)eÐ�&�(�Ç − jÇ�) − �� ln(|Ð�|) + ln (>(U�)) (A.8) 

    ��(�Ç) > ��(�Ç) → �Ç ∈ U�    (A.9) 

If classes are assumed to be equiprobable the last term: ln (>(U�)) can be eliminated as 

well. Decision boundaries between classes are found by finding curves where 

discriminant functions are equal to each other. 

    ��(�Ç) − �l(�Ç) = 0 ⟹ ��l(�Ç)    (A.10) 
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APPE	DIX B: KALMA	 MATRICES 

Kalman state vector: 
     9� =  $�, �, N, ¡¤ , ¡¤, N′%e   (B.1) 

Where x, y are coordinates of the blob centroid, A is the scale of the blob, vx, vy are 

changes in x, y per frame i.e. velocities, and  A’ is the change in blob size 

Kalman forcing matrix (i.e. State transition matrix): 

    � =
áââ
ââã
1 0 00 1 00 0 1

`� 0 00 `� 00 0 `�0 0 00 0 00 0 0
1 0  00 1  00 0  1 äåå

ååæ   (B.2) 

where dt is the frame difference. dt = 1 if consecutive frames are used. 

Process uncertainty vector (process noise): 

    ? = /[��� [��� [��� 0 0 04e
    (B.3) 

Process uncertainty covariance: 

    =
áââ
âââ
ã`�� 4⁄ 0 00 `�� 4⁄ 00 0 `�� 4⁄

`�� 2⁄ 0 00 `�� 2⁄ 00 0 `�� 2⁄`�� 2⁄ 0 00 `�� 2⁄ 00 0 `�� 2⁄
  `�� 0 00   `�� 00 0   `�� äåå

ååå
æ
  (B.4) 
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Initial prediction uncertainty: 

   >�-�� =
áââ
ââã
0.4 0 00 0.4 00 0  3  

0.4 0 00 0.4 00 0  2  0.4 0 00 0.4 00 0 1.4
 1 0 00 0.7 00 0 1.6äåå

ååæ   (B.5) 

Measurement matrix: 

    � =
áââ
ââã
1 0 00 1 00 0 1

0 0 00 0 00 0 00 0 00 0 00 0 0
0 0 00 0 00 0 0äåå

ååæ    (B.6) 

Measurement uncertainty vector: 

    ¡ = $0 0 0 0 0 0%e    (B.7) 

Measurement uncertainty covariance: 

    ¢ =
áââ
ââã
0.5 0 00 0.5 00 0 5

0    0   00    0   00    0   0 0   0  0 0   0  0 0  0 0
0.5 0 00 0.5 00 0 5äåå

ååæ   (B.8) 
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