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Pedestrian-Aware Engine Management Strategies
for Plug-in Hybrid Electric Vehicles

Yingqi Gu, Mingming Liu, Joe Naoum-Sawaya, Emanuele Crisostomi, Giovanni Russo, and Robert Shorten

Abstract—Electric Vehicles (EVs) and Plug-in Hybrid Electric
Vehicles (PHEVs) are increasingly being seen as a means of
mitigating the pressing concerns of traffic-related pollution.
While hybrid vehicles are usually designed with the objective
of minimising fuel consumption, in this paper we propose engine
management strategies that also take into account environmental
effects of the vehicles to pedestrians outside of the vehicles.
Specifically, we present optimisation based engine energy man-
agement strategies for PHEVs, that attempt to minimise the
environmental impact of pedestrians along the route of the
vehicle, while taking account of route dependent uncertainties.
We implement the proposed approach in a real PHEV, and
evaluate the performance in a hardware-in-the-loop platform.
A variety of simulation results are given to illustrate the efficacy
of our proposed approach.

Index Terms—Plug-in Hybrid Electric Vehicles (PHEVs), En-
gine Management, Robust Optimisation

I. INTRODUCTION

With the increasing concerns over air quality issues arising
from traditional internal combustion engine (ICE) vehicles,
plug-in vehicles are seen worldwide as an efficient and
effective means of transportation that may help in addressing
pollution related challenges. Plug-in Hybrid Electric Vehicles
(PHEVs), in particular, are becoming increasingly popular
with the general public. Traditionally, such vehicles have
two modes of operation: a fully electric mode, and a hybrid
mode, the latter of which is designed by the manufacturer
to maximise fuel efficiency [1–5]. Recently, several authors
[6–8] have suggested exploring the actuation possibilities in
such vehicles, namely to automate the on/off switching of
the fully electric mode, to address not only fuel efficiency
but also pollution issues in urban areas. Specifically, in [6], a
number of control strategies were implemented on PHEVs to
regulate traffic-related pollution in an urban environment. This
was achieved by considering PHEVs as power-split devices
and electric energy was used to keep the pollutant level
always below a safety pollutant threshold. In particular, the
authors had formulated these problems as utility maximisation
problems, in terms of different notions of fairness, and had
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addressed them in a distributed resource-allocation framework
using ideas from Internet congestion control. These ideas
are further explored for a network of vehicles in [9, 10] by
formulating a constrained optimisation problem. In a similar
fashion, for a single vehicle in [11] the authors introduced
an online strategy to adapt the engine calibration to the
driving conditions continuously, with the final objective of
minimising fuel consumption while fulfilling some emission
limits for ICE vehicles. A key contribution of this latter work
is accounted for the complexity of the ICE in the optimisation
problem. Our objective in this present work is to further
investigate these ideas. Specifically, we wish to make use of
the fact that there are many data feeds that are available in real
time in our cities that give reliable information concerning
the density of pedestrians. For example, twitter feeds, mobile
phone mobility data, and other historical data, all reveal
this information. Given this information, and a budget on
available electrical power, we wish to orchestrate switching
between fully electric mode, and hybrid mode, so that the
impact on pedestrians is kept to a minimum. We argue that
such data should be, and perhaps must be, incorporated into
engine management strategies, so that the on/off switching of
the fully electric mode can be orchestrated to minimise the
environmental impact of the vehicle on the population.

The current paper extends our previous work in a number
of ways. In particular, the work in the present paper builds
on [6–8, 12]. In [6], we had proposed using feedback control
theory to regulate pollution level in a geo-fenced urban
area. This was achieved by orchestrating the switching into
fully electric mode of a network of vehicles using distributed
stochastic algorithms. In [7, 8], distributed engine management
strategies for a fleet of hybrid vehicles were proposed to
optimally manage a budget of energy. A severe limitation of
this work was that the routes travelled by each vehicle were
assumed to be known a priori. This latter issue is addressed
in a different context in [12] in which Markov-decision-based
route-prediction engines are proposed and validated 1. Our
present work uses elements of all four papers to create
a framework in which a meaningful optimisation can be
formulated with a view to protect pedestrians. Thus, the main
contribution of this paper is to propose a new paradigm that
manages the way in which a PHEV discharges its limited
battery with response to the population density across various
routes that may be travelled by a vehicle during a particular
journey. This work goes beyond our previous work and other

1See https://goo.gl/fpqdt3. for applications of this engine.
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work in the literature by incorporating the following features
into the engine management strategies.

A. A route prediction engine is designed which, given his-
torical data of the driver, estimates the probability of the
routes likely to be travelled by the driver.

B. Given A, and an energy budget, online engine manage-
ment optimisation strategies are proposed, that are based
on the distribution of the population over all expected
travel routes, as characterised by the route prediction
engine.

C. Our proposed engine management strategies have been
implemented in a real PHEV, and validated using our
hardware-in-the-loop (HIL) platform.

The remainder of this paper is organised as follows. Related
works are reviewed in Section II. Notation and the problem
statement are given in Section III. The system architecture
and the optimisation are discussed in Section IV, where we
calculate the probability of each road segment of routes to
formulate our optimisation problems. In particular, we note
here that a similar approach, by using Markov chain model,
can also be applied to calculate the probability as required.
For completeness, we also present a high level description on
the Markov model in our context in the Appendix section.
Implementations of the proposed strategies in the Simulation
of Urban MObility (SUMO) package and the HIL platform are
presented in Section V. Simulation results from SUMO and
the HIL platform are discussed in Section VI. The limitations
of our method and future extensions are remarked in Section
VII. Finally, a brief conclusion is presented in Section VIII.

II. RELATED WORK

Following the work [6], related work was then developed in
[7, 8]. The key idea of such papers was to regulate the energy
consumption of EVs on road traffic in a coordinated manner,
using forecasts of available future energy, in order to balance
demand and supply and facilitate the adoption of demand
side management strategies. Specifically, by considering the
knowledge of both vehicles and energy available at the next
charging period, vehicles could control energy consumption
along their routes, in a manner that some desired performances
indexes of all vehicles could be optimised. These initial ideas
are also explored for a network of vehicles in [9, 10, 13]. In
addition, the authors of [11] have investigated the optimal
control strategies to continuously adapt an engine calibration
of an ICE vehicle for minimising the fuel consumption while
keeping a limited amount of the pollutant emissions over
an unknown driving cycle. The optimisation problem was
formulated by taking into account the driving behaviours of
a given driver and the varying pollutant limits depending on
the location of the vehicle and other boundary conditions. The
uncertainty of the driving cycle was estimated by using stored
historical engine speed and torque demands of the vehicle in
a probability manner. Our work is also related to conventional
management strategies for hybrid electric vehicles. There are
a number of interesting surveys and papers on this mature

topic, see [1–5]. Most of this work focuses on minimising
fuel consumption.

III. PROBLEM STATEMENT

Our objective in this paper is to develop an engine
management strategy that takes into account the density of
pedestrians along a particular route. To do this, we use a
relatively simple strategy that does not take into account
atmospheric dispersion models for pollutants, nor does it take
into account weather or topology information from urban
environments. Rather, we take the view that when a vehicle is
in polluting mode (hybrid), the probability that it is causing
harmful damage is proportional to the population density
in that given location. Thus, our strategy is to manage the
switching of the engine in order to minimise the impact of
pollution on pedestrians; namely, to recommend vehicles to
drive in EV mode in high density areas.

In what follows we will make use of the probability on each
segment of routes to formulate the uncertainty that is central
to our optimisation formulation; namely, driver intention. For
this purpose, we define a route R, or a journey, as a sequence
of road segments ri from an origin to a destination point,
i.e., R = {r1, r2, ..., rN}, where N is the number of road
segments of a specific route. We then define a road segment
as the part of a road that connects two consecutive junctions
or, if this is too long (e.g., with a density of people that
greatly varies along such a part of the road), we may assume
that one same road segment could not exceed some fixed
length (e.g., 500 meters). Other definitions of road segments
may be however used as well, if more convenient (e.g., fixed
length). Note that according to the previous definition, a
road segment could belong to more than one route. Also, the
same origin and destination point may be connected through
different routes, if different sequences of segments can be
taken to get to the (same) destination.

IV. SYSTEM ARCHITECTURE

Our proposed system architecture is shown in Fig. 1. The
system requires inputs from four functional blocks: 1. histori-
cal data of the vehicle (history of routes travelled, energy con-
sumption along these routes) 2. a route prediction engine that
tries to anticipate the driver intention; 3. an online optimiser
that controls the engine management; 4. and a cloud server
that informs the vehicle of likely pedestrians density. Based
on this architecture, the pedestrian-aware engine management
strategies operate as follows.
A. We assume that a PHEV has an available energy budget

for a particular journey. In practice, the energy budget can
be estimated from historical energy consumption patterns
and the vehicle’s current state of charge (SOC).

B. We use the route predictor to obtain the probability
distribution over all routes likely to be travelled by the
driver based on the historical travelling patterns of the
driver and the real-time GPS location of the vehicle (for
online optimisation).
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C. We require that there exists a central agent (e.g., a cloud
server) that has access to real-time population density info
in a given area where the vehicles may travel.

D. We use this real-time density info as an external input for
the PHEV that will subsequently optimise the sequence
of engine switching.

E. The switching to different modes is operated by using a
dedicated-device on board that is controlled by the vehicle
without input from the driver.

F. The mode switching of the PHEV is determined after
every road segment in an online optimisation manner. In
particular, at the end of a road segment the route predictor
may want to update its predictions and rule out some
possible routes; the remaining available energy budget of
the vehicle may be recalculated. Also, a new estimate of
the time-varying number of pedestrians in the different
road segments may become available.

Historical 
data 

Route prediction 
engine

Cloud 
server Density info 

Online 
optimiser

Automatic mode switcher
(electric mode on/off) 

Available energy

                           Electric motor

Route prediction 
engine

GPS module

                          PHEV

Fig. 1. A schematic diagram of the system architecture.

In the following we outline the details of such functional
blocks.

A. Route prediction engine

The objective of the route prediction engine is to predict the
unknown route of the driver, and, more specifically, also to
predict the probability of taking every possible road segment.
In particular, consider a generic road segment ri where the
vehicle is currently along with, and assume that this segment
belongs to a number of routes, say R1, . . . ,Rk. Moreover,
we denote by Nt the total number of times that route Rt was
taken in the past. Then, a probability, say p(Rt) is computed
for each of these routes as follows:

p(Rt) =
Nt∑k
j=1 Nj

,∀t ∈ {1, 2, . . . , k} . (1)

In particular, if a route does not pass by ri, then the
probability that is on the actual route is considered zero.
Also, if only one route passes by ri then its probability is
considered 1. Then, the probability pis of taking segment rs in
the future is simply computed as the sum of the probabilities
of all routes that contain that road segment. In the notation pis,
the superscript i reminds that the probability of a route, and
consequently, of a road segment within that route, depends on
the specific road segment ri where the vehicle is travelling at

the time when a new prediction of the route is performed.

Remark: In our model, we implicitly assume that a car
has the ability to store routes travelled in the past, and the
number of times each route was taken. For instance, we could
realistically assume that each vehicle can store up to 100
routes. After this number, any new route replaces an older
rare route (e.g., one route that was taken only once). Thus,
storing route information in the manner described here can
be challenging in terms of data storage. A compact method
of storing driver route choices is to embed driver’s intention
in a Markov chain. For simplicity, we do not describe the
Markov chain approach in detail here, but some details and
useful references are given in the Appendix.

B. Optimisation

In this section we formulate our online energy management
optimisation problems. For this purpose, we add the following
notation: (i) we denote by S the set of all road segments
appearing in all the past routes; (ii) we denote by es the
expected energy consumption along the s’th segment of
S, when travelling in pure electric mode (again, this can
estimated from the historical data); (iii) we denote by dis the
expected number of people along the s′th road segment of
S (as mentioned this can be computed using twitter feeds,
mobile phone data, or can be simply estimated again from
some historical data). The superscript i refers to the fact
that we are using the information that is available when the
vehicle is along road segment ri; (iv) we denote by Ei

av an
available energy budget when the vehicle is located at the i′th
segment. For instance, this could simply be the energy left in
the battery when the vehicle is along road segment ri; finally
(v) we denote by xi

s ∈ [0, 1] the set of decision variables
that we wish to optimally compute. In particular, xi

s is the
percentage of time that the vehicle is in full electric mode on
each segment rs ∈ S. The superscript i here reminds again
that such an optimal prediction is performed when the vehicle
is driving on road segment ri, and a new prediction will be
performed when the vehicle enters a new road segment, when
a new (possibly more accurate) prediction of the route will
be performed.

Problem 1: Mathematically, the first optimisation problem that
we are interested in is:

max
xi
s

∑
s∈S pisd

i
sesx

i
s

s.t.
∑

s∈S pisesx
i
s ≤ Ei

av

0 ≤ xi
s ≤ 1

, (2)

where S = {i ∈ N|ri ∈ S} (i.e., the constraint involves
all the road segments). Roughly speaking, Problem 1 aims
at making the vehicle travel in electric mode more likely
when there are more pedestrians. In particular, this is
done in a probabilistic manner, due to the uncertainty of
the route, by giving more importance to the most likely routes.
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Remark: Problem 1 is solved iteratively every time the
vehicle enters a new road segment; in fact, when the vehicle
enters a new road segment, it is possible to update the
prediction of the route, to possibly update the remaining
energy in the battery and the number of pedestrians as well.

Problem 2: While Problem 1 refers to an average optimisation
(averaged over all possible routes with their corresponding
probabilities), it may be also of interest to optimise the
variables xi

s with respect to the most energy-consuming route.
In this case, the optimisation problem is solved with respect
to the worst-case scenario (i.e., energy will be instantaneously
allocated taking into account that the actual route might be the
most energy demanding one). In this case, the mathematical
problem may be formulated as:∑

s∈R
esx

i
s ≤ Ei

av, for all routes, (3)

where R = {i ∈ N|ri ∈ R} (i.e., the constraint involves
all the road segments belonging to a given route, and must
then hold for all routes). This formulation guarantees that
the available battery level is never exceeded, irrespective of
the driver choices. As we shall see later, such a worst-case
scenario usually gives rise to a more conservative energy
consumption pattern.

Example: We now provide a simple example to clarify our
approach. In particular, we assume that one vehicle starts from
the beginning of road segment r1 that in the historical database
appears in three different routes, as below:
• Route 1: r1 → r2 → r3, this route was taken 100 times;
• Route 2: r1 → r2 → r4, this route was taken 200 times;
• Route 3: r1 → r5 → r4, this route was taken 400 times.

Then S = {r1, r2, r3, r4, r5}. Segments r3 and r5 appear only
in route 1 and 3 respectively, so their probabilities p13 and
p15 correspond to the probabilities of the corresponding routes
(i.e., 1/7 and 4/7 respectively). On the other hand, probability
p12 is 3/7 (as both routes 1 and 2 lead to road segment r2) and
the probability p14 is 6/7 (as both routes 2 and 3 lead to road
segment r4). In this case, we have that the objective function
of the optimisation problem (first equation of (2)) is

d11e1x
1
1 +

3

7
d12e2x

1
2 +

1

7
d13e3x

1
3 +

6

7
d14e4x

1
4 +

4

7
d15e5x

1
5, (4)

where the objective is to compute the optimal values of x’s,
given the knowledge of the number of pedestrians and the
expected energy consumption along each road segment. Also,
the energy constraint is then

e1x
1
1 +

3

7
e2x

1
2 +

1

7
e3x

1
3 +

6

7
e4x

1
4 +

4

7
e5x

1
5 ≤ E1

av, (5)

if we wish to solve Problem 1, and
e1x

1
1 + e2x

1
2 + e3x

1
3 ≤ E1

av

e1x
1
1 + e2x

1
2 + e4x

1
4 ≤ E1

av

e1x
1
1 + e5x

1
5 + e4x

1
4 ≤ E1

av

, (6)

if we address the worst-case scenario of Problem 2.

Remark (Networked Vehicles): Here we briefly remark that,
our current framework can be easily extended in a variety of
ways to incorporate the behaviours of networked vehicles for
minimising the group pollutants to pedestrians. For instance,
given a fleet of PHEVs having similar travelling route maps
in a fixed city area, one may wish to adopt our proposed
framework for all vehicles optimally switching their engine
modes while considering the impact on traffic flow on all
possible routes of all vehicles. In practice, this problem can
be easily formulated for each PHEV in the form of (2) which
gives rise to our Problem 3.

Problem 3: Formally speaking, the problem of the networked
vehicles can be formulated in a distributed manner, namely
each PHEV solves its own problem individually. Mathemati-
cally, we are interested in solving:

max
xi
s

∑
s∈S pisd

i
sesx

i
sf

i
s

s.t.
∑

s∈S pisesx
i
s ≤ Ei

av

0 ≤ xi
s ≤ 1.

(7)

where f i
s denotes the traffic flow on road segment s relative

to all other road segments when the vehicle starts from the
beginning of the i’th segment.

V. SUMO AND HIL SIMULATIONS

In this section, we mainly introduce our simulation set-
up in SUMO and present our algorithm implementations in
the hardware-in-the-loop (HIL) platform embedded with a
real car. First note that a complete description of the HIL
platform is presented in [14]. In this work, we shall test our
applications based on this platform with proper modifications
and extensions for specific experimental purposes. Here we
repeat some contents from [14] for readers’ conveniences.

A. Simulation set-up in SUMO

In this section, we evaluate the performance of our algo-
rithm in a realistic traffic scenario in the University College
Dublin (UCD) campus, where the mobility of our test PHEV
(Prius) is simulated in the popular traffic simulator software
package SUMO [15]. The road network of the campus is
imported from OpenStreetMap [16] and loaded in SUMO for
further simulation and analysis. Specifically, we assumed that
our test PHEV (Prius) had four route records in the UCD
campus from its vehicle database. The road network and the
corresponding route info is shown in Fig. 2. Note that we also
assumed that all routes of the vehicle shared the same starting
point but ended up with different exits (or junctions), which
represent different destinations that the vehicle might drive out
of the campus. It is worth noting that all routes have some road
overlaps with each other; and this can be seen clearly from its
probability model pictured in Fig. 3.
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Fig. 2. Four real routes used in the field experiments of our test PHEV.

r1 r3r2 r5 r7r6r4 r10 r12r11r9r8

r14 r16r15 r17r13

r19 r21r20
r18

r23 r24

r22

Route 1

Route 2

Route 3

Route 4

Fig. 3. A probability model including four real test routes in UCD campus.
Note: 1. Each circle represents the beginning of one (or more) road segment(s),
where the vehicle solves the online optimisation problem; 2. Length of the
arrow is for indicating purpose only and it does not represent the real length
of a road segment.

B. Real car implementation

In this section, we introduce our real car implementation
using the HIL platform. A schematic diagram of our real
car implementation is shown in Fig. 4. The system mainly
consists of a test vehicle, an onboard computer, a smartphone,
and a cloud server.

A. Test Vehicle: The test vehicle we used for our field
experiments is a 2015 Toyota Prius VVTi 1.8 5DR CVT
Plug-in Hybrid vehicle and is pictured in Fig. 5. One of
the advantages of using the Prius as our field-test vehicle
is because of its flexible engine management system, which
allows us to operate the vehicle in fully electric mode and
hybrid mode. It is this degree of freedom that allows us to
explore the optimality of switching in response to pedestrians.
To facilitate the automation between different mode switch
(e.g., from fully electric mode to hybrid mode), we designed
a dedicated mechanical interface (like a “Finger”) which
overrides the manual EV button in the vehicle. In our
application, this interface is triggered by receiving Bluetooth

Fig. 4. A schematic digram of the real car implementation. Note that in
this figure EMS is short for Energy Management System, and two dash lines
represent two different ways that Python can obtain real time density info of
pedestrians for online optimisation. In this work we simply adopt the interface
from SUMO as an external input.

control signals from a smartphone. The control signal is
transmitted from phone to the “Finger”, after every fixed
driving distance of the Prius (e.g., 100 meters), based on
the optimal algorithm output calculated from the onboard
computer running with SUMO.

Fig. 5. Field-test vehicle: 2015 Toyota Prius.

Finally, we constructed a special-purpose hardware to
permit communication between a smartphone and the
controller area network (CAN) bus. The Prius provides a
CAN access on the vehicle diagnosis On Board Diagnosis
II (OBDII) interface and the OBDII interface device that
we used is the Kiwi Bluetooth OBD-II Adaptor by PLX
Devices2. Our hardware module acts as a gateway between
this CAN interface and the smartphone. The module is
directly connected to the CAN and to the smartphone via

2PLX Devices Inc., 440 Oakmead Parkway, Sunnyvale, CA 94085, USA.
Phone: +1 (408) 7457591. Website: http://www.plxdevices.com

http://www.plxdevices.com
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Bluetooth.
B. Onboard Computer: In our application, the optimisation

algorithm is written in Python and is implemented on an
onboard computer running with SUMO. SUMO is a mobility
traffic simulator that we used to simulate the mobility of the
test vehicle in our scenarios. We used SUMO to load the map
imported from OpenStreetMap, and used its handy interface,
namely TraCI (short for Traffic Control Interface) [17], to
retrive online states info of the real vehicle from the smart
phone via Python and control the behaviours of the vehicle in
SUMO on the fly. Specifically, we used SUMO to model the
behaviours of pedestrians walking in the campus as well, and
based on this to provide population density info to Python
as an external input. It is worth mentioning that a similar
function can be achieved by using a cloud server, and we shall
give brief comments for doing this in the Cloud Server section.

Based on all data collected, which includes real time data,
such as Prius’s GPS location, battery level, speed, distance
and pedestrians data, as well as historical travelling data from
the driver, Python implements the algorithm and determines
the optimal duration of the vehicle that the electric engine
mode should be engaged for pedestrian-aware driving.

C. Smartphone: In our architecture, the smartphone is
required to collect data transmitted from the vehicle gateway
(and from the cloud server if it is required) and forward
such data to the onboard computer for online optimisation.
From this viewpoint, the smartphone is only acting as a relay
in our implementation system. In this work we developed
a specific app on a Samsung Galaxy S IV (model no.
GT-I9500) smartphone running the Android KitKat operating
system (version 4.4.2) to demonstrate essential vehicle info to
the driver. The GUI of the App we designed is shown in Fig. 6.

Fig. 6. App GUI design for the field experiments. Figure on the left suggests
the PHEV should be operating in hybrid mode and the figure on the right
advises the PHEV should be switched to electric mode.

D. Cloud Server: A cloud server is only required to act as
a central agent being capable of sending specific pedestrians
info, via realisable communication channels, to smartphone

whenever it receives request. In practice, a twitter feed 3 or any
applicable third party service supplier (e.g., free mobile station
data from OpenCellID 4) can be directly used, or indirectly
used, where exact pedestrians data is not available, on behalf
of the cloud server to take actions in this step. As a concrete
example, a real Ireland-based density distribution for mobile
phone users (only those who installed the OpenCellID app) on
a specific day is given in Fig. 7, where the density data across
Ireland is filtered from the original data obtained from the
OpenCellID database. Finally, we note that it is not required in
our design that the cloud server should be capable of collecting
all historical travelling data from Prius, and thus this not only
reduces heavy computing burdens on the cloud side but also
preserves privacy of the driver.

Fig. 7. Heat map of the density distribution of mobile phone users in Ireland
(left) and the cluster map of the density in areas near Dublin city centre (right)
on a typical working day, where the red colour in the heat map indicates higher
density than the green one and the number in cluster map indicates the number
of signal measurements received from the cell towers. Note: data is collected
via OpenCellID.org API: http://opencellid.org/api on 5th of July, 2016.

VI. RESULTS AND DISCUSSIONS

In this section we discuss the simulation results obtained
by implementing the proposed engine management strategies
on a real car. To begin with, we use the proposed probability
model in Fig. 3 and we define the maximum length of a
road segment as 100 meters. To generate multiple historical
energy consumption data of the Prius in full electric mode,
we randomly distribute the energy on each road segment
between 0 and 0.05 kWh according to the estimation from
our real experimental data. As an example, Fig. 8 shows the
real driving speed and the state of charge of the Prius in pure
electric mode during one of our field experiments on route
2. Further, we assume a probability of 40% for the PHEV to
travel on route 1, 30% for route 2, 20% for route 3, and 10%
for route 4. Finally, we assume that the density of pedestrians
along all routes is time-varying and is available on request.

3http://twitterfeed.com/
4http://www.opencellid.org

http://opencellid.org/api
http://twitterfeed.com/
http://www.opencellid.org
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Fig. 8. The speed and SOC of Prius in pure electric mode in one of the field
experiments on route 2.

A. Case study: Problem 1

In this section we illustrate the simulation results obtained
by solving optimisation Problem 1. Specifically, we compare
different energy management schemes of Prius in three
scenarios, while the PHEV was driving on route 1. We
assume that the Prius started from the beginning location of
segment r1 in all scenarios and has the same initial energy
budget 0.22 kWh which corresponds to 5% of its battery size
(4.4 kWh) at the beginning of driving.

In the first scenario, the PHEV solves the optimisation
Problem 1 at the beginning of every road segment along
route 1. In particular, the es is calculated using real data
measured from the Prius averaged over multiple experiments 5.
In the second scenario, instead of averaging, es is taken
to be the maximum value observed for a particular road
segment over all experimental data. The third scenario, which
is included as a benchmark, does not use any optimisation.
Instead, the electric mode is engaged in proportion to the
maximum observed es along a given route. For clarity, we
abbreviate these scenarios as “Average-Forecast”, “Max-
Forecast”, and “None-Opt” in the following.

Fig. 9 shows the relation between the normalised popu-
lation density and the duration of electric mode in the first
scenario when the PHEV starts to drive at r1. The duration of
electric mode at each road segment is averaged by solving
optimisation Problem 1 in 1000 times by linearly spacing
the available energy Ei

av between 0 kWh and 0.22 kWh
(i.e., step size equals 0.22 · 10−3). The results show that our
approach preferentially allocates electric energy to those road
segments with higher density of pedestrians. A comparison of
results between “Average-Forecast” and “Max-Forecast” are
shown in Fig. 10 and Fig. 11. Fig. 10 shows that the state
of charge (SOC) of the PHEV decreases more sharply in
“Max-Forecast” scenario than in the other scenario due to the

5It can also be calculated from a vehicle model and data corresponding to
congestion information at different times of the day.

fact that the largest energy consumption patten of the PHEV
was adopted, while it also shows that the proposed method
manages the energy consumption of the PHEV in exactly 0.22
kWh (5% of the battery size) along route 1 in both scenarios.
As expected, Fig. 11 illustrates that the cumulative value of
the objective function in “Average-Forecast” is indeed larger
than “Max-Forecast”. Finally, Fig. 12 compares the value of
cumulative clean air factor along route 1 in all scenarios,
where the clean air factor is defined as disx

i
s at each road

segment s when the PHEV is in i. In there, we observe that
a continuous improvement in air quality is achieved by a
simple implementation of our proposed strategy, compared to
the trivial equal energy allocation scheme (“None-Opt”).
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Fig. 9. Comparison of normalised density of pedestrians and the averaged
duration of electric mode, with respect to 1000 different initial energy budgets,
when the PHEV starts to drive at r1.
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Fig. 10. State of charge of the PHEV in the first two scenarios.

B. Case study: Problem 2

In this section we illustrate the simulation results obtained
by solving optimisation Problem 2. In particular, we compare
our results to the first method of solving Problem 1. In this
study, we assume that the Prius has 0.1 kWh energy budget
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Fig. 11. Comparison of the cumulative value of the objective function in the
first two scenarios.
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Fig. 12. Comparison of the cumulative value of the clean air factor in all
scenarios.

(2.5 % of battery size) before driving and we evaluate the
overall clean air factors as if the Prius was driving on 4
different routes starting from the beginning location of r1. Our
results are shown in Fig. 13 and Fig. 14. Fig. 13 shows that the
energy consumption of the PHEV is indeed more conservative
(after 80 seconds) compared to using Problem 1 on Route 3,
which is exactly the most energy-inefficient route in our study.
Most importantly, from the last two bars in Fig. 14 we can
see that, on average, the overall air quality evaluated using the
expected energy constraint (i.e., the first constraint in (2)) is
better compared to when robust energy constraints are used
(i.e., equation (3)). However, as shown on route 3 in Fig. 14,
for the route where the PHEV achieves the worst air quality,
the robust energy constraints lead to better air quality.

C. Case study: Problem 3

In this section we investigate the impact of pollutants on
pedestrians in different scenarios with networked vehicles.
To illustrate the benefits of deploying our extended engine
management strategies, namely taking account of both
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Fig. 13. Comparison of the SOC of the PHEV on Route 3 using expected
(Problem 1) and robust (Problem 2) energy constraints.
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Fig. 14. Comparison of the total clean air factor using expected (Problem 1)
and robust (Problem 2) energy constraints on different routes.

pedestrians data and the traffic flow factor on different roads
segments, we consider a symmetric “Y” style traffic network
with three road segments pictured in Fig. 15.

In this network, we assume that the vehicles can either
start from the beginning of the road segment r1 or r2 but
both terminate at the end of the road segment r3, as what is
shown in Fig. 15. We also assume that the average energy
consumption on all road segments is the same for all vehicles,
which equals 0.025 kWh, and every PHEV has a same initial
energy budget equal to 0.01 kWh at its own starting point.
Most importantly, we assume that the number of pedestrians
on each road segment is 50, and the traffic flows on r1, r2
and r3 are assumed to consist of 20, 20 and 40 vehicles at
the steady state. In this context, we perform our experimental
activities in the following three scenarios:

1) all vehicles solve Problem 1 without considering the
traffic flow impact on all road segments;

2) all vehicles solve Problem 3 considering the traffic flow
factor on all road segments;
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3) based on 2), a feedback signal is further added to restrict
the maximum number of pollutant units on a particular
road segment.

In particular, we call the third scenario “limited pollutants”
and we assume that the specific road segment in our example
is r3 with a maximum number of 800 pollutant units allowed.
The comparison results are shown in Fig. 16, where we
easily observe from the first two scenarios that by simply
extending our algorithm by including a traffic flow factor,
the number of pollutant units on road segment r3 decreases
significantly from 1600 units to 1200 units (25% less), which
tremendously reduces the impact on pedestrians on r3 due to
the heavy traffic. Furthermore, by including a feedback signal
on r3 in the “limited pollutants” scenario, the number of
pollutant units further decreases to 800 units, which satisfies
all constraints and yields an enhanced performance for our
proposed engine management strategy.

Finally we briefly note that our current framework can also
be easily extended to carry out more restricted environmen-
tal enforcements ideas in reality, such as the “green zone”
scenario [8], in which no pollutant is allowed in a given
zone. In this circumstance, the driver can simply reserve the
amount of energy required for driving on those segments,
and implement the same proposed algorithm to optimally
allocate the remaining available energy. To demonstrate this
idea, we consider a “green zone” scenario in the same network
as in Fig. 15. The number of pedestrians and vehicles are
assumed to be the same as above. However, we assume that
each vehicle has a 0.04 kWh energy budget to be consumed,
and specifically, in the “green zone” scenario we explicitly
require that there should be no pollutants on road segment r3.
After the implementation of our algorithm, we obtain that the
number of pollutant units on r1, r2, and r3 equals 400, 400, 0,
respectively. With a total amount of 800 pollutant units on all
road segments, our strategy is very promising to be deployed
in practice.

r1

r2

r3

Fig. 15. A schematic diagram of the “Y” style traffic network with three road
segments.

VII. LIMITATIONS AND EXTENSIONS

The work presented in this paper is an important step
towards “pedestrian-aware engine management”. However, it
is only a first step and neglects some aspects of a complete
solution, and these will be the subject of future work. For

r
1
 or r

2
r

3
r

1
 + r

2
 + r

3

Road segment ID

0

500

1000

1500

2000

2500

3000

3500

N
u

m
b

er
 o

f 
p

o
llu

ta
n

t 
u

n
it

s

Without traffic flow factor
With traffic flow factor without limited pollutants on r3

With traffic flow factor with limited pollutants on r3

Fig. 16. A comparison diagram for the number of pollutant units with and
without considering traffic flow factor.

instance, the proposed system does not model the evolution of
pollution and realistic dispersion models, as well as the impact
of topology. Finally, we used the probability model to account
for uncertainty in driver intention. The other uncertainty in the
context of electric vehicles is the energy needs of the drivers,
and models to capture this uncertainty may be investigated in
future work.

VIII. CONCLUSION

In this paper, we have presented a novel engine management
system for PHEVs. This management system is designed to
benefit those most harmed by automotive emissions; namely,
pedestrians. This is in contrast to traditional algorithms which
benefit the polluters; namely, vehicle owners. Also, the pro-
posed approach paves the way to a dynamic and less conser-
vative definition of city restricted areas. We have implemented
our proposed strategies in a real test vehicle. Limited field tests
have demonstrated the efficacy of the algorithm. The result
presented in [11] can be used as a basis for extending the
work presented in this paper to ICE vehicles.

APPENDIX
MARKOV CHAIN MODELS AND DRIVER INTENTION

Markov chains provide a compact method of storing large
volumes of data (assuming certain assumptions are satisfied).
Formally speaking, a Markov chain model is a tuple 〈S,A, P 〉,
with S being a finite set of states (s1, . . . , sn), A being
a finite set of actions, and P being the transition function
P : S × A × S → R. In our context, a junction between
road segments in a journey defines a node, or state, in a
graph G, and the road segment between two nodes defines
a link in G. Measured turning probabilities at each junction
are used to construct the entries of P . This transition matrix
essentially captures journeys from all possible origins to
all possible destinations for this driver and can be used to
predict driver intention. In particular, the objective of the
route prediction engine is then to use this transition matrix
P and the vehicle’s current position to get all possible road
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segments to be travelled by the driver and their associated
probability values. In this paper we adopted a simpler and
equivalent model to the Markov chain approach, to simplify
the discussion of the model. However, we recognise that the
Markov chain approach would be more efficient in storing
details of historical routes of single vehicles. For more details
regarding the use of Markov chains for traffic modelling in
vehicular applications, see references [12, 18–21].
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