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Accelerated Evaluation

of Automated Vehicles

Using Piecewise Mixture Models

Zhiyuan Huang' , Ding Zhao?,

Abstract—The process to certify highly Automated Vehicles
has not yet been defined by any country in the world. Currently,
companies test Automated Vehicles on public roads, which is
time-consuming and inefficient. We proposed the Accelerated
Evaluation concept, which uses a modified statistics of the
surrounding vehicles and the Importance Sampling theory to
reduce the evaluation time by several orders of magnitude,
while ensuring the evaluation results are statistically accurate.
In this paper, we further improve the accelerated evaluation
concept by using Piecewise Mixture Distribution models, instead
of Single Parametric Distribution models. We developed and
applied this idea to forward collision control system reacting
to vehicles making cut-in lane changes. The behavior of the
cut-in vehicles was modeled based on more than 403,581 lane
changes collected by the University of Michigan Safety Pilot
Model Deployment Program. Simulation results confirm that the
accuracy and efficiency of the Piecewise Mixture Distribution
method outperformed single parametric distribution methods in
accuracy and efficiency, and accelerated the evaluation process
by almost four orders of magnitude.

Index Terms—automated vehicles, testing, evaluation, safety

I. INTRODUCTION

T is critical to thoroughly and rigorously test and evaluate

an Automated Vehicle (AV) before its release. Recent
crashes involving a Google self-driving car [1] and a Tesla
Autopilot vehicle [2] attracted the public’s attention to AV test-
ing and evaluation. While these AVs are generally considered
as industrial leaders, because they use public road for testing,
statistically they have not yet accumulated enough miles. The
Tesla Autopilot, in particular, was criticized for being released
too early in the hands of the general public [3].

Currently, there are no standards or protocols to test AVs
at automation level 2 or higher. Many companies adopt the
Naturalistic Field Operational Tests (N-FOT) approach [4].
However, this method is inefficient because safety critical
scenarios rarely happen in daily driving. The Google Self-
driving cars accumulated 1.9 million driving. This distance,
although sounds a lot, provides limited exposure to critical
events, given that U.S. drivers encounter a police reported
crash every five hundred thousand miles on average and fatal
crash every one hundred million miles [5]. In the meantime,

*This work was funded by the Mobility Transformation Center at the
University of Michigan with grant no. N021552. Z. Huang and D. Zhao
contributed equally to the research.

1Zhiyuan Huang (zhyhuang@umich.edu) and Henry Lam
(khlam@umich.edu) are in the Department of Industrial and Operations
Engineering at the University of Michigan.

2Ding Zhao (corresponding author: zhaoding@umich.edu) and
David LeBlanc (1eblanc@umich.edu) are in the University of Michi-
gan Transportation Research Institute.

Henry Lam', David J. LeBlanc?

both Google and Tesla update their software throughout the
process, which may have improved safety, but the newest
version of the AV has not accumulated that many miles as
they have claimed. In summary, today’s best practice adopted
by the industry is time-consuming and inefficient. A better
approach is needed.

A. Related Researches

Besides the N-FOT, the test matrix approach [6], [7] and the
worst-case scenarios approach [8], [9], [10] are two alternative
methods for vehicle evaluation. Our approach follows the
Accelerated Evaluation concept we proposed [11] to provide a
brand-new alternative. The basic concept is that as high-level
AVs just began to penetrate the market, they mainly interact
with human-controlled vehicles (HVs). Therefore we focus on
modeling the interaction between the AV and the HV around
it. The evaluation procedure involves four steps:

o Model the behaviors of the primary other vehicles (POVs)
represented by f(z) as the major disturbance to the AV
using large-scale naturalistic driving data

o Skew the disturbance statistics from f(x) to modified
statistics f*(x) (accelerated distribution) to generate
more frequent and intense interactions between AVs and
POVs

o Conduct accelerated tests with f*(x)

o Use the Importance Sampling (IS) theory to skew back
the results to understand real-world behavior and safety
benefits

This approach has been successfully applied to evaluate
AVs in the frontal crash with a cut-in vehicle [11] and also
frontal crash with a lead vehicle [12], [13]. This approach was
confirmed to significantly reduce the evaluation time while
accurately preserving the statistical behavior of the AV-HV
interaction. In the previous studies, the evaluation time was
reduced by two to five orders of magnitudes - the accelerated
rate depends on the test scenarios, where rarer events achieve
higher accelerated rate. The non-accelerated models and the
accelerated models were built based on signal component
distributions. While this method does benefit from its simple
mathematical form, it has a few drawbacks as illustrated in
Fig. 1. i) The fitting of the rare events (usually the tail part
of the statistical distributions) would be dominated by the
fitting of the normal driving behaviors (the majority part of
the distributions), which may induce large errors. ii) The full
potential in higher accelerated rate is not achieved due to the
lack of flexibility of the modified accelerated models.
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Fig. 1. Acceleration evaluation based on single parametric distribution and
Piecewise Mixture Distribution.

B. Contribution

In this paper, we proposed a more general framework for
the Accelerated Evaluation method to overcome the afore-
mentioned limitations based on Piecewise Mixture Distribu-
tion Models as illustrated in Fig. 1 b). In this paper, we
implemented the Accelerated Evaluation method under the
new framework. Comparing to our previous work [14], we
thoroughly discuss the Cross Entropy method with proposed
framework in this paper. We present practical tips to over-
come numerical issues and reduce computational efforts. We
demonstrate this method by evaluating the longitudinal control
system reacting to vehicles making cut-in lane changes.

C. Paper Structure

Section II will introduce the lane change model based on
single parametric distributions. In Section III, we present the
new lane change model with Piecewise Mixture Distributions.
We establish the Accelerated Evaluation in Section IV and
discuss the Cross Entropy method with Piecewise Mixture Dis-
tribution models in Section V. Simulation results are discussed
in Section VI. Section VII concludes this paper.

II. ACCELERATED EVALUATION WITH SINGLE
PARAMETRIC DISTRIBUTIONS

The lane change events were extracted from the Safety
Pilot Model Deployment (SPMD) database [15]. With over
2 million miles of vehicle driving data collected from 98
cars over 3 years, we identify 403,581 lane change events.
Previously [11], we used 173,692 events with a negative
range rate to build a statistical model focusing on three key
variables that captured the effects of gap acceptance of the
lane changing vehicle: velocity of the lead vehicle (vy,), range
to the lead vehicle (Ry) and time to collision (TT'Cy). TTCj,
was defined as: R

ITCL = ——-, 1
Ry,
where R, is the relative speed.

The modeling of these three variables was hard to handle
because of dependency, so we simplified it based on a crucial
observation. Although TT'Cy, is dependent on vy, generally,
we split the data into 3 segments: vz, at 5 to 15 m/s, 15 to 25
m/s and 25 to 35 m/s. Within each segment, 7y, is independent
with v, and TT'C,. This allowed us to model T7'C, and Ry,

Range _
Ry (t) = Dy(t) — D(t) Acceleration a(t)

Acceleration a; (t)
Velocity v (t)
Position Dy (t)

Velocity v(t)
Position D(t)

Range rate

. d
R.() = - R.(1)

Fig. 2. Lane change data collected by SPMD vehicle.

independently with regard to the value of vy. By comparing
among 17 types of commonly used distribution templates, we
selected the Pareto distribution to model RZI and used the
exponential distribution for TTC ' segments.

Using the empirical distribution of vy and parametric dis-
tributions of R; and TTC, we drew values from these
distributions as inputs to simulate the AV-HV interaction.
The outcome from the simulation can be considered as an
event indicator function I.(z) that returns {1,0} depending
on the event of interest. Given the stochastic distribution of
the variables and the event indicator function, we obtained
the optimal exponential distribution for Importance Sampling
by implementing the Cross Entropy method [16]. As we have
shown in Fig. 1 a), we used only single parametric distribu-
tions. In the next section, we introduce our new approach using
Piecewise Mixture Distributions.

III. LANE CHANGE MODEL WITH PIECEWISE MIXTURE
DISTRIBUTIONS

Although many commonly used parametric distributions
have concise and elegant forms, they do not always describe
the data distribution well. Instead, a better fitting can be
achieved by dividing the dataset into several subsets. We
estimate the model parameters using the Maximum Likelihood
Estimation (MLE) [17] in each subset. The general process of
MLE is as follow.

Assume we have a family of distribution with Cumula-
tive Distribution Function (CDF) F(z|f), where 6 is the
parameter vector of F'. The corresponding Probability Density
Function (PDF) of F' is f(z|f). Assuming that data D =
{X1, Xa,..., Xn} is independently and identically distributed
and the distribution is in the family of F(z|f), we want to
find the most “likely” parameter 6.

We define the likelihood function [18] as

L(6|D) = P(D|0) = IL)_, f(X,|6). )

We call the estimation of § that maximizes the likelihood
function the mostly likely estimation MLE.

For computation convenience, we introduce the log-
likelihood function

N
L(0|D) =In L(0|D) = > In f(X,|6). 3)
n=1
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Since the logarithm is monotone, the log-likelihood function
preserves the optimizer of the original function. [19] The opti-
mizer of log-likelihood function, 9, is the MLE of distribution
family F'. We have the MLE as

0 = arg m@ax L(0)D). 4)

In the following, we describe the Piecewise Mixture Dis-
tribution fitting concept based on MLE and we present the
bounded distribution fitting results. All optimization problems
presented in this section are tractable and can be solved by
fminunc in MATLAB.

A. General Framework of the Piecewise Mixture Distribution
Lane Change Model

We define Piecewise Mixture Distribution to be distribution
with CDF in the form of

k
F(z) = Zﬂ'iFQi (@lyi1 < @ <), &)
i=1
where k is the number of truncation, Zle m;, = 1, and

Fi(z]y;—1 < & < ;) is the conditional cumulative distribution
function, meaning that F;(y,—1]vi-1 < = < 7;) = 0 and
Fi(vilyic1 < ax <) =1fori=1,..,k 6; denotes the
parameter(s) for F;. We can consider that m; = P(vy;,—1 <
2 < ;) and when x > 0, we have o = 0 and ~; = oo. By
this definition, the PDF of the Piecewise Mixture Distribution

1S
k

f(z) = Zm‘fei (zyio1 <z <) (6)
i=1
In our case, § = {m,..., 7k, b61,...,0;}. Splitting D into
pieces regarding the truncation points {71,...,Yk—1}, gives
data index sets S; = {j|vi-1 < X; < v} fori =1,.. k.
We can write the log-likelihood function as

k
L(0|D) = 2121:1 ZnGSi Inm;
+ i ZnESi In fo,(Xn|vic1 <z < 7).
We obtain the MLE of 6 can be obtained by maximizing
L(0)D) over 6. Since L is concave over ;, we take

oL
87‘1’1‘ N

)

0 ®)

and get
i = [Sil|/N. 9)

For parameters 6; in Fj, it is known (7) to be the same
as computing the MLE of 6; with corresponding dataset
D; = {X|yi-1 < X < v and X € D}. Since we
use bounded distribution for each F;, below we explain the
estimation of parameters for the three distributions we applied
in later sections.

To sample from a Piecewise Mixture Distribution, we could
use the inverse function approach. See Appendix A for the
details.

B. Bounded Distribution

We develop three bounded distributions and use them in the
lane change model.

1) MLE for bounded exponential distribution: The bounded
exponential distribution with rate 6 has the form

96—92:

67671 — 6*9“/2 (10)

[zl <z <) =

for v <z < 7.
For dataset D = { X7, ..., Xn}, the log-likelihood function
is

N
L(DIO) =Y b —0X, —In(e™"" —e=) (11
n=1
where £ is concave over 6. Although we cannot solve the
maximization analytically, it is solvable through numerical
methods.
Therefore, the MLE of 6 is given by the optimization

N
_ —O0y1 _ =072\ _
max Nlng — Nln(e e 072) ;oxn. (12)

2) MLE for bounded normal distribution: Consider a
bounded normal distribution with mean 0 and variance 62
conditional on 0 < 3 < & < 7. The PDF is
30(%)

flzln <z <y)= (13)

The MLE of the bounded normal distribution is given by

N 2
m?x—M ~NInd - NIn(@(22) —a(2y)). 14

202 0 0
3) Fitting mixture model with EM algorithm: Compared to
single parametric distributions, mixture distribution combines
several classes of distribution and thus is more flexible. We
consider the fitting problem of mixture bounded normal dis-
tribution.
The PDF of mixture of m bounded normal distribution can
be written as
m
flam <z <) = pifijlaln <z <) (19
j=1

where f; is bounded Gaussian distribution with mean
0 and variance o2. The parameters here are 6 =
{p1,-sPm, 0%, .., 05, }. We want to find MLE of p; and o7
for j =1,...,m.

The log-likelihood function for data D = {X,,}_, is

N m
L(9|D) = Zanpjfj(thq <z <7y).  (16)

n=1 j=1

We note that this is hard to solve directly, because there
is a sum within the log function. Therefore, we apply the
Expectation-Maximization (EM) [20] algorithm to find the
optimizer, i.e. MLE, for the parameters.

We define ZJ to denote whether or not the random number
X,, comes from mixture distribution 7, j = 1, ..., m, and Z,jL =
{0,1}. We also introduce the expectation

E[ZI|X,] == T7J. (17)
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The EM algorithm starts with initial parameters {p;,o;},
j = 1,..,m. For data D {X, N, we set com-
plete data as D. = {X,,Z,}N_,. The EM algorithm op-
timizes E[L(0|D.)|D] in every step. The E step updates
E[L(0|D.)|D], and the M step optimizes this function. The
algorithm iterates E step and M step until reaching the
convergence criterion.

In our case,

N m i
E[L(0|D.)|D] =3, Zj:l 7 (Inp; +1In f;(X5)) .
(18)
Since objective E[l.(0]|D.)| D] in the M step is concave over
p; and o, we could maximize the objective function through

an analytic approach for p;:
Zfzv L7
=N

For o;, we can solve the following maximization problem
through numerical approach.

19)

oj =argmin—77 Ino; + 7 In¢ (n) —
oj O']

i In (@(72) - q>(%)> . (20)
g3 gj
See Appendix B for the full EM algorithm.

IV. ACCELERATED EVALUATION WITH IMPORTANCE
SAMPLING

Importance Sampling (IS) is thus used to accelerate the
evaluation process, because crude Monte Carlo simulations for
rare events can be time-consuming. Below we describe the IS
method.

A. Important Sampling and Optimal 1S distribution

Let x be a random variable generated from distribution F',
and € C () where ¢ is the rare event of interest and 2 is the
sample space. Our objective is to estimate

P(X €¢) = B[L(X)] = / I.(x)dF @n
where
1 ze€e,
Le(@) = {0 otherwise. 22)

We can write the evaluation of rare events as the sample
mean of I.(z)

P(X €¢) Z I( (23)
where X;’s are drawn from distribution F'.
Since we have
dF
BIL()) = [ L@dF = [ L) gar, e
we can compute the sample mean of I (X )% over the

distribution F*, which has the same support with F, to
obtain an unbiased estimation of P(X € ¢). By appropriately
selecting F'*, the evaluation procedure obtains an estimation

with smaller variance. This is known as Importance Sampling
[21] and F™* is the IS distribution.
For estimating P(X € ¢),we note that an optimal IS
distribution
P(X <z, ¢)
F )= —— 7
(zle) Pz e€e)
could reduce the variance of IS estimation to 0, but the optimal
requires the knowledge of P(X € ¢). However, it guides the
selection of the IS distribution.

F*(z) = 25)

B. Exponential Change of Measure

Exponential change of measure is commonly used to con-
struct F'*. Although the exponential change of measure cannot
guarantee convergence to optimal distribution, it is easy to
implement and the new distribution generally stays within the
same class of distribution.

Exponential change of measure distribution takes the form
of

fo(x) = exp(fz — £(6)) f(2), (26)

where 6 is the change of measure parameter and k(6) is
the log-moment generating function of original distribution f.
When 6 = 0, we have fy(x) = f(z).

For a bounded exponential distribution, the exponential
change of measure distribution is

()\ _ 0)67()\76)95
e—(A=0)m —_ g=(A=0)72’
where A is the parameter for exponential distribution. We note
that fy is still a bounded exponential distribution and Ag =
A—0.

For a bounded normal distribution, the exponential change
of measure distribution is

fo(zlm <z <y) = (27)

1 z—020
(=)

Y2 —60? ~v1—0o2
(1) - ()
where the original distribution truncated from a normal distri-
bution with parameters = 0 and 0. We note that the change
of measure distribution is still a bounded normal distribution

with ¢ = 602 and o.

fo(zly <z <) = . (28)

V. CRrROSS ENTROPY METHOD AND IMPLEMENTATION

Section IV discussed optimal IS distribution F** providing
0 variance estimation to the value of interest, whereas this
section describes the Cross Entropy method used to estimate
the “optimal” parameters 6, which minimizes the “distance”
between a parametric distribution Fy and F** without know-
ing F**. The description below is based on the Piecewise
Mixture Distribution structure.

A. Introduction

The Cross Entropy, which is also known as Kullback-Leibler
distance [22], measures the similarity between distributions.
We define the Cross Entropy between function g and h as

_ 9(X), _
/g(x)lnh(a:)da:. (29)
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From (25), we know that the PDF of the optimal IS
distribution F** is

L (2) f(x)
Plzee)’

Since P(x € ¢) is generally unavailable, we use a para-
metric distribution Fj to approach the optimal IS distribution.
We want to find the parameter #* that minimizes the Cross
Entropy [23] between f** and fy. We denote 6* as the
optimal parameter for the parametric distribution. Then the
minimization problem

() = (30)

minD(fy, /) (1)
is equivalent to
f(X)
max Ey [I-(X) Fo (X) In fo(X)], (32)

where fy. denotes the sampling distribution with parameters
fs. We note that this is a generalized setting, since we can
use any sampling distribution fp, as long as it has the same
support with f. This is the baseline for iterations in the Cross
Entropy method. We use the same form as fy because in the
following sections, we use a sampling distribution which is in
the same family as the parametric distribution.

We estimate 6* by solving the stochastic counterpart of (32)

f(Xy)
fo.(Xi)

where samples {X1,..., Xy} are drawn from the sampling
distribution fy..

We note that if I.(X,) = 0 for all n = 1,..,N in (33),
the objective equals to O constantly. To avoid this situation,
we select a sampling distribution which emphasizes the rarer
events.

Fig. 3 shows the iteration procedure of the Cross Entropy
method. The core part of the Cross Entropy method is to use
the optimizer of the objective function (33) in the ith iteration,
07, as the parameters for the sampling distribution in the next
iteration. The underlying idea is that the IS distribution in
distribution family f, should better approach the optimal IS
distribution. Therefore, as we iterate, we obtain more “critical”
rare events and have a better estimation of the optimizer which
leads to even more “critical” rare events in the next iteration.
We define the stopping criterion regarding the parameter or
the objective value. In practice, we want to start with an
appropriate sampling distribution to get a good solution with
less iteration. See section V-C1 for a discussion of initializing
a sampling distribution.

lnfG(Xn)7 (33)

| N
max ; I.(X,)

Samples

Jo (2)
* 00+ = arg n{gin{Sample approximation of D(f**, fy)}

Tteration

@

* Convergent to 6*

o+ (2)

IS distribution

Fig. 3. Iterations of Cross Entropy.

We note that if we have two independent variables where
f(z,y) = f(z)f(y), we can take a parametric distribution
for each variable and have fo(z,y) = fo,(x)fo,(y), where
© = {601, 0>}. The objective function corresponding to (33) is

f(Xn, Yn)

fo. (Xn, Yn) (hl f91 (Xn)+

N
1
max ZIIE(Xn,Yn)

In fy, (Yn)),

which can be decoupled into two optimization problem over
61 and 05 respectively and I.(X,,, Yn)% is a known
constant given {X,,Y,}.

We implement the Cross Entropy on the Piecewise Mixture
Distribution with one variable. We note that we can apply the
results to the lane change model, since the Cross Entropy ob-
jective function of independent variables can be implemented
in (34).

(34)

B. Optimization Function for Piecewise Mixture Distributions

We propose a parametric family of IS distribution for
Piecewise Mixture Distribution

k
fo(x) = Zﬁi exp(0iz — K(0;)) fi(zlvi-1 < @ <), (35)
i=1

where we use exponential change of measure for each piece
of distribution and adjust the proportion parameter to ;. The
parameter is 6 = {01, ..., 0%, T1, ..., Tk }-

In (33), ¢, = I.(X) ff%?,?) is a known constant given the
data, so we simplify the function as

N
1
max Nz_jlcn In fo(X,). (36)
We split the samples into index sets S; = {j|lyi.1 <

X; < 7} for ¢ = 1,..., k for each bounded segment. Since
fiXnlvic1 < T < 74) # 0 only if n € S;, for each 6; and
7;, the optimization function is equivalent to

1 ~
g}fgj N ; cn In(7; exp(0; X, — k(6;))

filXnlz <vic1 <z <v)). 37

We can further rewrite the optimization function regarding
0; and 7; respectively. For 7;, we have

1 -
rrlgxﬁ Z cn In Ty, (38)
nes;
which obtains an analytical form for the optimizer
cpl{n e S;
- Tueg erlnes) o
ZneS,; Cn
For 6;, we have
1
max - Z cn Inexp(0; X, — k(6;))
nes;
filXalvicr <z <), (40)



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, DECEMBER 2016 6

which is an exponential change of measure with D; only.
We note that we can simplify this optimization function by
rewriting the log term as

1
max - ; cn(Inexp(0; X, — k(0;))+

In fi(Xp|yic1 <z <75)), @1

which is equivalent to

1
max W;v cn(0; X0 — k(0;)),

(42)

since the latter term does not depend on 6;.
For a bounded exponential distribution with parameter A,
the Cross Entropy iteration solves

1

me&}xﬁ Z cn(0; X, —
nes;

e~ (A=0:)vic1 _ o= (A=0:)vi

! .
. X — 0, )

For a bounded normal distribution with parameters ;1 = 0
and o, the optimization function for the Cross Entropy iteration
is

(43)

202

o0

mazizx E enXnbi — ( g en)( 2’+
nes; nes;

q;(%:*fﬂﬂ ) — (I)('n—l—emz)

[od

e T

o

In

(44)

C. Discussion on Numerical Implementation

We have presented the optimization functions for Cross En-
tropy iterations, but we cannot reliably apply these equations
in practice without considering some of the problematical
numerical details. In this section, we discuss methods to
overcome these numerical issues.

1) Initializing Cross Entropy Iterations for Rare Events:
Since rare events occur with small probability, using the
original distribution as sampling distribution to start the Cross
Entropy iterations it becomes computationally burdensome
to sample a single rare event. One possible approach is to
initialize with guess of sampling distribution. When we have
some rough knowledge about the optimal IS distribution,
we can use the knowledge to construct a proper sampling
distribution.

For cases where we have little knowledge about the optimal
IS distribution, we construct adaptive events that gradually
reduce the rarity. For rare events denoted by e, we define
the sequence of events to be €1 D €2 D ... D &, D &,
where €1 is not rare for our initializing sampling density. For
each iteration ¢, we gradually reduce the rare event set €; and
use ¢; to replace ¢ in the objective function. Since ¢; is a
subset of €;_1, the IS distribution for €;,_; also provides more
chances for samples from c;. We use the optimal solution
in (¢t — 1)th iteration #;_; as the sampling parameter 6; for
the next iteration and choose €; to have a relatively larger
probability to occur under fy,. Since ¢; gradually approaches
€ as we iterate, eventually we obtain the optimal parameters
for €.

2) Adjusting sample size N: The choice of sample size N
should not only depend on the total number of rare events
obtained in each iteration. For each parameter of interest, we
need sufficient non-zero c¢,’s to guarantee the qualification of
the estimation. We note that the parameters estimation depend
only on the rare event in the corresponding piece, so we adjust
sample size N to ensure that each piece with large portion 7;
contains enough rare event samples.

3) Setting a lower bound for w;: When we update 7; in
(39), if ¢, = 0 for all n € S;, meaning that there is no rare
event sample in the piece, we have 7; = 0. When we have
m; = 0, the support of the IS distribution will differ from
the original distribution. We note that it might cause bias in
our simulation analysis. On the other hand, once 7; hits 0, it
will be O in the following iterations. Therefore, we need to
keep 7; > 0. Setting a low bound for 7;, for example, 0.01,
when there is no rare event for piece ¢, gives an efficient IS
distribution while avoiding the problems.

4) Updating parameter 0;: The absence of rare event
samples also leads to failures in updating 6;. In this case,
we use either the value of ; in the last iteration, or we set
it to 0, i.e. reset the distribution as the real distribution. We
note that we can tolerant some inaccurate estimation if 7; is
small, since a small 7; indicates that this piece might not be
important to the rare events.

5) Changing truncation ;: The truncations of the Piece-
wise Mixture Distribution are fixed throughout the Cross En-
tropy method. Thus, if there is a bad selection of truncation in
our original distribution model, the Cross Entropy cannot give
an efficient IS distribution. The changing of truncation points
is hard to implement by optimization, so we use a heuristic
approach for adjusting the truncation points to emphasize the
tail part of the Piecewise IS distribution.

In any iteration, if the number of rare events is not enough
to properly update the parameters, we check 7; of the current
sampling distribution. If the 7y, of the tail piece is the largest
possible value, we increase the value of the all truncation
points except o with a certain value. Shifting the truncation
gives more weight to the tail part. Then by sampling from
the adjusted distribution, we check if the number of events of
interest is sufficient. We repeat these actions until we obtain
enough rare events in the iteration.

We propose this heuristic approach, since the flexibility of
the Piecewise Mixture Distribution is not fully exploited if
we cannot change the truncation points. We note that finding
a more systematic procedure to locate the knots remains an
open question.

VI. SIMULATION ANALYSIS
A. Automated Vehicle Model

First, we present our Piecewise Mixture Models for R~! and
TTC~* and then compare the results with the single paramet-
ric distribution model used in [11]. For both approaches, we
divide the data of TTC~! into three segments regarding the
range of v. Since the three segments are similar in distribution,
we only show the results of the segment for v in the range of
15 to 25 m/s.
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Fig. 4. Piecewise Mixture Distribution fitting for R—1.

1) Piecewise mixture models for R~ and TTC~': Fig. 4
shows the fitting of R~! using two bounded exponential dis-
tributions and three bounded exponential distributions. Adding
one more truncation point provides a better fitting to the body
part of distribution while having the same fitting of tail.

In Fig. 5, we truncated the data into two parts. For the
tail part, we use the exponential distribution. For the body
part, the mixture of two normal distributions gives a better
fit. The Piecewise Mixture Models enable us to use different
distributions for the body part and the tail part.

2) Comparison with single parametric distribution models:
Fig.6 and Fig.7 compare the new model and the previous
model. We note that Piecewise Mixture Models provide more
flexibility in data fitting.

B. Cross Entropy Results

Here, we use the lane change model to exemplify the Cross
Entropy method. For the three variables R, TT'C, v, the dis-
tribution is f(R,TTC,v) = f(v)f(R)f(TTC|v) where f(v)
is the empirical distribution. Since we have three conditional
distributions of TT'C' regarding the value of v, we find the
IS distributions independently for each case. We present the
results for v from 5 to 15 m/s.

We assume that we have less information about the relation
between the distribution of variables and the rare events.
Our objective is to construct adaptive rare events to help
us approach the IS distribution. We recall that our original
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Fig. 5. Piecewise Mixture Distribution fitting for TTC~1 given v, between
15 and 25 m/s.
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Fig. 6. Comparison of fitting for R—1.
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Fig. 7. Comparison of fitting for TT'C'~1 given v, between 15 and 25 m/s.

lane change model determines whether a crash happens by
checking to see if the value of R, the range between two
vehicles, reaches 0. Meanwhile, the TT'C' also goes to 0 when
a crash happens. To construct events less rare than a crash,
we relax the criterion for crash to be either R hits tg > 0
or TT'C hits tppe > 0. By changing these two thresholds,
tr and trrc as shown in Fig. 8, we construct the adaptive
rare events sequence for the Cross Entropy iterations. We use
sample size N = 1000 for each iteration.

Fig. 9 and 10 show the parameters present in each of the
iterations. We observe that the parameters stabilize gradually.
Fig. 11 shows how the distribution changes gradually from
the original distribution to the IS distribution. We note that
the density moves toward the tail part as we iterate.

C. Simulation Results

In our simulation experiments, we set the convergence
criterion as the relative half-width of 100(1 — «)% confidence
interval drops below f. In this case, we use « = 0.2 and § =
0.2 to study the number of samples needed for convergence.
Our goal is to compare the efficiency of the Piecewise Mixture
Distribution and single exponential distribution models.

Fig. 12 shows that both models give a similar estima-
tion as the number of experiments grows large, and that
the Piecewise Mixture Distribution model converges slightly
faster than the single parametric model. The circles show that
the relative half-width of the Piecewise Mixture Distribution
model reaches the target confidence value after 7800 samples,
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Fig. 8. Cross Entropy iterations with sequence of events with thresholds for
crash. We leave iteration 1 blank to keep the x-axis consistent with Fig. 9 and
10.

whereas the single parametric model needs about 13800 sam-
ples. Using the Piecewise Mixture Distribution model reduced
the sample size by 44%.

To reduce stochastic uncertainty, we repeat the tests 10
times and calculate the average. It takes 7840 samples on
average to obtain a converged estimation using the Piecewise
Mixture Distribution model, whereas it takes 12320 samples
on average using the single accelerated distribution model to
converge. Table I compares the two models with the crude
Monte Carlo method [24]. We estimate the number needed for
convergence of crude Monte Carlo by using the fact that the
number of events of interest occurring is Binomial distributed.
We compute the standard deviation of the crude Monte Carlo
estimation P(z € ¢) by

Pz ee)(l—P(z€e))

std(P(z € €)) = ) (45)
n
which allows us to estimate
22, (1—Pzee)
N= o2 , (46)
B2P(x €¢)
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Fig. 9. Cross Entropy iterations with sequence of events of R~! for v from

5to 15 m/s.
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Fig. 10. Cross Entropy iterations with sequence of events of TT'C'~1 for v
from 5 to 15 m/s.
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Fig. 11. Distribution change through Cross Entropy iterations with sequence
of events of TT'C ! for v from 5 to 15 m/s.

where 2,5 is the (1 — a/2) quantile of normal distribution.
We calculate the required sample size N of crude Monte Carlo
in Table I from an estimation P(z € ¢) = 7.4 x 1077 with
80% confidence interval (7.0 x 1077,7.8 x 1077).

Finally, we apply the heuristic approach in Section V-C5 to
the data segment with v from 5 to 15 m/s. We run simulations
with this segment and compare the results with the standard
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Fig. 12. Estimation of crash probability for one lane change using piecewise
and single accelerated distributions.
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TABLE I
NUMBER OF SAMPLES (N) NEEDED TO CONVERGE.

Piecewise  Single  Crude
N 7840 12320 5.5 x 107
Ratio to Piecewise | 1 1.57 7 x 103
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Fig. 13. Relative half-width of crash probability estimation for one lane

change with leading vehicle’s speed in range of 5 to 15 m/s, comparing single,
piecewise and heuristic accelerated distributions.

approach for the ewise Mixture Distribution and single para-
metric distribution models. Fig. 13 shows the convergence of
confidence half-width. We note that the relative half-width of
the heuristic, which is smaller than the standard approach for
the Piecewise Mixture Distribution model, indicates that the
latter model’s performance can be further improved.

VII. CONCLUSIONS

This paper proposed a new model for accelerated evaluation
of AVs. The Piecewise Mixture Distribution Models provide
more accurate fitting to the surrounding human-controlled
vehicle behaviors than the single parametric model used
in the literature. The proposed model was more efficient
and reduced the evaluation time by almost half than single
parametric model. The Cross Entropy procedure described in
this paper effectively worked in this scenario analysis. We
provided practical solutions to deal with the numerical issues
which occurred while calculating the optimal parameters. The
heuristic approach exploited the flexibility of the Piecewise
Mixture Distribution structure. Testing the proposed model
on a large dataset of cut-in crashes caused by improper lane
changes, the Piecewise Mixture Distribution model reduced
the simulation cases by about 33% compared with the single
parametric model under the same convergence requirement.
Moreover, the proposed model was 7000 times faster than the
Crude Monte Carlo method.

Table II summarizes the comparison of the computation
efforts between the models. We note that using the Piecewise
Mixture Distribution model increases the number of parame-
ters estimated, where the estimation of parameters is almost
instant. In the Cross Entropy stage, the number of simulations
required for the Piecewise model is not significantly less than
the single parametric model, because we assume no knowledge
about the optimal IS distribution for the Piecewise model.
Overall, the Piecewise model needs fewer simulations to reach

TABLE II
COMPARISON OF THE COMPUTATION TIME BETWEEN SINGLE
PARAMETRIC MODEL AND PIECEWISE MODEL.

Stages Crude Single Piecewise
Fitting ) 4 parameters to 18_parameters to
estimate estimate
30,000 simulations | 24,000 simulations
Cross Entropy | - 4
parameters 18 parameters
. . 5.5 x 107 12,320 7840
Simulation . . : . . .
simulations | simulations simulations

the same confidence level compared to the single parametric
Model.

APPENDIX A
INVERSE CDF OF PIECEWISE MIXTURE DISTRIBUTIONS

We can sample from Piecewise Mixture Distribution by the
inverse CDF approach. Here, we derive the inverse CDF for
Piecewise Mixture Distribution.

The CDF of Piecewise Mixture Distribution (5) can split
nto

Fa) =Y o im+mF@yia <o <y) i<z <y.
47)

Therefore the inverse function can be written as

F—l ( C’J*Zj;ll T

i T

Fl(y) = it <z <) Xim<y< Y
(48)
where F[l is the inverse conditional CDF of Fj;. Below, we
give two example of inverse conditional CDF.
For the inverse CDF of conditional exponential distribution,
we have

Ey Nyl Fo(mi) <y < Fy(vye)) =

Fy ' (Fo(v2) — Fo(n))y + Fo(n)),  (49)

where F and F~! are the CDF and inverse CDF of exponential
distribution.
For conditional normal distribution, the inverse CDF is

Fyt(ylFo(m) <y < Fy(m)) =

_ o — Oo? v — 002
o® 1((Mf) —o(—— )yt
— fo2
q»(%%)) + 002, (50)
APPENDIX B
EM ALGORITHM FOR MIXTURE BOUNDED NORMAL
DISTRIBUTION

Here, we present a numerical MLE algorithm with mixture
bounded normal distribution. The steps are as follows.
ALGORITHM:

1) Initialize {p;,0;}, j =1,...,m.
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2) E step: update

: p;fi(Xnloj)
T) = =& . (&)
Zj:l p;ifi(Xuloj)
3) M step: update
Zgzl &
pp== 5 (52)
and
L 0i(R(F) — B(2))
0; = argmin —7} In ’ e I (53)
7 ¢(52)
4) Repeat 2 and 3 until £(0|D) converges.
APPENDIX C
VANILLA CROSS ENTROPY METHOD
ALGORITHM:[25]
1) Initialize 6.
2) Sample {X7,..., Xy} from fp, and update
N
1 f(Xi)
0= argmax — ;Is(Xi)fes X In fo(X;). (54)
3) Update
0s =0. (55)

4) Repeat 2 and 3 until 6 “converges”.
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