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Abstract—Vehicle location prediction or vehicle tracking is a 

significant topic within connected vehicles. This task, however, is 

difficult if only a single modal data is available, probably causing 

bias and impeding the accuracy. With the development of sensor 

networks in connected vehicles, multimodal data are becoming 

accessible. Therefore, we propose a framework for vehicle 

tracking with multimodal data fusion. Specifically, we fuse the 

results of two modalities, images and velocity, in our 

vehicle-tracking task. Images, being processed in the module of 

vehicle detection, provide direct information about the features of 

vehicles, whereas velocity estimation can further evaluate the 

possible location of the target vehicles, which reduces the number 

of features being compared, and decreases the time consumption 

and computational cost. Vehicle detection is designed with a 

color-faster R-CNN, which takes both the shape and color of the 

vehicles into consideration. Meanwhile, velocity estimation is 

through the Kalman filter, which is a classical method for 

tracking. Finally, a multimodal data fusion method is applied to 

integrate these outcomes so that vehicle-tracking tasks can be 

achieved. Experimental results suggest the efficiency of our 

methods, which can track vehicles using a series of surveillance 

cameras in urban areas.  

 
Index Terms—faster R-CNN, Kalman filter, multimodal data 

fusion, surveillance, vehicle tracking 

 

I. INTRODUCTION 

ITH technological advancements in vehicles and 

transportation system, motorists require comfort and 

intelligent driving, not only mobility. Thus, there has been a 

great deal of research which mainly falls into one of two 

directions. On one hand, researchers tend to develop more 

intelligent vehicles, or devices that can be attached to vehicles, 

bringing up several popular topics such as autonomous vehicles 

or driverless vehicles [1]. They intend to apply automatic 

control methods to build high functional vehicles so that drivers 

can be relieved from the stress and anxiety and enjoy 
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experience as passengers would. The other set of studies 

focuses on establishing a whole system, namely connected 

vehicles, instead of emphasizing the functions of each 

individual vehicle.  

Connected vehicles allows its agents to communicate and 

exchange data. With the popularity of the Internet of Things 

(IoT) [2] and device-to-device (D2D) [3] communications, the 

emergence of the Internet of Vehicles (IoV) [4] is not 

unrealistic. Basically, IoV contains vehicle-to-vehicle (V2V), 

vehicle-to-user (V2U), and vehicle-to-infrastructure (V2I) 

communications, according to different agents being 

considered. When the connection keeps growing, the vehicles 

may behave socially, referred to as Social Internet of Vehicles 

(SIoV) [5], or even establishing social vehicle swarms (SVS) 

[6]. With the ability to gather data from all available accesses, 

the decision is more comprehensive.  

Specifically, this comprehension comes from two aspects. 

On one hand, data may be collected from similar sensors in 

different spatial or temporal relations, thus the blindness of a 

single sensor is avoided. On the other hand, data from 

dissimilar sensors can provide multimodal knowledge for a 

particular target so that decision makers can strategize 

optimally. For instance, color is one of the critical modalities in 

image recognition, without which one may fail to recognize 

objects. The former aspect is a fusion of quantity perspective. 

In other words, if the decision is unsatisfactory, the main reason 

is because of the deficiency of the sensors. Thus, we focus on 

the latter scenario, which fuses multimodal data for 

comprehensive or complete knowledge.  

Multimodal data fusion [7] is one critical technology, 

especially in the era of big data [8], where data contain variety, 

velocity, and other characteristics. Similar to traditional data 

fusion, the key target is to handle the problems of automatic 

detection, association, and correlation [9], except that 

multimodality also expands data from several sources to 

several modalities.  

One straightforward sensor network is surveillance systems, 

which are widely discussed by a number of data fusion methods 

[10]. Originally, object detection or tracking through 

surveillance videos is heavily dependent on the participation of 

humans, which introduces a great amount of energy and time 

consumption. Therefore, automatic detection and tracking have 

become popular topics, facilitating the areas of object detection 

and tracking in computer vision.  

The primary goal in computer vision is to educate computers 
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to see the natural world, as humans do. This, however, is a 

critical task for computers, since the inputs for computers are 

merely pixels or digits. Fortunately, with the assistance of deep 

learning [11], computer vision has been making remarkable 

progress towards a variety of tasks, such as recognition, 

detection, and tracking. Faster R-CNNs (region proposals with 

convolutional neural networks) [12] are one of the most 

efficient methods based on convolutional neuronal networks 

(CNNs), an analogy of vision systems of mammals.  

When applying faster R-CNN directly to the vehicle-tracking 

problem, however, the result is not satisfactory. The main 

reason is because faster R-CNN only takes grey-scale pixels 

into consideration. Therefore, an improvement is to introduce 

multimodal deep learning [13], which gathers more 

comprehensive information in order to increase the accuracy of 

tracking.  

Meanwhile, physical quantities, such as location, velocity, or 

acceleration, are also useful when tracking, which are all well 

applied in the Kalman filter [14]. The Kalman filter is capable 

of estimation and prediction based on previous data and new 

observations. Therefore, we apply the results of the Kalman 

estimation as one modality to locate the period when the target 

occurs. Specifically, in this paper, we propose a 

vehicle-tracking framework based on multimodal data fusion, 

synthesizing knowledge of grey-scale (such as shape and 

outline), color, and velocity features, as in Fig. 1, which might 

be the most significant ones when tracking vehicles through 

surveillance cameras. After these data are fused, a more 

accurate and efficient tracking result is achieved. 

The main contributions of this paper are summarized as 

follows.  

⚫ We propose a novel multimodal data fusion framework 

for vehicle-tracking tasks, which improves the accuracy 

and efficiency more than that of the faster R-CNN; 

⚫ We add the velocity information, estimated by the Kalman 

filter, to the features of the faster R-CNN as an extra 

modality to reduce the number of candidates being 

compared; 

⚫ We have established an actual system with our proposed 

method, whose partial functions are already applicable in 

real tasks.  

The rest of the paper is organized as follows. The next 

section will present some related work. The proposed methods 

are discussed in Section III and the corresponding experimental 

results are shown in Section IV. The final section concludes the 

whole paper.  

II. RELATED WORK 

Most object tracking methods can be classified into two 

categories, discriminative or generative [15]. Discriminative 

methods firstly detect all objects in all images or videos, then 

re-identify them to project a trace within those belonging to the 

same object. Generative methods intend to build a model, 

containing abundant information about the object, so that the 

comparison is between the images and the model, which 

improves the accuracy of the matching. In this paper, we focus 

on discriminative methods.  

From the perspective of discriminative object tracking [16], 

the intrinsic problem is converted into a classification or 

regression, which is widely discussed and studied in machine 

learning. It is highly related to recognition and detection, where 

the former emphasizes accuracy whereas the latter sacrifices 

accuracy to an acceptable degree for efficiency. Even though 

their targets are slightly different, both of them apply CNNs [17] 

to extract features from raw pixel inputs, which seems to be the 

most popular method.   

Before CNNs became popular, other hand-designed features, 

such as SIFT [18] and HOG [19], were considered in object 

detection tasks. With the emergence of big data and powerful 

computational devices, such as GPUs and deep learning 

methods, especially CNNs in images, there has been an 

unstoppable trend in all related fields. As a result, many 

efficient object detection methods are proposed, one of which is 

R-CNN [20]. R-CNN applies a paradigm of regions [21] to 

select all candidate regions, then classifies the objects in each 

region. Later, a fast R-CNN [22] occurs and exceeds the 

velocity of the R-CNN until a faster R-CNN emerges [23]. 

Even though recent methods, namely YOLO [24], YOLO9000 

[25], and mask R-CNN [26], claim to have a superior 

performance, we find that faster R-CNN is relatively stable. 

Therefore, we propose our method based on the faster R-CNN 

method.  

After the detection process in the separated devices, 

connected vehicles provides a platform where knowledge can 

be shared for tracking tasks. This is a decision-making process, 

which relies on multimodal data. Intrinsically, multimodal data 

fusion is an integration and decision-making process with 

complicated inputs, thusly covering a variety of tasks such as 

detection and tracking [27]. Ideally, more modalities reduce the 

 
Fig. 1.  The architecture of our proposed multimodal data fusion method for 
vehicle tracking. Two parallel modules exist in this framework. Images of 

vehicles, captured by cameras, are learned by the color-faster R-CNN method 

for vehicle detection purposes. The other module estimated the velocity using 
the Kalman filter based on the data obtained from motion sensors. Finally, 

these two modalities are fused by the multimodal data fusion method to 

achieve the vehicle-tracking task. 
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blindness of data, reaching a more comprehensive 

consideration and a wiser decision. 

With the assistance of deep learning methods, connected 

vehicles is further improved and extended a closer relationship 

with other fields. One interesting perspective is treating 

vehicles as mobile components of home automation systems 

[28], whose ultimate goal is to increase the quality of the 

experience (QoE) of the residents. In the cyber layer, cloud 

computing [29], fog computing [30], and edge computing [31] 

are inseparable supportive technologies for data 

communication and computation.  

Meanwhile, urban computing [32] intends to collect data and 

solve some actual urban problems, such as determining gas 

consumption or estimating air quality. Therefore, vehicles are 

natural data collection and execution devices in this framework. 

The final target agrees with the connected vehicles, IoV, and 

urban computing, which is the establishment of smart cities [33] 

to improve the quality of our lives. 

III. THE PROPOSED METHOD 

Our proposed method fuses multimodal knowledge from image 

and velocity perspectives and contains two parallel modules, 

namely vehicle detection and velocity estimation. The former 

uses two features of target vehicles, gray-scale and colors, to 

provide candidates, and the latter estimates the possible period 

where the target occurs. After the multimodal information is 

fused, the outcomes should be more accurate than that of each 

individual one. We will discuss this process in detail.  

A. Faster R-CNN for Vehicle Tracking 

As mentioned previously, we apply a discriminative method, 

namely faster R-CNN, to detect and track vehicles. Similar to 

other methods in supervised learning, the intrinsic problem is to 

minimize a cost function, as  

𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗)𝑖 +
𝜆

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗)𝑖 .    (1) 

 

Where 𝑖  is the index of an anchor and 𝑝𝑖  refers to the 

probability of detecting the anchor as an object. If the anchor is 

positive, the value of  𝑝𝑖
∗ is 1 (0 otherwise), and the coordinates 

of the corresponding ground-truth box are 𝑡𝑖
∗. 𝑡𝑖 is that of the 

predicted box. The whole process of faster R-CNN can be 

divided into a classification and a regression procedure, whose 

losses are measured by  𝐿𝑐𝑙𝑠 and 𝐿𝑟𝑒𝑔, respectively.  𝑁𝑐𝑙𝑠 and 

𝑁𝑟𝑒𝑔 are normalization items, and the trade-offs are achieved 

by regularization parameter 𝜆 . 

The application of a region proposal network (RPN) seems to 

be the main reason for the outstanding performance of faster 

R-CNN. The function of RPN is basically to estimate the 

location of objects in images, thusly reducing the influence of 

the background. Compared to fast R-CNN, the acceleration is 

achieved by sharing convolutional layers. This process is 

similar to the comparison between CNN and feed-forward 

neuron networks, where CNN greatly reduces the complexity 

by sharing the weight.  

When only the faster R-CNN method is applied, the detection 

focuses on the appearance of vehicles and ignores other details, 

such as color. Thus, the only conclusion can be made on the 

types of vehicles, without revealing more specific information, 

as shown in the next section. Therefore, if faster R-CNN is 

applied directly to vehicle-tracking tasks, the results will not be 

acceptable. This motivates us towards multimodal data fusion 

to integrate more data to provide a comprehensive result.  

B. Color-Faster R-CNN 

Since the results of applying the faster R-CNN are not 

satisfactory, we turn to discover more modalities, one of which 

is color information.  

In original image recognition problems, extra information can 

be added either in series or in a parallel way. Faster R-CNN, 

however, behaves differently. Recall that faster R-CNN has 

two main processes, locating and then recognizing the objects. 

The process of locating objects relies on the classification, 

which is supervised instead of unsupervised. Thus, if a parallel 

framework is applied, color cannot be calculated since the 

algorithms have no target area. Therefore, we have to apply the 

color detection process after the location or objects have been 

found. 

The color feature is extracted using a color histogram, which 

counts the distribution of images in three channels: hue, 

saturation, and values (HSV). Notice that even though other 

bases, such as RGB, are also available, our experiments suggest 

using HSV. The basic idea of the color histogram is to quantify 

the color space into an 𝑠 × 1 vector, and each pixel maps into 

the vector. Thus, this vector is a representation of the image, or 

some region of an image. In most scenarios, the color histogram 

is an efficient tool for distinguishing objects with different 

colors. For objects with similar colors, however, it shows 

limitations. Thus, the color histogram cannot be applied 

individually. Combined with faster R-CNN, color-faster 

R-CNN is able to classify objects in the dimensions of color 

and shape, which is critical for many applications, especially in 

vehicle tracking, where the data captured are limited to a few 

modalities.  

C. Velocity Estimation by Kalman Filter 

Another modality we have applied in our method is velocity, 

which is estimated by the Kalman filter. In fact, the Kalman 

filter can handle a variety of parameters, such as position, 

velocity, or some angles. The reason for choosing velocity is 

that this quantity is our only accessible measurement by motion 

sensors, provided by the Henan Traffic Management Bureau. 

After acquiring the velocity, we can estimate the possible 

positions of our target vehicles. Thus, we can approximately 

estimate the indices of cameras and the period of its images 

being captured, based on the spatial relationships of the 

cameras.  

The process of estimating the velocity of target vehicles can 

be achieved by the Kalman filter, which is popular in object 

tracking problems, especially in automatic control. Specifically, 

the prior state and its error covariance of the target vehicle at 

time 𝑘 are expressed as  

𝑋̂𝑘 = 𝐴𝑋𝑘−1 + 𝛼𝑘,                                  (2) 

𝑃̂𝑘 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄𝑘,                                  (3) 
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where 𝐴 is the transition matrix, which is designed by physical 

relationships. 𝛼𝑘 is the uncertainty of the transition, which is 

usually assumed from a Gaussian distribution, 𝛼𝑘 ∼ 𝒩(0, 𝑄), 

where 𝑄 is the covariance. 𝑋 is a column vector of size 𝑛 × 1 , 

where each column is a measurement of the targets. Here, we 

simply apply two columns: the position and velocity of the 

vehicle(s) being tracked. 

 Then, we measure or observe the true state 𝑋𝑘 with 

𝑍𝑘 = 𝐵𝑋𝑘 + 𝛽𝑘,                                  (4) 

 

where 𝐵 is the observation matrix, extracting the observable 

parameter of state vector 𝑋. Similarly, 𝛽𝑘~𝒩(0, 𝑅) is the noise 

involved during the observation. Thus, the residual is obtained 

based on the difference between an actual measurement and a 

measurement prediction, as (𝑍𝑘 − 𝐵𝑋̂𝑘). Further, the systems 

will learn the optimal parameters for minimizing the residual, 

similar to the methods in supervised learning. After calculating 

the Kalman gain from (5), we are able to obtain the posteriori of 

the next state and covariance, as in (6) and (7). 

𝐾𝑘 = 𝑃̂𝑘𝐻𝑇(𝐻𝑃̂𝑘𝐻𝑇 + 𝑅)
−1

,                      (5) 

𝑋𝑘+1 = 𝑋̂𝑘 + 𝐾(𝑍𝑘 − 𝐵𝑋̂𝑘),                       (6) 

𝑃𝑘+1 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃̂𝑘,                               (7) 

 

This prediction-correction process continues until the residual 

reduces to an acceptable level or until all test data are used.  

 In our model, velocities of vehicles can be captured through 

cameras. Thus, we apply these velocities as our actual 

observations to update our prediction model.   

D. Multimodal Data Fusion  

 As the final process, we fuse both vehicle detection and 

velocity estimation for the vehicle-tracking task. Notice that 

more reasonable modalities can also be fused to improve the 

accuracy if necessary, even though we only present velocity. 

More modalities, however, may increase the burden of systems, 

whereas one less may decrease the accuracy. Therefore, 

choosing the modalities requires much attention. 

 The function of the velocities we applied is that they act as a 

filter to select important periods within all candidate features. 

Since each image of an object is converted into a feature vector 

through the CNNs, then all candidate features form a matrix 𝑇 

of size 𝑚 × 𝑛, where 𝑛 is the number of candidates and 𝑚 is 

the length of each feature. Thus, the velocity filter is a sparse 

vector 𝐹 of size 𝑛 × 1, with 𝑘 (𝑘 ≪ 𝑛) non-zero elements. The 

elements in filter 𝐹 are assumed to be of a normal distribution, 

as 𝐹~𝒩(𝜇, 𝜎2), where 𝜇  and 𝜎2  are related to the results 𝑋 

and 𝑃 from the Kalman filter, respectively. Notice that even the 

density function should be greater than zero. We manually set a 

threshold to force most elements in 𝐹  to be zero. Then, we 

calculate the dot production to obtain the filtered set, whose 

elements are used for comparison rather than the whole set of 𝑇, 

as  

𝐶 = 𝐹 ⊙ 𝑇.                               (8) 

 

The obtained matrix, 𝐶, is a sparse version of the feature matrix, 

where only 𝑘  non-zero features remain for comparison 

purposes, as demonstrated in Fig. 2. This will greatly reduce the 

time consumption and computational cost during the 

comparison process, since only 𝑘  objects remain to be 

compared.  

 In our simple model, only one extra modality is applied. 

Thus, we design a particular method for fusion. When a 

sophisticated scenario occurs, due to the data provided by 

sensors and requirements, a more general and robust fusion 

method is required. This may be difficult and may rely on 

promising topics across a variety of fields, such as the 

emergences of multimodal deep learning. Future work focuses 

on discovering the methods of multimodal deep learning and 

extending its capability to target problems with more intelligent 

requirements in connected vehicles. 

IV. EXPERIMENTS 

In this section, we present our simulation and experimental 

results. Firstly, we will present the unsatisfactory results when 

faster R-CNN is applied directly and the results of color are 

used faster R-CNN as a comparison. Then, the velocity 

estimation using the Kalman filter is shown. At last, we show 

the results of tracking the target vehicles. Most of our 

experiments are performed on an Ubuntu 14.04 LTS operating 

system (Intel@ Xeon(R) CPU E5-2630 0 @ 2.30GHz ×12, 

GeForce GTX 980Ti/PCle/SSE2). 

A. Vehicle Detection with faster R-CNN 

Firstly, we present the results of vehicle detection when 

faster R-CNN is directly applied without color information, as 

in Fig. 3. The time consumed by the training process is about 9 

hours, with 80 thousand iterations. Our data consist of 4710 

images, which are collected from actual surveillance cameras 

provided by the Henan Traffic Management Bureau.  

Fig. 3 only presents four images out of all the detection 

results as a demonstration. Each object is labeled with a 

different color. The categories we apply are cars, trucks, buses, 

and motors, without special treatment for vans or other inter 

classes of vehicles. One interesting finding in panel (a) is the 

 
Fig. 2.  The demonstration of applying the filter vector to candidate features. 

For a more direct demonstration, we have drawn the original images instead of 

its corresponding features. When the filter vector is applied, which is provided 
by the velocity estimation process, the number of candidate images or features 

are greatly reduced and only a few exist (highlighted by yellow edges). Thus, 

the feature matching or comparison process occurs only within the 

remainders, which significantly reduces the time consumption and 

computational cost.  
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proof of the insensibility to color in the faster R-CNN, since 

both red and white trucks fall into the same class. Furthermore, 

this proof is solidified when two vehicles with similar colors 

are classified differently, as in panel (b). Therefore, if our 

intention is to track vehicles, color insensibility is not 

acceptable, since it brings much confusion to the results. Thus, 

a color-sensible detection is required, which motivates us to 

discover color-faster R-CNN, which is based on color features 

extracted by the color histogram method. We present the results 

of the color detection based on the categories of trucks, as in 

Fig. 4.  

Panel (a) is the inquired image, which is manually inputted 

and expected to find the closest match. In fact, this mapping 

process can be finished with the original faster R-CNN method. 

Judging by the performance shown in Fig. 3, this may not be a 

wise choice. Images in panel (b) have the most similar results to 

the input in terms of color. Intuitively, all images contain a 

detected red truck, which is desired. Even though the results 

cannot guarantee to be the most similar in shape, they are still 

acceptable and valid since the comparison is based on the 

categories of trucks, which is already filtered by the faster 

R-CNN method.  

This can also be regarded as an instance of application of 

multimodal data, even though shapes and colors are not 

technically two modalities. When color information is included, 

the results are more accurate and contain more detailed 

information. This is a scenario that a single type of data cannot 

achieve.  

One problem is that we have to compare the input images 

with all candidates individually, which introduces a great cost 

especially when the set of images being compared is large. 

Meanwhile, shapes and colors cannot ensure that we have a 

single output, which is the vehicle most identical to the inquirer. 

Two opposite outcomes may occur here. One is that the output 

may fail to match the identical vehicles. This is probably caused 

by failures in selecting features. In other words, the shape or 

color may not be the optimal choice for detecting the vehicles 

for this task or for this database. On the other hand, when the 

output still contains a large number of images, the features may 

be deficient, which motives us to discover more features other 

than shape and color.  

Based on these discussions, we tend to apply a very different 

modality, velocity, captured by different sensors. Combining 

the information of multiple modalities may discover a novel 

feature and perspective for real applications, such as more 

efficient features for vehicle detection and tracking to improve 

the accuracy, which will be further discussed in the next 

subsection. 

B. Velocity Estimation 

Now, we estimate the velocity of the target vehicles based on 

the Kalman filter. The parameters in state vector 𝑋 are position 

and velocity, and only the velocity can be observed. The true 

velocity is assumed to be related to that of previous state, which 

is valid since the velocity changes continuously with little 

possibility of a sudden shifting. Ideally, the velocity can be 

estimated and observed at each state so that the system can 

efficiently learn the hidden true velocity. This, however, is 

highly unpractical. One straightforward reason is that our data 

are collected from surveillance systems which cannot record 

 
Fig. 3.  Vehicle detection with faster R-CNN. Images from four different real 

surveillance cameras are presented. Different objects are indicated by colors. 
Notice that faster R-CNN is sensitive to the shapes of objects but not to color. 

 
Fig. 4.  A demonstration of the color-faster R-CNN method. When a target vehicle (panel (a)) is inquired, the top 20 similar vehicles are detected among all 

candidates, as in panel (b). 
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data when vehicles are beyond the sight of cameras. With 

limited data, the accuracy of detection cannot be ensured. 

Meanwhile, if the measurements and updates occur at each 

state, the computational cost is high. Therefore, we fix this 

problem by balancing these two extremes by mixing the truly 

observed data with artificial data, which are generated 

according to the previous state and noise. This is similar to the 

idea of semi-supervised learning, which combines labeled 

(observed) data with unlabeled ones. 

Specifically, we generate the true velocity sequences 

individually and insert the observed values evenly into this 

sequence. When altering the variance of the generation process, 

the results are similar to a continuous outcome. Thus, we 

estimate the hidden sequence with the Kalman filter, as in Fig. 

5.  

Fig. 5 presents the estimation results from four instant 

vehicles with different variances of generating the hidden true 

values of velocities, according to the observed ones from 

motion sensors. It is straightforward that the estimated values 

can track the true ones, even if they change continuously. When 

the true values are forced against the current estimation, it 

shows a rapid change in the curves, as in panels (b) and (c), and 

the estimation can adapt to that change immediately. Therefore, 

with these estimated values, we can approximately predict the 

velocity anywhere. Furthermore, we apply the results so that 

they locate the appropriate cameras and the most probable 

period when the vehicle is across that camera, thusly reducing 

the computational cost and time spent on comparing the 

features of target vehicles and those of all vehicles captured by 

all surveillance cameras so that a more efficient vehicle 

tracking can be achieved.    

C. Vehicle Tracking 

Finally, we present our vehicle-tracking results in an urban 

area in Zhengzhou, Henan province. Massive cameras exist so 

that we can apply the velocity estimations, discussed previously, 

to determine the possible cameras that capture the target 

vehicles and their corresponding times. The results are 

presented in Fig. 6, where only four vehicles (referred to with 

lowercase letters and colors), whose velocities are estimated in 

Fig. 5, and five cameras (referred to with uppercase letters) are 

shown. The numbers that are attached to letters is the order that 

the vehicles passed through these cameras. For instance, the 

path of red truck (a) is D-B-A, marked by a1-a2-a3. Thus, the 

trajectories of the target vehicles can be obtained. In fact, 

traditional object detection methods can also achieve a similar 

accuracy when they search and compare all images from all 

cameras. However, with multimodal data fusion, considering 

velocity as another modality in this task, we can select 

candidate cameras and reduce the number of cameras being 

compared, which greatly reduces the time consumption and the 

requirement of the hardware.   

Nevertheless, several problems still exist, one of which is 

that cameras cannot cover every area. The information from 

blind gaps between cameras is inaccessible, thusly we can only 

guess the states of vehicles there, which will have a negative 

effect on the accuracy. Another problem is the validation. Since 

we are using real data instead of existing data sets, we have no 

labels or prior knowledge of the data. Therefore, we apply the 

information from license plates which validate the identity of 

the vehicles. Furthermore, the velocity observed by motion 

sensors may not truly reveal, or even fail, to capture the velocity 

of target vehicles, which may affect the accuracy of the 

estimation.  

Therefore, although some satisfactory results are presented, 

our framework is still an attempt for both vehicle tracking tasks 

and the multimodal data fusion method.  

V. CONCLUSION 

In this paper, we have proposed a multimodal data fusion 

framework for vehicle tracking based on vehicle detection and 

velocity estimation. The vehicle detection process is achieved 

using the color-faster R-CNN, which is enhanced by the 

capability of extracting color information by the color 

 
Fig. 5.  Velocity estimation of target vehicles based on the Kalman filter. The 

values of the true observation (red lines) from surveillance cameras are at 𝑡 =
[0,2000,4000], which can be successfully traced by the estimated values 

(blue lines).  

 
Fig. 6.  Velocity tracking in an urban area. Only five cameras (marked by 

uppercase letters with circles) and four vehicles are presented as a 
demonstration, distinguished by letters as well as colors. The numbers 

attached to the letters on the map is the order of the corresponding vehicles 

passing through the location of the cameras.  
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histogram method, attached to the output of faster R-CNN. On 

the other hand, velocity, estimated by the Kalman filter, 

provides additional information for locating the possible time 

of appearance, thus the set being compared is shrunk, 

decreasing the time consumption and computational cost. The 

experimental results have shown that the color-faster R-CNN 

can detect vehicles accurately in terms of shapes and colors, 

which are the main evidences for human detection. After 

filtering the velocity modalities, the only limited features are 

compared with the inquiry images. The final trajectory of the 

target vehicles in the actual environments has also been 

presented. Our future work will focus on discovering 

sophisticated modalities for vehicle tracking and study 

advanced methods to fuse them in order to improve the 

capability and robustness of our model by discovering the 

potential of multimodal deep learning or applying deep 

learning methods for multimodal data fusion tasks. Meanwhile, 

improvements in the capability of sensors, such as providing 

more modalities, could lead to a more comprehensive and 

accurate outcome. 

REFERENCES 

[1] Mladenovic, M. N., & Abbas, M. M. (2013, October). Self-organizing 

control framework for driverless vehicles. In Intelligent Transportation 
Systems-(ITSC), 2013 16th International IEEE Conference on (pp. 

2076-2081). IEEE. 

[2] Bello, O., & Zeadally, S. (2016). Intelligent device-to-device 
communication in the Internet of things. IEEE Systems Journal, 10(3), 

1172-1182. 

[3] Asadi, A., Wang, Q., & Mancuso, V. (2014). A survey on 
device-to-device communication in cellular networks. IEEE 

Communications Surveys & Tutorials, 16(4), 1801-1819. 

[4] Gerla, M., Lee, E. K., Pau, G., & Lee, U. (2014, March). Internet of 
vehicles: From intelligent grid to autonomous cars and vehicular clouds. 

In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 

241-246). IEEE. 
[5] Alam, K. M., Saini, M., & El Saddik, A. (2015). Toward social Internet of 

vehicles: Concept, architecture, and applications. IEEE Access, 3, 

343-357. 
[6] Zhang, Y., Tian, F., Song, B., & Du, X. (2016). Social vehicle swarms: A 

novel perspective on socially aware vehicular communication 

architecture. IEEE Wireless Communications, 23(4), 82-89. 
[7] Lahat, D., Adali, T., & Jutten, C. (2015). Multimodal data fusion: an 

overview of methods, challenges, and prospects. Proceedings of the IEEE, 

103(9), 1449-1477. 
[8] Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable systems 

for big data analytics: A technology tutorial. IEEE Access, 2, 652-687. 

[9] Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). 
Multisensor data fusion: A review of the state-of-the-art. Information 

Fusion, 14(1), 28-44. 

[10] El Faouzi, N. E., Leung, H., & Kurian, A. (2011). Data fusion in 
intelligent transportation systems: Progress and challenges–A survey. 

Information Fusion, 12(1), 4-10. 

[11] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 
521(7553), 436-444. 

[12] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards 
real-time object detection with region proposal networks. In Advances in 

neural information processing systems, pp. 91-99. 

[13] Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. Y. (2011). 
Multimodal deep learning. In Proceedings of the 28th international 

conference on machine learning (ICML-11) (pp. 689-696). 

[14] Weng, S. K., Kuo, C. M., & Tu, S. K. (2006). Video object tracking using 
adaptive Kalman filter. Journal of Visual Communication and Image 

Representation, 17(6), 1190-1208. 

[15] Wu, Y., Lim, J., & Yang, M. H. (2013). Online object tracking: A 
benchmark. In Proceedings of the IEEE conference on computer vision 

and pattern recognition (pp. 2411-2418). 

[16] Collins, R. T., Liu, Y., & Leordeanu, M. (2005). Online selection of 
discriminative tracking features. IEEE transactions on pattern analysis 

and machine intelligence, 27(10), 1631-1643. 

[17] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet 
classification with deep convolutional neural networks. In Advances in 

neural information processing systems (pp. 1097-1105). 

[18] Lowe, D. G. (2004). Distinctive image features from scale-invariant 
keypoints. International journal of computer vision, 60(2), 91-110. 

[19] Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for 

human detection. In Computer Vision and Pattern Recognition, 2005. 
CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 

886-893). IEEE. 

[20] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature 
hierarchies for accurate object detection and semantic segmentation. In 

Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp. 580-587. 

[21] Gu, C., Lim, J. J., Arbeláez, P., & Malik, J. (2009, June). Recognition 

using regions. In Computer Vision and Pattern Recognition, 2009. CVPR 
2009. IEEE Conference on (pp. 1030-1037). IEEE. 

[22] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE International 

Conference on Computer Vision, pp. 1440-1448. 
[23] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards 

real-time object detection with region proposal networks. In Advances in 

neural information processing systems pp. 91-99. 
[24] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only 

look once: Unified, real-time object detection. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition pp. 779-788. 

[25] Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[J]. arXiv 

preprint arXiv:1612.08242, 2016. 

[26] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. arXiv 
preprint arXiv:1703.06870. 

[27] Atrey, P. K., Hossain, M. A., El Saddik, A., & Kankanhalli, M. S. (2010). 

Multimodal fusion for multimedia analysis: a survey. Multimedia systems, 
16(6), 345-379. 

[28] Gomez, C., & Paradells, J. (2010). Wireless home automation networks: 

A survey of architectures and technologies. IEEE Communications 
Magazine, 48(6). 

[29] Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. 

[30] Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012, August). Fog 
computing and its role in the Internet of things. In Proceedings of the first 

edition of the MCC workshop on Mobile cloud computing (pp. 13-16). 

ACM. 
[31] Pang, H., & Tan, K. L. (2004, March). Authenticating query results in 

edge computing. In Data Engineering, 2004. Proceedings. 20th 

International Conference on (pp. 560-571). IEEE. 
[32] Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban computing: 

concepts, methodologies, and applications. ACM Transactions on 

Intelligent Systems and Technology (TIST), 5(3), 38. 
[33] Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mellouli, S., Nahon, 

K., ... & Scholl, H. J. (2012, January). Understanding smart cities: An 

integrative framework. In System Science (HICSS), 2012 45th Hawaii 
International Conference on (pp. 2289-2297). IEEE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

BIOGRAPHY 

Yue Zhang received his B.S. degree in 

electronic information science and 

technology from the University of 

Electronic Science and Technology of 

China (UESTC), Chengdu, China in 2012 

and his M.S. degree with Merit in 

computational intelligence from Sheffield 

University, Sheffield, U.K. in 2013. He is 

currently working towards his Ph.D. 

degree from Xidian University, Xi’an, China. His research 

interests include machine learning, multi-agent reinforcement 

learning, deep reinforcement learning, game theory, Internet of 

Things, and Big data. 

 

 

Bin Song received his BS, MS, and PhD 

in communication and information 

systems from Xidian University, Xi’an, 

China in 1996, 1999, and 2002, 

respectively. In 2002, he joined the 

School of Telecommunications 

Engineering at Xidian University where 

he is currently a professor of 

communications and information 

systems. He is also the associate director 

at the State Key Laboratory of 

Integrated Services Networks. He has authored over 50 journal 

papers or conference papers and 30 patents. His research 

interests and areas of publication include video compression 

and transmission technologies, video transcoding, error- and 

packet-loss-resilient video coding, distributed video coding, 

and video signal processing based on compressed sensing, big 

data, and multimedia communications. 

 

 

 

Xiaojiang (James) Du is a tenured 

associate professor in the Department 

of Computer and Information Sciences 

at Temple University, Philadelphia, 

USA. Dr. Du received his M.S. and 

Ph.D. degrees in electrical engineering 

from the University of Maryland 

College Park in 2002 and 2003, 

respectively. His research interests are 

wireless communications, wireless 

networks, security, and systems. He has 

authored over 170 journal and conference papers in these areas 

as well as a book, published by Springer. He won the best paper 

award at IEEE GLOBECOM 2014 and the best poster 

runner-up award at the ACM MobiHoc 2014. Dr. Du served as 

the lead Chair of the Communication and Information Security 

Symposium of the IEEE International Communication 

Conference (ICC) 2015 and a Co-Chair of Mobile and Wireless 

Networks Track of IEEE Wireless Communications and 

Networking Conference (WCNC) 2015. He is (was) a 

Technical Program Committee (TPC) member of several 

premier ACM/IEEE conferences. Dr. Du is a Senior Member of 

IEEE and a Life Member of ACM. 

 

 

Mohsen Guizani (S’85–M’89–

SM’99–F’09) received his bachelor's 

(with distinction) and master's degrees 

in electrical engineering and master's 

and doctorate degrees in computer 

engineering from Syracuse University, 

Syracuse, NY, USA in 1984, 1986, 

1987, and 1990, respectively. He is 

currently a professor and the ECE 

Department chair at the University of 

Idaho. Previously, he served as the 

associate vice president of Graduate 

Studies, Qatar University, chair of the Computer Science 

Department, Western Michigan University, and chair of the 

Computer Science Department, University of West Florida. He 

also served in academic positions at the University of 

Missouri-Kansas City, University of Colorado-Boulder, 

Syracuse University, and Kuwait University. His research 

interests include wireless communications and mobile 

computing, computer networks, mobile cloud computing, 

security, and smart grid. He currently serves on the editorial 

boards of several international technical journals and is the 

founder and the editor-in-chief of the Wireless 

Communications and Mobile Computing journal (Wiley). He is 

the author of nine books and more than 400 publications in 

refereed journals and conferences. He guest edited a number of 

special issues in IEEE journals and magazines. He also served 

as a member, chair, and general chair at a number of 

international conferences. He was selected as the Best Teaching 

Assistant for two consecutive years at Syracuse University. He 

received the Best Research Award from three institutions. He 

was the chair of the IEEE Communications Society Wireless 

Technical Committee and the chair of the TAOS Technical 

Committee. He served as the IEEE Computer Society 

Distinguished Speaker from 2003 to 2005. 

 


