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Abstract—The present study focuses on the automated 

learning of driver braking “signature” in the presence of 

road anomalies, using smartphones. Our motivation is to 

improve driver experience using preview information from 

navigation maps. Smartphones facilitate, due to their 

unprecedented market penetration, the large-scale 

deployment of Advanced Driver Assistance Systems 

(ADAS). On the other hand, it is challenging to exploit 

smartphone sensor data because of the fewer and lower 

quality signals, compared to the ones on board. Methods for 

detecting braking behavior using smartphones exist, 

however, most of them focus only on harsh events. 

Additionally, only a few studies correlate longitudinal 

driving behavior with the road condition. In this paper, a 

new method, based on deep neural networks and the sliding 

correlation coefficient, is proposed for the spatio-temporal 

correlation of road anomalies and driver behavior. A 

unique Deep Neural Network structure, that requires 

minimum tuning, is proposed. Extensive field trials were 

conducted and vehicle motion was recorded using 

smartphones and a data acquisition system, comprising an 

IMU and differential GPS. The proposed method was 

validated using the probabilistic Receiver Operating 

Characteristics method. The method proves to be a robust 

and flexible tool for self-learning driver behavior. 

 
Index Terms—Advanced Driver Assistance Systems, Braking 

behavior, Neural Networks, Smartphones, Road condition. 

I. INTRODUCTION 

Over the last decade, mobile phones, transformed from simple 

cell devices for making calls, to powerful sensing, 

communication and computing devices [1]. First, smartphones 

have numerous sensors embedded, for example, GPS, 

accelerometers, gyroscope and magnetometer [2]. Second, the 

upcoming 5th generation of wireless systems (5G) will provide 

high quality and uninterrupted mobile services [3]. Third, it is 
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estimated that by 2020, 70% of earth's population will be a 

smartphone user [4]. In this context, smartphones can facilitate 

the rapid and large-scale deployment of Intelligent 

Transportation Applications (ITS) [5]. 

Smartphones are increasingly exploited for monitoring driver 

behavior [6]. Some recent examples include Singht et al. who 

detected sudden braking and lateral maneuvers by analyzing 

vehicle motion using Dynamic Time Warping [7]. Predic and 

Stojanovic [8] classified driver behavior by correlating driving 

data to pre-recorded samples. Castignani et al. [9] assigned 

driving scores using smartphone data and fuzzy logic. 

Saiprasert et al. monitored over-speeding as a means to classify 

risky driving [10]. Insurance industry is responding to this trend 

by gradually introducing smartphone-based Pay-as-You-Drive 

schemes [11].  

Although the usage of smartphones for ITS is desirable, there 

are standard challenges that need to be overcome. These are the 

free position of a smartphone in the vehicle, the low accuracy 

of GPS position/speed signals in urban areas and the high noise 

to signal ratio in the accelerometer/gyroscope signals. 

Regarding the first, some applications require mounting the 

smartphone at a fixed position or dynamically reorienting its 

axes by real-time computing the Euler angles. The Euler angles 

are computed using the magnetometer readings and the 

direction of gravity or by using the longitudinal, lateral and 

vertical acceleration along the smartphone’s axes [12]-[13]. 

Smartphone GPS signal accuracy was studied in [14]. In 

general, smartphone GPS measurements were consistent. 

However, in obscured environments the deviation from ground 

truth deteriorated by a factor of two. Crowdsensing and 5G 

technology will considerably improve positioning accuracy in 

urban areas [15]. With respect to the noisy accelerometer and 

gyroscope signals, these can heavily affect driving analytics. To 

this end, many methods depending on the end application have 

been proposed [16].  

The present study focuses on driver comfort and particularly 

on modeling the driver braking behavior in the presence of 
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discrete road anomalies. Most of the studies, found in the 

literature, focus either on braking for safety or on road 

anomalies detection without considering the human element. 

We extend the usual scope of analysis by correlating driver 

behavior and road condition. The aim is to learn driver 

preferences so that an intelligent ADAS adapt and maximize 

driver comfort, when preview map information is used [17].  

To this end, a flexible method is required that can adapt to 

human subject response and vehicle characteristics. We 

propose a data-based method using a unique Deep Neural 

Network structure, suitable for the analysis of multivariate time 

series [18], [19]. Extensive field trials, using different vehicles 

and drivers, demonstrated that the method performs robustly 

and requires minimum tuning. Furthermore, it is the first time 

that a new visualization scheme can reveal in one figure a 

driver’s braking preferences for different types of road 

anomalies and speeds. This method can be extended to other 

scenarios like braking before turning. 

The rest of the paper is structured as follows: in section 2 

studies on smartphone-based road condition monitoring are 

reviewed. Section 3 describes the experimental part. Section 4 

describes the Anomaly Detection Filter (ADF), while in section 

5 the sliding correlation coefficient is applied and numerical 

results are discussed. Finally, in section 6, we set out the 

conclusions obtained and discuss future steps. 

II. RELATED WORK: ROAD CONDITION MONITORING 

One of the first contributions in the field of smartphone-

based road condition monitoring was Nericell [20]. Nericell 

utilized a GPS receiver, GSM for cellular localization and a 3-

axis accelerometer sensor. The acceleration signal was sampled 

at 310 Hz, a rate which is high even with today’s standards. To 

detect braking incidences, the mean of longitudinal acceleration 

𝑎𝑥 was calculated over a sliding window. When the mean value 

exceeded a predefined threshold, a braking event was declared. 

The ground truth was established using the GPS signal, despite 

that GPS signal is not always accurate. For bump detection, two 

different criteria were employed, depending on the speed of the 

vehicle. At speeds, greater than 7 𝑚/𝑠 the surge in vertical 

acceleration 𝑎𝑧 was used. When the spike along the vertical 

acceleration signal 𝑎𝑧 was greater than a predefined threshold 

𝑇2, a bump was declared. At speeds, lower than 7 𝑚/𝑠 the 

algorithm searched for a sustained dip in 𝑎𝑧, reaching below a 

threshold 𝑇3 and lasting at least 20 ms. The detection of road 

anomalies at low speeds was less successful, as stated in [12].  

Perttunen et al. detected road anomalies by recording the 

acceleration signal at 38Hz and GPS position at 1 Hz [21]. The 

raw signals were filtered by applying a Kalman filter. 

Subsequently, features were extracted using sliding windows. 

The standard deviation, mean value, variance, peak-to-peak 

value, signal magnitude area, 3rd order autoregressive 

coefficients, tilt angles and root mean square for each 

dimension of the acceleration signal and the correlation 

between the signals in all dimensions were calculated. 

Additional features were used by extracting the Fast Fourier 

Transformation energy from 17 frequency bands in each 

acceleration direction. A linear transformation was applied to 

make the features speed independent. Support Vector Machines 

(SVMs) were applied to perform the classification. Support 

Vector Machines is a supervised machine learning method, 

requiring labeling of all road anomalies. Ground truth was 

produced using two independent labelers. The best performance 

achieved 82% sensitivity and 18% false negatives rate. 

Douangphachanh and Oneyama presented a method for 

estimating the International Roughness Index (IRI) of road 

segments using smartphones [22]. Four different cars were used 

in the experiments and two smartphones at different positions 

in the vehicle. The sampling rate was 100 Hz. At this rate, the 

smartphone’s processing power is almost exclusively used for 

the measurement purpose. The raw data were pre-processed 

using a high pass filter. It was assumed that road anomalies 

cause only high frequency accelerations. A linear relationship 

between IRI and the magnitude of acceleration signal at specific 

frequency bands was derived. Correlation ranged between 0.6 

and 0.78. A road survey vehicle was used to generate the ground 

truth. IRI was estimated for 100 m long road sections, which is 

rather too long for discovering discrete road anomalies. 

Vittorio et al. proposed a threshold-based method [12]. The 

accelerometer and GPS data were transferred at 1 Hz frequency 

to a central server. First, the data were filtered to remove the 

low frequency components. Then the minimum, average and 

maximum acceleration values of every batch of measurements 

was calculated. The high-energy events were identified by 

observing the vertical acceleration impulse and comparing it to, 

heuristically derived, thresholds. The algorithm’s best 

performance achieved more than 80% correct positive road 

anomalies classifications and 20% percentage of false positives. 

MAARGHA, developed by Rajamohan et al., is different to 

the aforementioned approaches because it employed image 

processing [23]. Images using the smartphone camera were 

captured at a frequency 0.5 Hz. The focus was 1 − 2 m ahead of 

the vehicle. The GPS location and speed were sampled at 1 Hz. 

The accelerometer was sampled at 15 Hz. Features were 

extracted in sliding windows, 2s long. A high pass filter was 

employed to to the raw signal. Classification was performed 

using the K-Nearest Neighbor (K-NN) algorithm. Under clear 

sky the classification was 100% accurate, while in segments 

where the road was laden with shadows of buildings the 

accuracy degraded to roughly 50%.  

In conclusion, none of the above studies attempted to 

correlate longitudinal driving behavior and the road condition. 

However, drivers have different responses depending on the 

road anomalies, driving style and vehicle. This study, attempts 

to fill this gap, using a flexible method based on a widely 

available tool, the smartphone. 

III. EXPERIMENTAL PART 

A. Smartphone-based data acquisition 

Three different smartphones were used in the field trials. All 

smartphones were equipped with GPS receivers. They also 

comprised a tri-axial accelerometer and tri-axial electronic 

compass. The smartphone was positioned on the box behind the 
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gearbox handle, see Fig. 1. A Gecko pad was used to minimize 

any relative movement between the smartphone and the vehicle. 

The sampling rate for the accelerometer, gyro and compass 

sensors was 10 Hz. The sampling frequency of GPS position 

and velocity was 1 Hz. The vehicle speed in urban areas ranged 

between 2.7-11.1 m/s. The maximum vehicle speed was 16.6 

m/s. At higher speeds anomaly detection becomes rather 

straightforward due to the intensity of the event.  

 

 

Fig. 1: Smartphone position during the field trials 

B. Instrumented vehicle data acquisition system 

The test vehicle is a Ford Fiesta equipped with a motion data 

acquisition system, VBOX 3i data logger with dual antenna. 

The data logger uses a GPS/GLONASS receiver, logging data 

100 times a second. An inertial measurement unit (IMU) is 

integrated into VBOX and a Kalman Filter is implemented to 

improve all parameters measured in real-time. Velocity and 

heading data were calculated from the Doppler Shift effect in 

the GPS carrier signal. The following CAN- bus signals were 

also logged:  engine speed, steering angle, gear position, throttle 

pedal position, brake pedal position, brake pedal (on/off), clutch 

pedal, handbrake, wheel speeds, vehicle longitudinal 

acceleration and vehicle lateral acceleration. Video recording 

took place during the field trials. The signals obtained from 

VBOX in combination with the video footages were used to 

generate the ground truth. 

C. Test Routes 

Three experiments were conducted. The first experiment was 

carried out on a route at the center of Coventry City (Fig. 2). 

The driver drove the same route from point A to point B five 

times, following five different braking behaviors (a) no braking, 

(b) braking over and just after, (c) just before, (d) “normally 

before” and, (e) “quite before” the road “anomalies”. The 

second experiment was carried out with additional drivers at a 

different location, the campus of the National and Technical 

University of Athens, Greece. The campus contains several 

speed bumps, at known positions. The location was chosen 

because it was easier for the driver to follow different average 

speeds and the route also has significant road slope that may 

potentially mislead the classifier. The third experiment was 

conducted to monitor the naturalistic behavior of drivers. It was 

held at various locations including Coventry City entry routes, 

U.K. and Zografou-Ilissia, Greece.  

 

 
Fig. 2. (color online) Vehicle route (blue line) in Experiment I. Field trials were 
conducted in Coventry. 

D. Data collection - Ground truth 

During the experiments, the X and Z-axis acceleration from 

VBOX and the position of the pedal brake from the OBDII port 

were extracted. Simultaneously, we recorded the X and Z-axis 

acceleration data using the smartphone sensors. Thus, for each 

route, we constructed files with the following columns: Time, 

X-axis acceleration that extracted from VBOX, Z-axis 

acceleration that extracted from VBOX, braking pedal position 

that extracted from VBOX, X-axis acceleration that extracted 

from smartphone sensor and Z-axis acceleration that extracted 

from smartphone sensor. As ground truth, we used the data 

extracted from VBOX and OBDII port. Additionally, video 

recordings of the road segment ahead of the vehicle 

supplemented with audio comments were collected.  

IV. ANOMALY DETECTION FILTER  

The Anomaly Detection Filter (ADF) is based on the Deep 

Neural Networks (DNNs) paradigm. DNNs have not been 

extensively applied in time series modeling, but recent 

applications in other areas demonstrated their potential [24]. In 

[19] DNNs were applied for the first time in the detection of 

road anomalies. The architecture of the DNN is presented in 

Fig. 3.  The ADF comprises 5 steps. In the first step the signal 

is de-noised. In the second step, a subset of the time series is 

used to train the DNN. The subset corresponds to data generated 

in a smooth ride. In the third step, the error between the de-

noised time series and the one generated by DNNs is calculated. 

In the fourth step the Hilbert transform of the error signal is 

computed. In the fifth step the ADF outcome is derived.  

This study further develops [19] by detecting also braking 

events and correlating them to the vertical vehicle response. 

A. Signal decomposition 

The first step in the proposed method is the decomposition of 

a time series 𝑥(𝑡) using wavelets. Wavelets can detect 

anomalies of short duration better than the Fourier transform 

[25]. Furthermore, they analyze a signal in multiple scales, a 

very useful property for distinguishing nonlinear signals. For 

example, Fig. 4 presents the spread of Holder exponents 

obtained when analyzing the acceleration signal for a smooth 

(red color) and an anomalous road segment (blue color). A 
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signal 𝑥(𝑡) is decomposed into different levels of detail, by 

convolving wavelet 𝜓𝑚,𝑛 and signal 𝑥(𝑡): 

 

 
Fig. 3. (color online) Anomaly Detection Filter algorithm: a) Flow chart b) 

Daubechies 9 wavelet basis for de-noising the raw signal c) Energy temporal 

evolution d) Deep neural network architecture for learning the patterns in and 
between different time scales. 

𝜓𝑚,𝑛(𝑡) = 2−𝑚/2 ∙ 𝜓 ∙ (2−𝑚 ∙ 𝑡 − 𝑛) (1) 

 

𝑇𝑚,𝑛 = ∫ 𝑥(𝑡) · 𝜓𝑚,𝑛(𝑡)
∞

−∞

· 𝑑𝑡 
 

(2) 

where 𝑇𝑚,𝑛 are the discrete wavelet transform values given on 

a scale-location grid of index 𝑚, 𝑛. The integers 𝑚, 𝑛 control 

the wavelet dilation and translation respectively. The inverse 

discrete wavelet transform reconstructs signal 𝑥(𝑡) using 

coefficients 𝑇𝑚,𝑛 and the wavelet basis 𝜓𝑚,𝑛: 

 

𝑥(𝑡) = ∑ ∑ 𝑇𝑚,𝑛 ∙ 𝜓𝑚,𝑛(𝑡)

∞

𝑛=−∞

∞

𝑚=−∞

 
(4) 

 

To obtain a multi-resolution of signal 𝑥(𝑡), the use of a scaling 

function φ(t) is necessary:  

 

𝜑𝑚,𝑛(𝑡) = 2−𝑚/2 ∙ 𝜑 ∙ (2−𝑚 ∙ 𝑡 − 𝑛) (5) 

 

∫ 𝜑0,0(𝑡) · 𝑑𝑡
∞

−∞

= 1 
(6) 

 

The scaling function is convolved with signal 𝑥(𝑡) to 

produce the approximation coefficients 𝑆𝑚,𝑛: 

 
Fig. 4: (color online) Multifractal analysis: Spread of the Holder exponent 

values for a road segment with (blue) and without anomalies (red). 

 

𝑆𝑚,𝑛 = ∫ 𝑥(𝑡) · 𝜑𝑚,𝑛(𝑡)
∞

−∞

· 𝑑𝑡 
(7) 

and obtain a continuous approximation of signal 𝑥𝑚(𝑡), at 

scale 𝑚: 

𝑥𝑚(𝑡) = ∑ 𝑆𝑚,𝑛 ∙

∞

−∞

𝜑𝑚,𝑛(𝑡) 
 

(8) 

 

where 𝑥𝑚(𝑡) is the approximation of signal x(t), at scale 𝑚. 

Combining Equations (4) & (8), signal 𝑥(𝑡) becomes: 

 

𝑥(𝑡) = ∑ 𝑆𝑚0,𝑛 ∙

𝑛=∞

𝑛=−∞

𝜑𝑚0,𝑛(𝑡)

+ ∑ ∑ 𝑇𝑚,𝑛 ∙ 𝜓𝑚,𝑛(𝑡)

∞

𝑛=−∞

𝑚0

𝑚=−∞

 

 

 

(9) 

 

If 𝑑𝑚(𝑡) is the signal detail, at scale 𝑚: 

 

𝑑𝑚(𝑡) = ∑ 𝑇𝑚,𝑛 ∙ 𝜓𝑚,𝑛(𝑡)

∞

𝑛=−∞

 
 

(10) 

 

then (9) is rewritten as: 

 

𝑥(𝑡) = 𝑥𝑚0(𝑡) + ∑ 𝑑𝑚(𝑡)

𝑚0

𝑚=−∞

 

 

(11) 

  

𝑥𝑚−1(𝑡) = 𝑥𝑚(𝑡) + 𝑑𝑚(𝑡) (12) 

 

Equation (12) describes how to obtain the multiresolution 

analysis of the signal. The signal approximation 𝑥𝑚−1(𝑡) is 

obtained if the signal detail 𝑑𝑚(𝑡), at an arbitrary scale 𝑚, is 

added to the approximation 𝑥𝑚(𝑡) at that scale. 

To remove noise from signal 𝑥(𝑡), a threshold 𝜆 is defined 

and the detail coefficients 𝑇𝑚,𝑛 are adjusted according to: 
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𝑇𝑚,𝑛 = {
0, 𝑖𝑓 |𝑇𝑚,𝑛| < 𝜆  

𝑇𝑚,𝑛, 𝑖𝑓 |𝑇𝑚,𝑛| ≥ 𝜆 
 

(13) 

 

𝑥𝑑(𝑡) = 𝑥𝑚0(𝑡) + ∑ 𝑑𝑑𝑚(𝑡)

𝑚0

𝑚=−∞

 

(14) 

  

where 𝑑𝑑𝑚(𝑡) is the filtered signal detail, at scale 𝑚. 

Different wavelet bases were investigated and among db2, 

db3, db4, db5, db6, db7, db8, db9, and db10, db9 achieved the 

best performance. Fig. 5 shows the distance, obtained using 

Dynamic Time Warping, between the different wavelet bases 

and the sample signal utilized for training the DNN.  

 

 

Fig. 5: a) Distance, using dynamic time warping, between wavelet bases db2, 

db3, db4, db5, db6, db7, db8, db9, and db10 and the training signal. 

B. Deep Neural Network structure 

The signals extracted using the wavelet analysis feed a DNN, 

that is trained to predict 𝑥𝑑. The training data for the DNN are 

obtained while driving on smooth and slightly rough road 

segments. No intense braking events are included in the training 

data. Eventually, semi-supervised learning is employed; only 

training data relevant to smooth and slightly rough road 

conditions are included. Thus, it is not required to collect and 

record road anomalies for training the DNN, as is required in 

other methods e.g. SVMs. For the application deployment, a 

calibration phase is required during which the driver classifies 

the road condition or driving behavior as normal. In the 

calibration phase, the weighted acceleration according to ISO 

2631-1:1997 is also calculated with the purpose to normalize 

driver’s subjective input.  

DNN's architecture is shown in Fig. 3(d). The first part is a 

set of stacked NNs that models the filtered time series 𝑥𝑑 at 

different time scales. The second part is an autoregressive NN 

consisting of 10 hidden layers with nonlinear (log-sigmoid) 

activation functions and a three-layer buffer. Although the exact 

number of hidden layers and buffer size are problem-dependent 

it was found that relatively simple NNs (number of hidden 

layers less than five) cannot represent the temporal dynamics 

sufficiently. Numerical trials using buffers of different sizes 

have shown that a large buffer size decreases the detector’s 

performance. A buffer of size three achieved the best 

performance.  

Among the different training algorithms examined – 

including the 1) Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

Quasi-Newton algorithm, 2) Bayesian Regularization (BR), 3) 

Gradient descent with adaptive learning rate backpropagation 

(GDA), 4) Gradient descent with momentum backpropagation 

(GDM) and 5) Levenberg-Marquardt backpropagation (LM) - 

LM achieved the best performance. All training algorithms 

were repetitively applied (30 iterations). Fig. 6 shows the results 

of the Kruskal-Wallis test.  

 
Fig. 6: Results of Kruskal –Wallis test for different NN training algorithms: 

Bayesian Regularization (2) and Levenberg-Marquardt (5) achieve the best 

performance 

C. Anomaly detection using Hilbert transform 

The error signal 𝑒 is defined as the difference of the filtered 

signal 𝑥𝑑(𝑡) from DNN’s output 𝑦(𝑡): 

 

𝑒 = 𝑥𝑑 − 𝑦 (19) 

 

The features utilized for detecting the road anomaly and 

braking events are the envelope 𝐴 and instantaneous frequency 

𝜃̇(𝑡) of the error signal 𝑒(𝑡). For this the Hilbert transform is 

utilized: 

 

𝑒𝐻(𝑡) = 𝑙𝑖𝑚𝜀→0 [
1

𝜋
∙ ∫

𝑒(𝑡)

𝑥 − 𝑡
∙ 𝑑𝑡 +

𝑡−𝜀

−∞

1

𝜋

∙ ∫
𝑒(𝑡)

𝑥 − 𝑡
∙ 𝑑𝑡

+∞

𝑡+𝜀

] 

(20) 

 

where 𝑒𝐻(𝑡) is the Hilbert transform. Hilbert transform is the 

convolution of 𝑒(𝑡) with a reciprocal function 1/𝑥 − 𝑡, thus 

Hilbert transform emphasizes the local properties of 𝑒(𝑡). If 

𝑒̂(𝜔) represents the Fourier transform of 𝑒(𝑡), then the Hilbert 

transform is: 

 

𝑒𝐻(𝑡) = ℱ−1{−𝑗 ∙ 𝑠𝑔𝑛(𝜔) ∙ 𝑒̂(𝜔)} (21) 

 

where ℱ−1 represents the inverse Fourier transform [26]. The 

instantaneous phase 𝜃(𝑡), frequency 𝜃̇(𝑡), and amplitude 𝐴(𝑡) 

of 𝑒(𝑡) are defined: 

 

𝜃(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 {
𝑒𝐻(𝑡)

𝑒(𝑡)
} 

(22) 
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𝜃̇(𝑡) =
𝑑𝜃

𝑑𝑡
 

 

𝐴(𝑡) = √𝑒(𝑡)2 + 𝑒𝐻(𝑡)2 (23) 

 

Hilbert transform is useful for identifying instantaneous 

frequency changes in the higher frequency spectrum, in which 

wavelet transform is not performing well. When the 

instantaneous frequency is not informative the signal’s 

envelope is exploited instead. 

V. DISCOVERING DRIVER BRAKING BEHAVIOR 

Three different experiments were carried out for identifying 

and correlating the driver braking behavior to the road 

condition. The first experiment aims to verify five driver 

braking behaviors. The second experiment aims to identify the 

braking behavior for different drivers and driving styles 

(passive-normal-aggressive). The third experiment aims to 

identify the braking behavior when driving naturally.  

In all cases, using the ADF, we try to identify marked 

changes to the 𝑋 and 𝑍-axis acceleration.  

 

 
Fig. 7. (color online) Combination of the results of the Anomaly Detection 
Filter (ADF) after the analysis of the entire time series of the accelerometer of 

the smartphone for two different perspectives: (a) The ADF value of 𝑿-axis 

(ADFX) versus time whereas the color represents the ADF value of 𝒁-axis 
(ADFZ) and (b) ADFz versus time whereas the color represents the ADFx. 

In Figs 7 (a) and (b) the results of the ADF − for the first 

experiment – after the analysis of the smartphone acceleration 

data in the longitudinal 𝑥 and vertical direction 𝑧 are presented.  

A. Evaluation of ADF filter 

As a first step, we estimated the efficiency of the ADF. We 

employed, for this reason, the ROC diagram [27]. The value 𝑒 

of ADF can be used here as an estimator [28] and the 𝑀 as an 

index which value is equal to one (𝑀 = 1) when there is an 

“anomaly” and zero (𝑀 = 0) when there is not. Thus, we 

examine if the value 𝑒 of ADF lies over different values of 

threshold 𝑒𝑖. The ROC graph depicts the True Positive rate 

(TPr) on 𝑍-axis and the False Positive rate (FPr) on the 𝑋-axis. 

Therefore, there are four classifications (a) TP (True Positive) 

when 𝑒 ≥ 𝑒𝑖 and 𝑀 = 1, (b) FP (False Positive) when 𝑒 ≥ 𝑒𝑖 

and 𝑀 = 0, (c) FN (False Negative) when 𝑒 < 𝑒𝑖 and 𝑀 = 1 

and, (d) TN (True Negative) when 𝑒 < 𝑒𝑖 and 𝑀 = 0.  Thus, the 

TPr represents the ratio TP/(TP+FN), and the FPr the ratio 

FP/(FP+TN). A schematic representation of ROC analysis is 

shown in Fig. 8. For a random estimator the curve is located 

close to the diagonal, where TPr and FPr are roughly equal.  A 

popular measure is the area under the ROC curve (AUC)[39]. 

Additionally, we can use the recently proposed visualization 

scheme based on k-ellipses, for the examination of the statistical 

significance of the results [29]. With this technique, using the 

AUC of k-ellipses we can measure the p-value of the probability 

to obtain a ROC curve by chance for given values of the total 

of positives P=TP+FN and the total of negatives Q=FP+TN, 

when ascribing 𝑒 ≥ 𝑒𝑖 or 𝑒 < 𝑒𝑖 are random.  

 

 
Fig. 8: Schematic representation of ROC analysis 

In Fig. 9 the very good efficiency of the “braking” detection 

using the above method is illustrated. The present ROC analysis 

was held taking as the threshold a value of the braking pedal 

position obtained from OBDΙΙ. The range of position values 

obtained was 0 to 60, thus the thresholds 𝐵𝑖  that we chose for 

the evaluation were equal to 20 and 30. Thus, when the value is 

greater or equal to the threshold then 𝑀 = 1, otherwise 𝑀 = 0. 

When 𝐵𝑖  is equal to 20 the value of AUC is 0.87 and when 𝐵𝑖  

is equal to 20 the value of AUC is 0.97; the p-values of the 

corresponding k-ellipses in both cases are much smaller than 

10-8. The fact that we obtain (Fig. 9) TPr≈75% with FPr≈16.3% 

when 𝐵𝑖 = 20 and TPr≈91.5% with FPr≈3.0% when 𝐵𝑖 = 30, 

allowed us to employ the ADF for detecting braking events. 

 

 
Fig. 9. (color online) ROC (red circles) of ADFX when using the threshold (a) 

𝐵𝑖 = 20 and (b) 𝐵𝑖 = 30, that corresponds to the braking pedal position, as an 
estimator for the detection of marked changes in driver speed.  The k-ellipses 

with p-value equal to 1%, 5% and 10% are drowned with black, green and 
yellow solid lines respectively. 

 

Recently, the application of the ADF filter in the detection of 

road “anomalies” showed similar performance [19]. The p-

values of the corresponding k-ellipse was much smaller than 10-

8 and for TPr around 80.6% the FPr was 11.7%. Hence, these 

outcomes allowed us to use the ADF for detecting road 

anomalies.  

B. Methodology 

To discover the dependence of driving behavior on road 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

anomalies, we examined the correlation between the 

“anomalies” of ADF output on 𝑋 and 𝑍 axes. Given the fact that 

the data is not Gaussian, we used the Spearman correlation 

coefficient 𝑟𝑠, which is a nonlinear statistical measure [30]: 

 

𝑟𝑠 =
∑ (𝑥𝑖 − 𝑥̅)(𝑧𝑖 − 𝑧̅)𝑖

√∑ (𝑥𝑖 − 𝑥̅)2 ∑ (𝑧𝑖 − 𝑧̅)2
𝑖𝑖

 
(21) 

 

𝑟𝑠 ranges 𝑟𝑠  𝜖 [−1,1]. When 𝑟𝑠 is close to 1 the correlation is 

“strong”, while for positive values close to 0 it is “weak”. 𝑟𝑠 

close to  ̶ 1 indicates “strong” anti-correlation. 

The method is described as follows. First, we calculate the 

Spearman’s correlation coefficient between the segment of the 

time series of ADF on 𝑍-axis and the corresponding 𝑋-axis 

segment slided backwards by n positions (i.e. 𝛥𝑡 = 𝑛/10 s).  

Subsequently, we slide forward this segment of 𝑋-axis by one, 

two, …, 2𝑛 − 1 (in the following experiments 𝑛 = 50) 

positions and calculate the correlation for each position. 

Finally, we repeat the same procedure for a range of thresholds 

𝑇𝑧  of the ADF output on 𝑍-axis corresponding to the different 

sizes of the road “anomalies”. The range of thresholds is from 

0 to the maximum value of the outcome of ADF output on 𝑍-

axis, equally divided by 100. In more detail, for a given 

threshold 𝑇𝑧  we are taking the time series of the ADF output on 

𝑍-axis, which are greater than 𝑇𝑧 together with the 

corresponding time series on 𝑋-axis, see Fig. 10. 

 

 
Fig. 10: (color online) Schematic representation of the correlation coefficient 

calculation for a given threshold 𝑻𝒁. The red line denotes the segments of the 

initial 𝒁-axis time series that exceed the threshold 𝑻𝒁 and the corresponding 

time series on the 𝑿-axis slided by 10 points (brown color). 

C. Experimental process 

Experiment 1: 

The aim of the first experiment is to examine if the proposed 

method can discover distinct driving patterns. In this 

experiment, the car followed the route indicated in Fig. 2. We 

performed the same route from point A to point B five times, 

following five distinct driving patterns (a) no braking, (b) 

braking over and just after, (c) just before, (d) “normally 

before” and, (e) “quite before” the road “anomalies”. 

The application of the methodology, described in the 

previous section, led to a successful discovery of the distinct 

driving patterns. The results are shown in Figs 11 (a), (b), (c), 

(d) and (e), where yellow indicates the “strong” correlation 

coefficient and the black-purple, the “strong” anti-correlation 

coefficient, while, with red indicated the “weak” correlation 

and anti-correlation coefficient. At this point, it is appropriate 

to describe each route separately.  

In the first route (A1), the driver (Driver A) applied the 

brakes immediately after passing the road “anomalies”. We 

observe in Fig. 11(a) that there is “strong” anti-correlation 

coefficient before and over the road “anomalies”, while, there 

is “strong” correlation coefficient after. Interestingly, we 

observe that for the small obstacles or potholes (𝑇𝑧 ≤ 0.2 m/s2), 

the driver kept on driving without braking.   

In the second route (A2), the driver attempted to brake while 

passing the road anomaly, but the human response time resulted 

in braking immediately after.  As in the first route, the results in 

Fig. 11(b) are consistent with the reality. The driver was 

removing the foot from the accelerator pedal approximately, 

1.1s before the obstacle or the pothole.  

In the third route (A3), the driver was braking just before the 

“anomalies”. This behavior is clearly depicted in Fig. 11(c). 

Additionally, the results indicate that the driver was not braking 

for small “anomalies” and that the foot was removed from the 

acceleration pedal about 1.1 sec before the application of 

brakes.  

Finally, in the fourth (A4) and fifth (A5) routes, the driver 

was braking “normally before” and “quite before” the road 

“anomalies”. The diagrams in Figs 11(d) and (e) confirm these 

patterns.  

Experiment 2: 

In the second experiment additional drivers were used and a 

wider range of average speeds was achieved. Two additional 

drivers, Driver B and Driver C, were asked to drive a route in 

Politechniopolis campus, Zografos, Greece. The campus 

features road bumps at known locations. Road slope within the 

campus varies significantly. Both drivers performed three trials 

(Driver B: routes B1, B2, B3 and Driver C: C1, C2, C3), each 

with a different driving style and average speed (i.e. low, 

medium and high). 

At low and medium speeds, Driver B was usually braking 

at approximately 0.7s before the road “anomaly” and “just 

before” the obstacle (Figs. 12(a) and (b)). At higher speeds, 

Driver B was applying the brakes between 0.8 and 0.3s before 

the obstacle (Fig. 12(c)) and removing the foot off the brake 

pedal while passing over the “anomaly”. 

On the other hand, Driver C, at low and medium speeds, was 

braking 0.6-0.7s before the road “anomaly” (Figs.12 (d) and 

(e)) and again applying the brakes 0.9 sec after the road 

“anomaly”. Driver C was re-applying the brakes when the rear 

wheels of the vehicle hit the “anomaly”. At medium speeds 

(Fig. 12(e)) braking was occurring just before the road 

“anomaly”, while at higher speeds (Fig. 12(f)) braking was 
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Fig. 11.  (color online) Sliding correlation coefficient diagrams (color axis) of 

the first experiment with respect to different thresholds (Tz) of ADF filter of the 

Z-axis accelerometer data and time lag. The horizontal green line corresponds 
to zero time lag. 

 
Fig. 12: (color online) Sliding correlation coefficient diagrams (color axis) of 

the second experiment with respect to different thresholds (Tz) of ADF filter of 

the Z-axis accelerometer data and time lag. The horizontal green line 

corresponds to zero time lag. 

taking place just before and while passing over the obstacle. At 

higher speeds, Driver C was not applying the brakes when the 

rear wheels hit the “anomaly”; a reasonable reaction of a driver 

that aims to keep the average speed high (Fig. 12(f)). 

 

Experiment 3: 

The purpose of the third experiment was to evaluate the 

method’s performance using naturalistic driving studies. Two 

different drivers were asked to track Coventry City’s entry 

routes (drivers (E1 with Driver E and F2, F3, F4 with Driver 

F)). The results are presented in Fig. 13. We can see once again, 

that it was possible to discover the drivers’ braking patterns. 

Table I presents the characteristics of each route. The field 

trials were carried out in a wide range of average speeds and 

road slope variation. The results indicate that the proposed 

method is a robust tool for identifying the braking “signature” 

of drivers and identifying their braking preferences in the 

occurrence of different road anomalies. 

 

 
Fig. 13: (color online) Sliding correlation coefficient diagram (color axis) of the 

entry routes at Coventry City with respect to different thresholds (Tz) of ADF 

filter of the Z-axis accelerometer data and time lag. The horizontal green line 
corresponds to zero time lag. 

TABLE I 

DRIVING ANALYTICS IN EXPERIMENTS 1, 2 AND 3 

 
Experiment 1: Location Coventry, UK 

Route AvS StdS MaxS AvD StdD MaxD VoA 

A1 6.90 2.40 9.36 0.29 0.52 3.62 10 

A2 5.84 1.67 8.85 0.33 0.32 1.68 10 

A3 5.39 2.29 10.12 0.68 0.71 3.31 10 

A4 6.17 2.03 11.19 0.63 0.65 3.31 10 

A5 6.50 1.84 10.19 0.66 0.78 3.35 10 

Experiment 2: Location Politechniopolis, Zografos, Greece 

Route AvS StdS MaxS AvD StdD MaxD VoA 

B1 5.69 1.24 8.64 0.83 0.64 2.66 57 

B2 7.96 1.77 11.93 1.02 0.78 3.04 57  

B3 9.52 3.99 15.40 1.34 1.66 7.21 57  
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C1 5.37 1.64 8.22 0.83 0.72 3.10 57  

C2 7.58 2.38 12.89 1.75 1.20 4.89 57  

C3 9.86 3.04 19.11 1.22 1.56 8.20 57 

Experiment 3:  

Zografos-Ilissia, Greece 

Route AvS StdS MaxS AvD StdD MaxD VoA 

D1 7.21 3.93 16.41 1.07 1.09 6.65 135 

Coventry City entry routes 

E1 10.99 6.25 23.44 0.84 0.82 4.15 12 

F2 7.02 4.24 16.28 0.38 0.36 1.90 27 

F3 6.65 5.16 18.31 0.38 0.38 2.18 37 

F4 7.31 5.09 19.70 0.35 0.37 3.38 55 

AvS: Average Speed (m/s) 

StdS: Standard deviation of Speed (m/s) 
MaxS: Max Speed (m/s) 

AvD: Average GPS deceleration (m/s2) 

StdD: Standard deviation of GPS deceleration (m/s2) 
MaxD: Max GPS deceleration (m/s2) 

VoA: Variation of Altitude (m) 

VI. CONCLUSIONS 

The widespread use of smartphones can facilitate the large-

scale and rapid deployment of Intelligent Transportation 

Applications. However, the fewer and lower quality signals 

obtained using a smartphone, compared to the ones available on 

board, pose a challenge to their exploitation. Furthermore, the 

uncertainties involved in modeling – due to the variety of 

vehicles and smartphones − and difficulty in applying rigorous 

calibration methods, often found in scientific experiments, 

require the development of agile and adaptive methods. In this 

paper, a method for automatically learning, using smartphones,  

driver braking preferences for different types of road anomalies 

and speeds is presented. The proposed method can be 

potentially used in a crowd-sensing context for informing and 

updating navigation maps. The overall aim is to improve driver 

experience when preview map information is utilized. 

The determination of the marked changes of driver’s speed 

and the road anomalies was achieved using a novel Deep Neural 

Network architecture, suitable for the analysis and correlation 

of multivariate time series data. Extensive field trials were 

conducted to validate and test the method. The detection 

method was evaluated by employing the Receiver Operating 

Characteristics and the analysis proves its high level of 

efficiency. The true positive rate was 91.5% and the false 

positive rate 3%. Furthermore, for the first time, a new 

technique for discovering driver behavior by applying the 

sliding correlation coefficient is presented. The proposed 

visualization scheme reveals the driver’s reaction profile when 

approaching different types of road anomalies. The results 

using five different driving styles confirm that this new 

technique is a new formula for the estimation of driver 

behavior. 

The method can be applied in other cases as well, for 

example in discovering the braking “signature” of drivers when 

approaching a turn. To further improve the method’s 

performance, we will explore neural network training methods 

considering also the ROC analysis outcome, not just the mean 

squared error. In the future, we intend to extend the present 

study by investigating the driver behavior predictive capability 

of the proposed Deep Neural Network. 
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