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Missing Data Estimation for Traffic Volume by
Searching Optimum Closed Cut in Urban Networks
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Abstract—Traffic data imputation has drawn significant at-
tention from both academia and industry because traffic data
often suffer from data missing problems, caused by temporary
deployment of sensors, detector malfunction and lossy communi-
cation systems. To fully exploit the spatial-temporal correlation
and road topological information in urban traffic network, we
propose an Optimum Closed Cut (OCC) based spatio-temporal
imputation technique, which is implemented in two stages: a)
employing graph theory to search the OCC in the road network,
for which the traffic on roads intersected by the closed cut has
the maximum correlation with that on the target road while
minimizing the number of intersected roads; b) estimating the
missing data on the target road using OCC based Kriging
estimator, incorporating both the road topological information
and flow conservation law to improve the estimation accuracy.
Experimental results using traffic data collected on real roads
indicate that the OCC search algorithm can effectively capture
the optimum set of neighboring sensors. OCC based estimator
can provide more accurate imputation results compared to NHA
(Nearest Historical Average) and correlative k-NN (k-Nearest
Neighbors) methods. The road topological information and flow
conservation law can be explored to further improve the estima-
tion performance while reducing the number of sensors involved
in the data imputation, hence improving the computational
efficiency.

Index Terms—Traffic data imputation, Optimum Closed Cut,
NHA, k-NN

I. INTRODUCTION

RAFFIC flow refers to the number of vehicles passing
Tthrough a certain fixed point within a unit time. Traffic
flow information plays a vital role in Intelligent Transportation
Systems (ITS). For example, the Advance Traveler Infor-
mation Systems (ATIS), which acquire, analyze and present
information to assist travelers navigating from the source to
the destination, and the Advance Traffic Management Systems
(ATMS), which integrate various technology to improve the
road traffic flow and road safety, both rely heavily on reliable,
accurate and consistent traffic flow information to provide
users with up-to-date traffic information and guidance [?].

Missing data problem, where some subsets of traffic data
become missing, has greatly hindered the collection and
subsequent analysis, estimation and prediction of traffic flow
data. Traffic data may become missing due to temporary
deployment of sensors, detector malfunction or lossy commu-
nication systems. Specifically, due to high deployment costs,
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permanent traffic sensors may be installed on a subset of
roads only [?] and some other roads may only be equipped
with temporary sensors, which can provide traffic data within
limited time periods. Furthermore, failures, caused by detector
malfunction and lossy communication systems, may also result
in incomplete traffic data [?], [?]. It was reported in [?] that
at hundreds of detection points within PeMS (Performance
Measurement System) traffic flow database, more than 5%
of data are missing. The missing data has severe impact
on many ITS applications, most of which rely on reliable,
accurate and complete data [?], [?], [?]. For instance, traffic
flow prediction relies on the complete historical data and the
prediction performance will reduce sharply with incomplete
data [?]. Therefore, developing methodologies to precisely
estimate the missing data, i.e, traffic data imputation, is an
important task.

A number of imputation methods have been proposed in the
recent decade. Existing imputation techniques can be generally
classified into three categories: interpolation based, prediction
based and statistical learning based methods [?].

Some well known interpolation based methods include
correlative kNN (k Nearest Neighbor) scheme [?], sectional
kNN scheme [?] and LLS (Local Least Squares) scheme [?].

Prediction based methods only rely on known traffic
prediction methods, e.g., Auto-regressive Integrated Moving
Average (ARIMA) [?], [?], Seasonal ARIMA (SARIMA) [?],
Space-Time ARIMA (ST-ARIMA) [?], [?].

The most frequently used statistical learning methods are
Probabilistic Principal Component Analysis (PPCA) [?], Ker-
nel Probabilistic Principal Component Analysis (KPPCA) [?]
and tensor completion techniques [?], [?], [?].

Most existing traffic data imputation methods suffer from
the following shortcomings: 1) there are few studies trying
to find the optimum subset of detectors before imputation.
It is well known that choosing all detector measurements
may improve the accuracy of imputation but significantly
increase the computational complexity, which consequently
results in the imputation method becoming non-scalable; 2)
the spatial correlation of the traffic data has not been fully
utilized; 3) previous work mostly neglects the road topological
information, which can be further exploited to improve the
accuracy of the traffic data imputation.

Vehicles traveling through a specific road during a certain
time interval can be classified into three portions: i) vehi-
cles arriving from some neighboring roads equipped with
detectors (termed measured roads), ii) vehicles coming from
some neighboring roads without detectors (termed unmeasured
roads), iii) vehicles coming from sources or traveling to


mailto:shangbo.wang@uts.edu.au
mailto:guoqiang.mao@uts.edu.au
mailto:guoqiang.mao@uts.edu.au

sinks within some specific sections (termed flow generation or
dissipation). The first portion can be read from the detectors
while sum of the second and the third one can be estimated
from the empirical data. The road topology gives the sufficient
information about on-ramp and off-ramp of each measured and
unmeasured roads and thus can be exploited to alleviate the
missing data problem.

Intuitively, when drawing a close circuit, or a closed cut,
on a road map, the total amount of long-term traffic entering
into the closed circuit must be equal to the total amount of
long-term outgoing traffic. This implies that traffic on the
roads intersected by the closed circuit must be correlated.
Indeed, an equality can be established that relate traffic on
those intersected roads. Motivated by the intuition and the afo-
rementioned shortcomings of existing imputation techniques,
in this paper, we propose an Optimum Closed Cut (OCC)
based spatio-temporal imputation technique, where the OCC
satisfies the following conditions: a) the close cut intersects
the target road; and b) traffic on other intersected roads has
the maximum correlation with that on the target road; and c)
the number of intersected roads is minimized. The proposed
technique then uses the spatio-temporal correlation of traffic
on roads intersected by the OCC to estimate the missing
data on the target road. The proposed technique utilizes
both the road topological information and the spatio-temporal
correlation among road traffic for imputation, while using a
minimal number of sensor measurements. Therefore, it strikes
a fine balance between imputation accuracy and computational
complexity. Specifically, the main contributions of this paper
are:

1) an optimum closed cut based spatio-temporal imputation
technique is proposed that allows us to explicitly incor-
porate road topology information into imputation while
using a small number of sensor measurements;

2) a graph-based technique is developed to select the opti-
mum closed cut that achieves an optimum trade-off bet-
ween the number of sensor measurements employed and
the set of measured roads whose traffic has maximum
correlation with that of the target road;

3) a spatial Kriging estimator is developed to explore
the spatio-temporal correlation among road traffic for
imputation.

4) experiments are conducted using real traffic data provi-
ded by Sydney Roads and Maritime Services (RMS),
which validates the developed OCC based spatio-
temporal imputation technique and demonstrates that the
proposed technique can provide more accurate imputa-
tion compared with those in the literature.

This rest of the paper is organized as follows: Section II
reviews the related work. Section III formulates the missing
data imputation problem. Section IV presents the OCC based
spatio-temproal imputation technique. Section V establishes
the performance and validity of the proposed imputation stra-
tegy and compares its performance to those in the literature.
Section VI concludes the study.

Notation: In this paper, bold capital characters stand for
matrices, while bold and non-bold lowercase characters stand

for vectors and scalars, with Iy € CV*¥ being an identity
matrix. The symbol “T” denotes matrix transpose operation.
The symbols F (-) and wvar (-) represent expectation and
variance, respectively, and f (-, ) represents the flow between
two vertices. The symbols “®” and “®y " denote convolution
operation and vector convolution operation, respectively.

II. RELATED WORK

A number of studies have been carried out in exploiting
spatial information to improve imputation performance. Tak
et al. proposed sectional k-NN (Nearest Neighbor) method,
which impute missing data based on road sections sharing the
same traffic property [?]. Cai et al. introduced the correlative
k-NN model which was superior than the original k-NN
model because it replaces physical distances by the equivalent
distances, which are determined by both the physical distance
and the correlation coefficient between the historical traffic
data of the two roads [?].

In [?] and [?], the authors explored the ability of tensor ba-
sed method for multi-loop detector’s missing data imputation,
which completes the missing data by tensor decomposition. Qu
et al. proposed the PPCA (Probabilistic Principal Component
Analysis)-based method which integrated MLE (Maximum
Likelihood Estimation) into traditional PCA (Principal Com-
ponent Analysis) approach [?]. Li et al. compared PPCA met-
hod and KPPCA (Kernel Probabilistic Principal Component
Analysis) method, which assumes a nonlinear relationship
between observed samples and latent variables [?].

The aforementioned review reveals that most existing stu-
dies did not consider the problem of finding the optimum set
of sensors for imputation. They either collected traffic data
from all detectors or consider the detectors satisfying some
given (often arbitrarily set) conditions.

Wang and Pagageorgiou utilized the macroscopic traffic
flow model and the extended Kalman-filtering (EKF) method
to estimate the freeway traffic state [?]. The considered free-
way is subdivided into N segments. Traffic flow at boundary
of each segment and some important parameters constitute the
state vector. The key differences from our technique are that
[?] mainly utilized the time evolution and measurements to
estimate the state vector whereas our technique utilizes spatial-
temporal correlation to estimate the missing data. Ng proposed
a strategy which aims at determining the smallest subset of
links in a traffic network for counting sensor installation in
order to infer flows on all remaining links [?]. Ng presented
the condition that all link flows can be inferred and proposed
the inference method. Viti et al. studied the network sensor
location problem (NSLP), which considered the case that the
variables are partially observed [?]. Castillo et al. dealt with
the over-specified network observability problem, which aims
at determining link flow based on a subset of observed OD-
pair and link flows [?]. The key differences between our
technique and the three literature are that [?], [?], [?] dealt with
network observability problem, which aims at optimizing the
sensor location and determining link flow based on a subset
of observed OD-pair and link flows, whereas our technique
tries to utilize the spatial-temporal correlation between each



crossed link and the target link to estimate the missing data
caused by temporary sensor failure based on the empirical
measured data.

III. PROBLEM FORMULATION

In this subsection, we will give a formal definition of the
problem being considered in this paper. We consider an urban
traffic network with a total of IV; links. Suppose there are NV,
roads equipped with permanent or temporary detectors while
the rest have no detector, Furthermore, each detector measures
the data with the same sampling rate and delivers maximal M
data points each day, and there are K observed days. Then,
the traffic data can be viewed as a tensor 7' € RNmxMxK
Denote the set of missing data in T by Qiss and let Ny be
cardinality of Qnss- Each element of Qs can be represented
as ¢pmk (true value of the missing data), where the subscripts
n, m and k are the n-th road, m-th data point and k-th day,
respectively. The missing data imputation aims at finding a
function of the available measured data f,,x (T\Qmiss) to
obtain the most likely estimates of Qiss to minimize MAPE
(Mean Absolute Percentage Error) and RMSE (Root Mean
Squared Error) of the estimates, defined by

1 ‘ fnmk (T\Qmiss) — Qnmk ‘

MAPE = —— > (1)
s qnmkeini<< qnmk
7 T miss) — 4n 2
RMSE = \/anmkec)ms | fbmjl\v[(A \Qmiss) — Gnmk |{2)

IV. OCC BASED STRATEGY

In this section, we introduce the OCC based spatio-temporal
imputation technique. Prior to explaining the OCC based stra-
tegy, we will firstly review the SRE (Spatial Random Effects)
model, which has been applied in [?] and [?]. Then, we will
apply the SRE model to the OCC search algorithm. Cressie
et al. defined the SRE model as a summation of the large-
scale spatial variation, smooth small-scale spatial variation and
the measurement error, where the unknown random variables
are fixed in number, statistically independent, and coefficients
of known but not-necessarily-orthogonal spatial basis function
[?]. In a traffic network, the measured traffic flow Z (s) at
a finite number of locations s = { s; sy } can be
expressed by [?], [?]

Z(s)=X(s)'B+B(s) n+&(s)+e(s) (3

where the product of X (s)T and B can be understood as the
weighted sum of the average traffic flow from the L selected
neighboring roads, the length of 3 represents the number of
selected neighboring roads, B (s)T 7) can be interpreted as the
fluctuation caused by the varied traffic flow from the L selected
neighboring roads, £ (s) can be understood as a fine-scale
variability on s due to the nugget effect and flow generation or
dissipation within some specific sections, and € (s) denotes the
measurement error. In geostatistics, nugget effect represents
the discontinuity at the beginning of semivariogram graphs,
which is generally caused by inadequate sampling size [?].

A. Traffic Flow Analysis with a Closed Cut

Consider a two-dimensional traffic network with V; single
lane bi-directional roads (Fig.1), which are composed of N,
roads with detectors and N,, roads without detectors, IN; =
N + Nun.

o Residential Area

Fig. 1: Tllustration of a two-dimensional urban network with sensors

The target road is defined as the road, on which the traffic
flow should be estimated. The flow on the target road toward
one direction is caused by the flow on its neighboring roads
and the flow directly injected to sinks or dissipated from
sources within some specific sections. For instance, the flow on
the target road toward north consists of portion of eastbound
flow from road 8, westbound flow from road 2, northbound
flow from road 9 and the missing flow, where the flow from
road 2 can be acquired from the detector while the road 8 and
road 9 show a lack of data. To investigate the flow relation
between the target road and its neighboring roads, we propose
Theorem 1, which gives the mathematical expression for the
continuous flow relation between two roads.

Theorem 1. Consider a simple case of two directional roads
and define q1 (1), q2 (1), p1 (1) and ps (1) as traffic flow and
traffic density on the two roads, respectively. Further assume
that traffic flow on road 2 all comes from road 1, the case
that traffic from road 1 may divert to other roads is allowed.
Assume that py (1) and po (1) are smaller than fi,, defined
by the limiting density [?]. Then the relation between q (T)
and qs (T) can be approximated by

q2 (1) = q1 (T) ® higm (T,1)

:/ q1 (t) hagm (T —t,t) dt 4)
0



where “®” is two-dimensional convolution operation and
higm (T,t) is a time-varied correlation coefficient function
between two links.

Proof. Partition the input flow stream on road 1 into N cells,
each of which is with a short distance dx. Thus, the length
of input flow stream L, can be expressed by L; = Ndz and
there are 4 (7)0x vehicles traveling through road 1 at 7-
th time slot. For an arbitrarily selected cell, its length may
expand to dz’ when the cell arrives at the sensor 2 because of
the speed variation and difference of the vehicles within the
cell. Here we only consider the case that dz’ > dx, because
shrink of the partial stream length can be viewed as overlap
of two adjacent expanded cells. The density within the short
distance dx and dx’ are assumed to be constant because dx and
oz’ are small enough. Thus, there are 1 (7) 0z and po (1) d2
vehicles traveling through the road 1 and 2 at 7-th time slot,
respectively. Then, the number of vehicles traveling through
road 2 at 7-th time slot can be expressed by

pe (1) 02" = Z w1 (73) 0zps12,m (T) )

i=1---N

where 7; is the time slot in which the i-th cell travels through
road 1, p; 12.m (7) is a function that represents the fraction of
vehicles expanding over time zone for the i-th cell arriving at
road 2, and then for each cell, it has

Pitom(T) =0 if the i-th cell is diverted to other links
fooo piizm (T) =1 if the i-th cell arrives at the link 2

When 6z, 02’ — 0, (5) can be transformed as

Z w1 (15) %pi,llm (7'))

2 (7) = limsz 507 —0 (
i=1.-N

= / 1251 (t) h127m (7' — t, t) dt (6)
0

where hiom (7,t) is a time-varied correlation coefficient
function between road 1 and 2. If i (7) and po (7) are smaller
than the limiting density, the mean speed will be unaffected
and flow-density curve is closed to linearity [?]. Thus, (4) can
be obtained via multiplying both sides of (6) with the mean
speed at the input and output streams, respectively. O

Remark 1. It is worth noting that Theorem 1 is also valid
for the case that the two roads are not adjacent to each
other. In such case, all road segments between the two roads
traveled through by the input stream can be virtualized as an
intersection with a delay function. Any congestion occurring
between roads 1 and 2 has no impact on the validity of
Theorem 1. In that case, the time delay caused by congestion
occurring between the two roads is given by the time-varying
correlation coefficient function between two roads hi2 m (1,t).
In the case that there is congestion on road 1 or road 2,

Theorem 2 can be slightly modified to express a relation in
terms of traffic volume between each road, instead of flow:

/(12 (r)dr = //OT q1 (t) higm (7 — t,t) dtdT

= / a1 (t) / Rigm (T —t,t)drdt
0
= 912,m/(h (r)dr

where gi1o.m is the correlation coefficient in terms of traffic
volume between two roads, and can be expressed by

Grom = f Q1 (t) fOT h12,m (T - t, t) drdt
" Tar (t)dt

In this paper, the assumption in Theorem 1 is fulfilled
because our employed data shows that no congestion occurs on
the inspected roads. Suppose the number of selected feeding
sources of the target road is K, which consists of K;;, measured
roads and K, unmeasured roads. From Theorem 1, the flow
on the target road can be expressed by

ar (7)
~ gr (1) +Cryi (15 8) C ! () @v (gi (1) — @ (7)) +wr
(7)

where gr (7) is the average flow on the target road at 7-th time
slot, wr is the missing flow and can be modeled as a stationary
non-zero mean Gaussian variable, g; (7) and §; (7) are K x 1
vectors containing the instantaneous and average flow on the
K feeding sources, Cr; (T,t) and C; ; (t) are a time-varied
1 x K Cross Correlation Matrix (CCM) between g7 (7) and
g; (7), and a time-varied K x K Auto Correlation Matrix
(ACM) of g; (1), respectively. By the definition, Cr; (T, t)
and C; ;(t) can be expressed by

Cri (1,8) = E ((ar (1) = & (7)) (@ (8) = @ (8))")
Cii (0 = E((@:(H) @ @) (@ () - & (1)) ®

Note that “®y” is vector convolution operation. For example,
given two vectors a and b with the elements a; ;—1...n (t) and
bi i=1...n (t), respectively. Then the convolution of two vectors
can be expressed by

a'b= a1 (t) ax(t)

= > @b
i=1.--N
Remark 2. Note that (7) is valid no matter whether the
corresponding road traffic is statistically independent or cor-
related. Equation (7) gives a general form to express the
relation between the target flow and its neighboring flows
for both statistically independent and correlated cases. In
the case of correlated traffic, C; L(t) is a K x K auto



correlation matrix Cr,; (T,t) is a 1 x K vector. It follows that
Cr; (m,t) C,; (t) is a 1 x K vector, each element of which
can be represented as hyy (7,t). In the case of independent
traffic, C; ; (t) becomes a diagonal matrix and thus hy (7, )
becomes the correlation coefficient.

Then (7) can be rewritten as

di,m (T) 02y th,m (T’ t)

+Z%un ®th un (T t)+wT_l~Lw (9)

where §ym (7), Gjun (T), Prim (7,t) and hrjun (7,1) are the
flow variation on the /-th measured and j-th unmeasured roads,
and the time-varied correlation coefficient function between
the target and the /-th measured and j-th unmeasured roads,
respectively. The flow variation §; ., (7) and §;un (7) denote
the gap between the instantaneous flow and the average flow
on the /-th and j-th roads, wr is a non-zero mean Gaussian
variable and wr ~ N (ft, 0w). Note that ¢ i (7) and g; un (7)
are stochastic process which varies day to day at the same
time slot. By the assumption of ¢; , (7) and g;un (7) keeping
constant over a short time interval, (9) can be rewritten as

K

qr (1) = qr (7 +me/ hrim (7 — 1, 1) dt

Kun
+  Gjum / hrjun (T — t,) dt + wr (10)
=1 0

— Hw

where gr () corresponds to the element of X (s)" 3 in (3),
the sum of the second and the third terms can be transformed to
the element of B (s)T 7 via Karhunen-Loeve expansion. Note
that € (s) in (3) is neglected because the measurement process
is assumed to be identical to the hidden process. For simplicity,
we define g1y m fo hrim (7 —t,t)dt and grju (T) =
f hrjun (T —1 t) dt Then (10) can be rewritten as

qr (T) ~ qr (T)+Z 6l¢mng,m +’LUT [

+Z qj,ungTj, un
(1T)

where the average target flow gr (7) and g m (7) can be

obtained from the empirical data, ¢;,, can be acquired by

SENsor measurements, ¢;un, YTjun (7) and wr are unknown
s Kun ot

parameters. By modeling sum of ijl dj,ungrjun (T) and

wr — [y as a zero-mean Gaussian variable with variance

of o7, the probability function of gr (1) by given gr (7) and

S Gimgrim (T) can be expressed by

(s )

( gr (1) — gr (7) )2
- 21}1“1 le,mng,m (7-)

2
20,]

1
= ex 12
e P (12)

To maximize the conditional probability, the neighboring
megsured roads should be selecte% minimize
E ((CIT (7) = @r (7) = S0 Gmgrim (T)) 2, ESEE
(Expected Squared Estimation Error), and meanwhile the
neighboring unmeasured roads should be selected to minimize
o,. However, o, is an unknown parameter. To tackle the
problem, flow conservation law is utilized to find optimum set
of neighboring unmeasured roads. In graph theory, the sum
of flows entering the vertex (or a closed curve) is equal to
the sum of flows leaving the vertex (the closed curve) if the
vertex is neither (the closed curve does not contain) a source
nor a sink [?]. We next will apply the flow conservation law
to the road network depicted in Fig.1.

We model the Fig. 1 as a directed graph G (V, E) with a
source set .S and a sink set 7', where V is the set of vertices and
E € V xV is the set of edges (road segments), respectively. A
vertex v; € V models a road intersection or an end of a road.
An edge e (v;, vj), which connects two vertices, represents a
directed network segment. The size of source set and sink set
are Kg and Kr, respectively. Then we can obtain Theorem 2.

ie.,

Theorem 2. Let us create an arbitrary closed cut in G (V, E)
and define the flow on each intersected edge (road segment)
as fi,i = 1--- K¢, where K¢ is the total number of edges
intersected by the closed cut. Furthermore, let Kr;, and Kg,
be the number of sinks and sources located inside of the closed
cut, respectively, and let f (v,ty) and f (s;,u) be a flow from
the vertex v to a sink ty and a flow from a source s; to
the vertex u, respectively. Then, the following equality should
hold:

Kcin Kcou Krin Kyin
D= f=2 Flte)=Y > fls,u) (13)
k=1 =1 k=1veV I=1 ueV

where K¢ = Kcin + Kcouw and Kcin, Kcow are the number
of flows entering the closed cut and leaving the closed cut,
respectively.

Proof. The closed cut C partitions the graph into two disjoint
vertex sets, denoted by V7 and V5. By defining a flow function
between two sets of vertices X and Y as f(X,Y) =
Y wex 2yey [ (z,y), the left side of (13) can be expressed
by f(V1,V2). Reference [?] shows that for all X € V,
f(X,X) =0, and for all X,Y,Z € V with XY = ¢,
FIXUY,2) = f(X,2) + f(Y,Z) and f(Z.XUY) =



f(Z,X)+ f(Z,Y). Hence, we have

f (1, Va) fVAL V)= f(Vi, W)
= f(",V) (14)
= f (Simv) + f (T‘in; V) + f (Vl\{Sin;ﬂn}7v)

From the flow conservation law, f (Vi\ {Sn,Tn},V) = 0.
Hence, (13) can be rewritten as

f(Vlv‘/Q) = f(SiIHV) +f(j_;mv)
Krin Ksin
= DD flot) = > flsiu)ds)
k=1veV I=1 ueV
Theorem 2 is proved. O

Remark 3. It is worth noting that Theorem 2 ignored the
storage capacity of roads, i.e., vehicles stored in the road
segments enclosed by the closed cut. Therefore, strictly spea-
king, the relationship depicted in Theorem 2 only applies
to long-term traffic flows where the storage capacity is of
negligible impact. When Theorem 2 is applied to short-term
traffic flows, the equality no longer holds strictly. Moreover,
the loop detectors may also create some uncertainties about
the number of the passing vehicles. The mismatch between
incoming and outgoing traffic flows caused by storage capacity
and measurement uncertainties caused by loop detectors can be
captured by an error term or can be modeled by a source/sink
inside the closed cut.

A closed cut (dotted line) is shown in Fig. 1 as a dotted
line, which intersects the target road, road 7, road 11, road
10, road 9 and road 2. Applying Theorem 2, we have

qt + g7,0ut T q11,0ut T 410,0ut T 99,0ut + 42,0ut =

= qrin T ¢7,in T q11,in + q10,in + G9,in + G2,in + Ws + W
(16)

where ¢t is the missing target flow and ws and w; are
the (total) source flow and sink flow within the closed cut,
respectively. Note that each vehicle will spend a different
amount of time traveling from an entrance to an exit of the
closed cut. Then for each arbitrary closed cut crossing the
target road, we can get the following relation:

K Kun Kn Kun
qr + Z Gk,out + Z Qiout = Z Qk,in + Z qiin
k=1 1=1 k=1 1=1
+  ws + wy

The above equation can be further
form:

rewritten in the following

Ky Kn Kun Kun
qr + Z 4k .,out — Z dk,in = Z ql,in — Z qi,out (17
k=1 k=1 =1 =1
+ ws + wt

where the right side of (17) is unknown and it has strong
impact on 072, given by (12). Combined with (12), the opti-
mization objective function to find the OCC can be expressed
by

Cocc (T) -
_ Ko - 2 1
) (QT —qr—y " Qk,mng,m) +
= argmin { F X x 9
cm + (QT + Zk:m1 qk,out — Zk:m1 Qk,in>
K |
=230 Tk Thom + 98 nRe(m) gtm
Kn Kn m
2621 Thout + D2k 21 222 1ok Thiout
. Kn Kn
e +23 30 hou — 235l TThin—
Km Km Km
M -2 Zk:l Iézl rkl},{in,out + Zk:l Tk in
+ 2k 20121 1k ThLm

(18)

where the first part of (18) is to maximize the conditional
probability and the second part is to minimize the expected
squared unknown metrics, r1i,m» Fc(T)s Tk outs Tki,outs TTh,outs
TTh,ins Tkil,inou> Th,in and Ty m are co-variance between the
target flow and the k-th inflow, co-variance matrix of the K,
input flows, variance of the k-th outflow, co-variance between
the k-th and /-th outflow, co-variance between the target flow
and the k-th outflow, co-variance between the target flow and
the k-th inflow, co-variance between the k-th inflow and the /-th
outflow, variance of the k-th inflow and co-variance between
the k-th inflow and the /-th inflow, respectively, and can be
straightforwardly obtained by the empirical data. The equation
(18) will be used in the next subsection to find the OCC.

B. Novel OCC Search Algorithm

It shows in (18) that the optimization procedure is a
minimum cut finding problem. Stoer—Wagner algorithm is a
classical recursive algorithm which can find the minimum
cut in an un-directed graph [?]. Unfortunately, the algorithm
cannot be applied in our scenario because we need find a
minimum weighted closed cut in a directed graph. The closed
cut should start and end at the target edge. Brute-force solution
is to check all possible neighboring edges and select the one
minimizing (18). However, the search complexity will increase
exponentially with the number of edges. To tackle the problem,
we propose an iterative searching strategy which is a Modified
version of Viterbi Algorithm (MVA). VA is a recursive optimal
solution to the problem of estimating the state sequence of a
discrete time finite-state Markov process observed in memory-
less noise [?]. The finite-states and transition probabilities in
VA are deterministic while MVA has non-deterministic states
and transition probabilities for each iteration. Our computer
validation shows that the OCC can be efficiently captured for
each target link.

To describe MVA more clearly, we firstly start from the
scenario that all edges are equipped with detectors and the
empirical data are available for all roads. Then we will extend
MVA to the scenario of low density of detectors. For the
former scenario, we only aim at minimizing ESEE given by



the first term in (18). MVA can be interpreted as an iterative
searching solution initiating from the target edge and try to
find the optimal detector at each iteration which can minimize
ESEE. Let us define the finite-states at the i-th iteration as S;,
which contains NV; neighboring edges of [;_; defined by the
selected edge at the i-1-th iteration. The transition probability
from the selected edge [;_; to the s;-th state is defined by
T1,_ys;, Which is 1/N;. The ESEE at the i-th iteration for the
n;-th selected neighbor is represented by V;,,,. From (18),
Vin, can be determined by

Vir = 0
. H
‘/zfl,li,}ll + ngi,m"'li_lniQTli_l,m'i'
Vvi,ni {nln gTLi_l,mrli—1ning7m+
i1

H
9Tn; m"n; 9Tn; m — 2rTningi,m

_ Rli—l Tli_in;
Ry, = ri r
li_in; i
H _ H
P = | Fhim Inim | (19)

where 1;_1 contains all selected roads at the i-1 -th iteration,
Ti,_,n;» Tn; and rr,, are the co-variance vector between ;1
and n;, variance of n; and co-variance between T and n;. Then
MVA can be described by Algorithm 1. In the line 3, a queue
is created to store the ESEE and the selected road at the initial
iteration, the “while” loop from the line 13 to line 23 selects
each crossed edge by minimizing the ESEE at each iteration,
and the OCC can finally be determined by tracing each edge
back to its parent which is defined by the selected edge in the
last iteration.

For the latter scenario, a number of the unmeasured roads
appear in the network. The flow conservation given by (18)
need to be utilized to improve the estimation performance
because of the lack of detectors. However, algorithm 1 cannot
be directly applied to the latter scenario because the second
term in (18) cannot be determined unless a cut is pre-given. It
makes impossible for algorithm 1 to iteratively incorporate the
flow conservation during the searching procedure. To tackle
the problem, an approximation is made for (18) aiming at
minimizing the number of crossed unmeasured roads while
minimizing the first term in (18). We try to select the edge
at each iteration being able to provide the maximum average
Variance of the Hypothetical Means (VHM), which is interpre-
ted as the difference between the variance and the conditional
variance, then divided by the number of crossed roads. From
the law of total variance, the variance of the target flow can
be expressed by

Eq,, (vary, (qrlgm)) + varg,, (Eq (gr/qm))
= ESEE + VHM (20)

var (qr)

The dual problem of ESEE minimization is to maximize the
VHM at each iteration. The modified algorithm can be found
in algorithm 2.

Remark 4. Note that the number of cuts being found for the
given area is determined by the empirical data and topological
information. Therefore, the number of determined cuts varies

Algorithm 1 MVA for the former scenario

1: Input: target road 7, graph G

2: Output: optimum closed cut OCC

3: Initialize an empty OCC, empty edge array Ecell and a
new queue Q with the initial information about 7.V} 7 =
0;

4: While @ is not empty do

: Get the ESEE V;_; and the crossed edges [;_1 at ¢ — 1-

th iteration, pop @

6 For n; =1,2,...,L; 4 do

7: Find the neighboring edges S; for l;_1 »,

8

9

W

For n; = 1,2, ..., number of neighboring edges do
If S; ., approaches the target road

10: Then remove S; ,,, and continue

11: Else update V;_1;, , to V; ,, via (19)

12: Search the minimum ESEE V; ,,; i, through @
13: If Vvi,ni = ‘/;,ni,min

14: Then V; = [V;_1  Vin)Jli=[lic1 Sinl
15: Else remove S; ,,, and continue

16: If S;,, is a new edge

17: Then add the new edge to Ecell

18: End For

19: If I; is not empty

20: Then construct a new element info with V; and [;
21: push info into @

22: End For

23: End While
24: OCC is the concatenation of the parent field of each Ecell
element

Algorithm 2 MVA for the latter scenario

The following modifications should be made:

line 11: update V;_1;, , to Vi,

line 12: Search the maximum expected variance improvement
Vi max through @

line 13: if V; ,,, = Vin, max

The rest lines are identical to those in algorithm 1.

with different target road segment. For each target road seg-
ment, there is only one optimal cut which is used to estimate
the missing data. For an example, for the target roads “Snowy
Mountains Highway” and “Monaro Highway”, there are 4 and
18 closed cuts being determined via the proposed algorithm,
respectively.

C. OCC Based Novel Estimator

This subsection proposes the OCC based Kriging estimator
and the OCC based novel estimator which incorporates the
flow conservation law. After that OCC is determined by algo-
rithm 2, the missing data at the target road can be estimated
via a Kriging estimator [?].

~ _ H _

QTkriging = 4T + 97,m (qm - qm) 2D
where g, and @, contains the instantaneous flow and average
flow for each crossed sensors, the vector gr ,, consists of K,
scaling factors gty m;k=1.-.k, between the target flow and the



K, measured flows and can be straightforwardly obtained by
the empirical data. Then the conditional expectation E (Gt |gm)
and the conditional variance var ({r|gm) can be expressed by

E (qﬂqm) = qT,kriging (22)

and

var (gr|gm) = var (¢r) — g} ,, Rg, 91,m (23)

To our known, the conditional PDF (Probability Distribution

Function) P (¢r|gm) is a Gaussian function [?]. Thus, the OCC
based Kriging estimation can be formulated as

qr|@m = Grriging + € (24)

where ( ~ N (0, var (¢r|gm)). To further reduce the uncer-
tainty, we try to incorporate the flow conservation law given
by (17). Let us define the OCC for the target road T as C (T).
From (17), gr can be written as

qr

K Ky Kun Kun
E qk,in — E 4k, out + E qlin — E ql,out + ws + wy
k=1 k=1 =1 =1

Ko Ko
= E Qk,in — E Qk,out T (25)
k=1 k=1
Kun - Kun -
D121 Quin — 22127 Qout
where ¥ ~ N g, T e =t s Tlins
=1 Tiin + 21:1 Tlou + Ts + 7t

Tlou» Ts and r; are the flow variance for the in and out
direction at the I/-th crossed edge, and the variance of ge-
neration flow and dissipation flow within the closed cut,
respectively. Then the conditional expectation E (gr|C (T))
and the conditional variance var (¢r|C (T)) can be expressed
by

qT|C qum qu oul+qu in qu out
(26)
and
var (¢r|C (T Z T1in + Z Tlou +7s + 71 (27

The better estimation can be obtained by maximizing the
joint probability function Pr (¢r|gm, C (T)). With the Bayesian
theorem, the objective function can be expressed by

argmax (Pr (gr|gm, C (T)))
(Pr (gm, C (T) |gr) Pr (QT))
Pr (Qm7 c (T))
argmax (Pr (gm|gr) Pr (C (T) |gr) Pr (qr))

argmax (Pr (¢r|gm) Pr (gm) Pr (¢r|C (T)) /Pr (qr))

qr

qT,ML

argmax
qr

_ (¢r—E(grlgm))?
2(Vdr(qﬂr§m)
+ gla:((f;)

_ (gr—E(gr|C(T)))*
2var(gr|C(T))

argmax (28)

qT

By setting the first derivative of (28) with regard to gr to zero,
grmL can be expressed by

a E(QT\CC'(T)) _ Elgrlgm)

A var var T var m
GrmL = a (1QT) al (QT‘l (T)) al (QIlq ) (29)

var(qr) ~ var(qr|C(T)) ~ var(gr(gm)

where F (gr|g@m), E (¢r|C (T)), var (¢r|gm) and var (¢r|C (T))
are given by (22), (26), (23) and (27), respectively, and they
can be straightforwardly obtained by the empirical data.

Note that (28) and (29) are based on the assumption
that the traffic flow on the crossed measured roads and the
unmeasured roads are independent i.e. Pr(gm,C (T)|gr) =
Pr (gm|gr) Pr(C (T) |gr). In real scenario, however, it can
depict the dependence between them. Thus, the conditional
probability should be rewritten as

C(T)lgr)

where the latter term represents the conditional probability of
sum of the unmeasured flow and the missing flow based on
input flow and the target flow, while the former term stands
for the conditional probability of the input flow by giving
the target flow. Because of the causal relationship between
flows [?], the crossed flows on the OCC can be classified into
causal flow and effect flow defined by the input and output
of the OCC. Recall that v is a set of unobserved data and
can be modeled as a Gaussian variable, which is sum of the
unmeasured input flow, the unmeasured output flow and the
missing flow. The causal relation between g, and v can be
utilized to obtain a more accurate PDF. Then the second term
of (30) can be transformed to

Pr (g, = Pr (gml|qr) Pr (C (T) |gm,qr)  (30)

Pr (QT‘C (T) ) qm) Pr (C (T) , Qm)
Pr (gm, qr)

2
( KQT - Z?;nl qk,out+ >
A\ 2 Grin — E(C(T) [gm)

2var(C(T)|gm)

Pr(C(T) |qm, qr) =

Pr(C(T), gm) exp

Pr (gm) Pr (gr) /2mvar (C (T) [qm)

The reason that we write Pr (gm, gr) = Pr(gm) Pr(gr) in (31)
is the dependence between g, and g¢r has been taken into

&1V



account in the first term of (30), and (31) only considers the
causal relation between gy, and v, gr and ~. Hence, (28) can
be improved as

GrMLiimproved = argmax (Pr (¢r|gm) Pr (¢r|C (T) , qm) /Pr (¢r))

qr
(gr—a@r)®> _ (r—E(grlgm))®
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Fig. 2: Selected map for experiment: Sydney South Area

Random manner (MCR), where the missing points are inde-

(33)pendently and uniformly distributed over the spatio-temporal

_ 2var(gr) 2var(qr|qm)
= AEMAX (S g SR Geon) —E(C(T)|qm))”

o 2var(C (1) [gm)

(32)
Then §¢rMr improved an be expressed by
(jT,ML,improved =

o (TR i = per o) FE(C(Dlan)  E(gr|gm)
_ var(gr) var(C(T)[gm) var(qr|gm)
= 1 I 1

var(gr) — var(C(T)[gm)  var(gr[gm)
and
EC(T)|gn) = 7+ o"y,qmo';nl,qm (@m — @m)

var (C'(T) |qm) var (7) — g5 Rg,G,m (34)

where o, 4, and g, ,, are the co-variance matrix and condi-
tional correlation coefficients between v and gy, respectively,
and can be easily obtained by the empirical data.

V. RESULTS AND DISCUSSION

In this section, we evaluate the proposed imputation strategy
by comparing to other two imputation methods, NHA (Nea-
rest Historical Average) and kKNN. Various missing type and
missing ratio are observed in performance comparison among
the three imputation methods by MAPE and RMSE.

A. Data

Traffic flow data in this study was provided by Sydney
RMS (Roads and Maritime Services). The selected data was
collected by loop detectors on the arterial roads located in
Sydney south area over 198 days (Fig. 2). All measured roads
are single-lane bi-directional roads. Each detector provides the
flow data of 1-hour interval from 00:00 - 23:00h on each day.
Each green node in Fig. 2 represents a detector. The data can
be represented as a tensor 7' € RVn*MXK “where N, = 10,
M = 24 and K = 181. We choose K to be 181 instead of
198 because the weekend and public days are removed due to
the different traffic pattern.

B. Generation of Missing Data

To evaluate the imputation performance of each methods,
the missing data are intentionally generated with different
missing ratio that ranges from 20% to 50% at every 10%
increment as usual in the research field ([?], [?]). To verify the
robustness of the proposed methods, we consider three types
of missing data in this research: 1) Missing Completely at

domain. This may occur due to temporary from power or
communication failures [?]. 2) Missing Group Randomly in
the Temporal domain (MGRT), where the missing points
appear as a group of fixed length sequential points lost at one
road, and the group is independently and uniformly distributed
over the temporal domain. This may occur due to a prolonged
physical damage, malfunction of communication device or
temporary detector deployment. 3) Not Missing Randomly
(NMR), where the occurrences of missing data are scattered
and simultaneous over different roads. NMR is often caused
by a long time malfunction of the loop detectors [?].

C. Imputation Techniques for Comparison Analysis

NHA is the most common method in the data imputation
because it shows a stable performance regardless of the
missing data size with easy implementation [?]. NHA replaces
the missing data by arithmetic average or weighted average
of the nearest historical data [?]. NHA does not incorporate
the information from neighboring roads at the same day and
is based on the assumption that traffic pattern at the same
detector at the same time is similar from day to day. In this
study, we fill the missing data with the arithmetic average data
of the same time over 10 historical days.

The second comparison method is kNN method which has
been discussed in [?], [?]. The original kNN method is to fill
the missing data with arithmetic or weighted average of data
on k neighboring roads. The k neighboring roads are selected
by searching for the data with close physical distances with
the target road. In [?], the authors proposed the improved
kNN which replaced the physical distance with the equivalent
distance, which is related to the physical distance among roads
h, connective grade of a road g and correlation coefficient
between the historical time series of two roads r. The k
neighboring roads are selected by a given suitable threshold
of the equivalent distance. Then the missing data on the target
road is estimated by the arithmetic average of the data on the
k neighboring roads.



D. Results and Discussion

In this section, we examine the imputation performance of
our novel approaches: OCC based Kriging (21), OCC based
ML (29) and improved ML (33) and compare them to corre-
lative kNN [?] and NHA [?] in terms of MAPE over different
missing ratios and three missing patterns. The performance
of the proposed approaches was evaluated with 198 days of
the historical data. Missing data in testing were intentionally
produced from the available data sheet and compared with the
actual value for the performance evaluation.

Fig. 3 and Fig. 4 depict MAPE and RMSE of the three
novel imputation methods for MCR pattern, respectively. The
accuracy results of imputation represented by MAPE show that
the three novel imputation methods dominantly outperform the
correlative kNN and NHA over the missing ratio from 0.25 to
0.5. By incorporating the flow conservation law introduced
in Theorem 2, the imputation performance can be further
improved via OCC based ML and improved ML. Fig.5, 6
and Fig.7, 8 show the imputation performance for MGRT and
NMR patterns, respectively. As shown in Fig. 5, OCC based
ML and improved ML depict better estimation performance
than correlative kNN and NHA over almost whole scale of
missing ratios while OCC based Kriging is more appropriate
for the missing ratio being lower than 0.35. Beyond 0.35, OCC
based Kriging shows a worse performance than the comparing
methods. For NMR pattern, the three novel approaches slightly
outperforms the comparing methods over almost whole scale
of missing ratio.

Comparing the three novel approaches, the improved ML
shows the best imputation performance for three missing
patterns because it incorporates the flow conservation law and
takes into account the dependence between the measured and
unmeasured roads.

Comparing the three missing patterns, three novel methods
depict the best imputation performance for MCR pattern while
the worst performance for NMR.

It is observed in Fig. 5 that the performance of OCC based
Kriging for MGRT pattern becomes worse than NHA and
correlative kNN when missing ratio is larger than 0.35. This
is mainly because for group missing pattern, the number of
the measured neighboring roads captured by OCC decreases
quickly with the increase of the missing ratio and thus the
correlation between the measured neighboring and the target
roads plays less role compared to the flow conservation for
the missing data imputation.

To summarize, our results show that the three novel methods
perform better than the comparing methods in almost all
missing pattern, with exception for MGRT for which the
OCC based Kriging performs worse than the two comparing
methods for the missing ratio being larger than 0.35. The
improved ML outperforms all other methods for all missing
patterns and missing ratios.

Remark 5. Although in this paper, we only considered the non-
congested case. Theoretically, congestion and non-recurrent
events pose no impact on the performance of our methods as
long as the sampling period is much larger than the travel
time. Because in this case, almost all traffic flow measured by
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the target detector originates from the flow measured by its
upstream detectors during the same time slot. In the case that
the travel time is much larger than the sampling period due
to congestion or non-recurrent events, the time lag should be
considered to improve the performance.

VI. CONCLUSIONS

In this paper, an OCC based imputation strategy has been
proposed for traffic flow incompleteness in urban network.
Based on the determination of optimum sensors for imputation
via novel OCC finding algorithm, we compare three different
estimators: OCC based kriging, OCC based ML (Maximum
Likelihood) estimator and improved ML estimator in terms of
MAPE for three missing patterns: MCR, MGRT and NMR.
In addition, our three novel methods are compared to NHA
and correlative kNN. From our experimental results, we can
conclude that

1) Our three novel methods outperforms NHA and ANN
for three missing patterns over almost all missing ratios
because the topological information was utilized and a
sophisticated OCC finding algorithm was designed to
determine the optimum sensors before imputation.

2) The two ML estimators can deliver a better estimation
performance than OCC based Kriging because the flow
conservation law has been incorporated.

3) By consideration of the dependence between the me-
asured and unmeasured roads, the estimation accuracy
can be further improved. Therefore, the improved ML
estimator is the most appropriate imputation scheme for
all missing patterns.

VII. FUTURE WORK

Our proposed methods are evaluated with 1-hour data due to
unavailability of finer data. In future work, we will implement
the proposed methods in finer data (15 mins, 5 mins, 30
seconds) and consider the effect of time-lag. The complexity
of the proposed algorithm can further be reduced.
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