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Abstract: 

The analysis of the noise of a system is often an effective way for obtaining 

information about its internal dynamics. In this article, an analysis of the 
variance of the noise on the power load curve of the Swiss railway system 
guides us towards the detection of a multimodality in the distribution of 
punctualities. This multimodality is regarded as a strong indicator for a 
dynamics with multiple, possibly self – organized, regimes. The presence of 
multiple regimes in the dynamics is of relevance for the design of control 
strategies. Based on information about the operation of the Swiss regular 
interval time table, we suggest and apply a simple way for identifying the 
part of the load signal that can be regarded as noise and we demonstrate 
the use of Hartigan’s dip test for the identification of multimodalities in the 
distribution of random variables. 
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Abstract--The analysis of the noise of a system is often an 

effective way for obtaining information about its internal 

dynamics. In this article, an analysis of the variance of the noise 

on the power load curve of the Swiss railway system guides us 

towards the detection of a multimodality in the distribution of 

punctualities. This multimodality is regarded as a strong 

indicator for a dynamics with multiple, possibly self – organized, 

regimes. The presence of multiple regimes in the dynamics is of 

relevance for the design of control strategies. Based on 

information about the operation of the Swiss regular interval time 

table, we suggest and apply a simple way for identifying the part 

of the load signal that can be regarded as noise and we 

demonstrate the use of Hartigan’s dip test for the identification of 

multimodalities in the distribution of random variables. 

 
Index Terms—load forecasting, load modeling, punctuality, 

rail traffic control, rail transportation power systems, statistics 

I.  NOMENCLATURE 

SBB: Swiss Federal Railways 
Punctuality: The ratio of trains that runs not more than three 
minutes late in the whole railway grid. 

II.  INTRODUCTION 

HE 16.7 Hz electric railway power supply grid in Central 
Europe exhibits many features expected to be present in 

the public grid, once an exit from nuclear and fossil- energy-
carriers will be realized. Among others, these are: High share 
in renewable energies, decentralized and non - orchestrated 
production (in the railway system from recuperation of the 
vehicles) and a high fluctuation of the residual load. Several 
publications discuss demand side management for 50 or 60 Hz 
public power supply grids [1] [2]. Methods for the system 
design of railway power grid exist [3] [4], but focus on the 
average demand and not on the management of short – term 
fluctuations. The Swiss Federal Railways (SBB) operates an 
electric power supply grid that is separated from the public 
grid. According to its energy strategy, the electric power 
supply of SBB in 2025 will rely completely on renewable 
energy sources and exploit the possibilities of information 
technology for a maximally efficient operation in various 
manners [5]. It is a prototypical example for a smart grid, 
according to the definition given in the US Energy 
Independence and Security Act of 2007 (EISA-2007). SBB is 

implementing as first railway grid operator a demand side 
management system [6] to reduce the global load peaks. 

An example of the total load profile of the electric railway 
power supply of the SBB that exhibits large load peaks and 
steep gradients is presented in Fig. 1 (further information in 
[7]). Load increases of 240 % in 70 s are challenging but daily 
business. In order to put Fig. 1 into perspective, we give some 
background to the presented data: The basis of studies such as 
[7] is a measurement of the total load of the SBB electric 
railway power grid with a sample resolution of one second. 
The power grid has an total installed production power of 
1 300 MW, the maximum load peaks are about 740 MW. The 
Swiss railway power grid is connected with those of Germany 
and Austria. The three grids are operated in a common primary 
control area [8]. The Swiss railways accomplished in 2015 a 
traffic performance of 18 560 million passenger kilometers 
and 15 065 million net ton kilometers of freight traffic by use 
of total 1 844 GWh of electrical traction energy [9]. The 
operational maximum speed in the Swiss railway grid is 
200 km/h, the punctuality of the passengers was 2015  88 % 
(ratio of the passengers that arrived early, punctually or with 
less than 3 minutes delay) [9]. For the future, an increase of 
the load peaks, at least in size but probably also in frequency, 
is expected because of the planned increase of capacity and 
more powerful rolling stock. 
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Fig. 1.  Typical daily total load profile of the SBB electric railway power 
supply on a workday 

 
The high volatilities in the power load of railway grids are a 

challenge for the demand side management. Comparable 
challenges are expected to emerge in the public power supply 
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grid, once the shift towards renewable energy carriers has been 
implemented, because power production based on renewable 
energy carriers like photovoltaic or wind turbines is more 
volatile than power production based on fossil or nuclear 
energy carriers [10]. The railway power grid therefore may 
serve as a laboratory for operating public power supply grids 
with high volatilities. 

There is a variety of tools one can use in order to 
implement demand side management. We pursue the following 
approach: The load curve is split into a deterministic and a 
stochastic part (we will define precisely what we mean by 
“deterministic” below). The stochastic part is analyzed further; 
firstly, with the goal to get insight into the distribution of the 
noise, which allows predicting the probabilities for the 
appearance of load peaks of given size. Secondly, we analyze 
the relation between noise in the power load and the statistics 
of observable quantities of the operation of the railway grid. 
This with the goal to reduce/control peaks in the power load 
by finding potential mechanisms that generate the peaks. 

In brief, we are guided by the idea that the appearance of a 
correlation (in form of a clustering) between noise in the 
power load and fluctuations in another operational observable 
indicate a non – trivial behavior of the latter. In this paper, we 
focus on punctuality, and in fact, we observed such a 
clustering and could demonstrate that local punctuality (means 
the punctuality with respect to a major hub) exhibits a 
multimodal distribution. Multimodality in probability 
distributions is a strong indicator for an underlying dynamics 
governed by multiple dynamical regimes (see subsequent 
explanations and, for a more mathematical presentation [11]). 
The information that a system is governed by multiple regimes 
is in turn of high relevance for the design of an appropriate 
control strategy (which is not part of this paper). 
In more detail, there are several reasons why one seeks 
knowledge about noise and noise reduction (more general: the 
stochastics) of global system variables, especially about the 
power load. A first one is purely economic: Knowing the 
statistics of noise is of value for short term contracting in 
controlling power. A second is given by the general 
requirement of being as economical as possible with respect to 
energy consumption. This requirement can be answered in 
various ways. Further efficiency gains in the rolling stock may 
well be possible; however, the potential is probably limited. 
Another way to lower overall energy consumption is to reduce 
the necessary controlling power range one needs to guarantee a 
(at least with respect to energy) smooth operation of the 
railway system. In order to achieve this, a better understanding 
of the nature of noise in electric power load is necessary. This 
includes a deepened insight into the statistics of noise as well 
as into the mechanisms generating it. Thirdly, as we will 
demonstrate, the analysis of the distribution of noise gives 
evidence that the railway system switches between different 
regimes or modes of operation. More precisely, the system 
seems to run either in a punctual mode with comparable low 
noise or in an unpunctual mode with higher noise. These two 
modes of operation seem to be clearly distinct and there is no 

detailed knowledge about the precise way how transitions 
between them take part. Knowing about such modes and 
transitions is of interest first because one gets a better 
understanding of dynamics underlying the railway system. 
Second, such knowledge can be crucial for the design of an 
appropriate control strategy for the whole system. In such a 
strategy, one has to be aware of the actual mode of the system 
and to apply a control that is optimal for the specific mode and 
third (if possible and desired) one has to take appropriate 
means in order to switch as smoothly and quickly as possible 
from one into another mode. 

Many natural and technical systems can be described by a 
single default state (a single regime) and some fluctuations 
around it. This default state is often a stationary or even 
equilibrium state, but may also be a limit cycle or a more 
complex form of attractor. We intend to use the term 
“attractor” in a rather colloquial sense which does not refer to 
mathematical details but captures the idea of a system behavior 
that remains upon small perturbations in some limited region 
of the parameter space. Therefore, we will speak of “regimes”, 
which do not only refer to the attractor, but also its respective 
basin of attraction. 

Large technical systems often exhibit several distinct 
regimes. This multitude of regimes may be an intentional 
feature of the design of the system or a (maybe not desired) 
consequence of the system dynamics. In the former case, the 
switch between the regimes may happen according to some 
deterministic dynamics. If one models the system behavior, it 
is often appropriate to use two different models, one for each 
regime. The latter case is more demanding; usually, one of the 
regimes is the intended default regime. Since the system 
fluctuates, it may eventually leave this default regime and 
settle down in one of the other basins of attraction. Modeling 
this situation requires methods used in the study of stochastic 
processes (see [11]). Controlling a system with several regimes 
requires more elaborate control strategies because counter – 
intuitive system behavior may occur. If a system has only one 
attractor, reduction of noise is sufficient to bring the system 
closer to the default state. If, however, there are multiple 
regimes, a reduction of noise may lock the system into a non – 
desired state, with no chance whatsoever to switch back to the 
desired state. A proper control would require first to bring the 
system close to a desired (self – stabilizing) state and only then 
to reduce the noise (for a detailed discussion of this class of 
phenomena which includes stochastic resonance, see e.g. [12], 
and for a very accessible discussion using examples from 
biology, [13]). 

A typical signature for the presence of multiple regimes 
consists of multimodal (i.e. multi – peaked) probability 
distributions with respect to system observables. A word of 
caution is necessary: multimodal distributions can also indicate 
a strongly non – uniform usage of the system with two 
effectively separate regimes. “Effectively separate” thereby 
means that despite the fact that the system in consideration 
could in principle be run in a continuous range of modes of 
operation, the effective modes of operation can be categorized 
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in a number of distinct regimes. In order to run the system in 
an optimal manner, one may want to distinguish these regimes 
and apply respective optimal operation procedures. 

The paper is structured as follows. In Sec. III, we define our 
notion of noise and discuss how we split the power load curve 
into a deterministic and a stochastic part. In Sec. IV, we 
analyze the relation between the variance of noise in the load 
and the distribution of punctuality of the railway system. This 
motivates the claim that the dynamics of the Swiss railway 
system exhibits stochastic switching between multiple regimes. 
In Sec. V, we discuss these findings. The paper closes with an 
outlook. 

III.  DETERMINISTIC AND STOCHASTIC PART OF THE LOAD 

PROFILE 

A.  Definition of Noise 

Splitting a signal into a deterministic and a stochastic part is, at 
least conceptually, comparably easy as long as the signal can 
be understood as arising from of a well – defined system with 
known internal deterministic dynamics and a connection to / an 
embedding into a stochastically varying environment. In case 
of the SBB power grid, the distinction into deterministic and 
stochastic behavior is more involved, because the dynamics of 
the system under consideration (the trains on the railway 
network) and their mutual interactions are not known in all 
detail. Consequently, the split of the power load curve into a 
deterministic and a stochastic part follows a different 
paradigm: The regular interval time table suggests a 
corresponding regular part in power demand. The regular part 
of the power demand is determined by frequency analysis and 
regarded as deterministic, because it can be mapped onto 
features of the operation of the railway grid. Consequently, the 
difference between the actual load and the deterministic part is 
deemed to be noise. This separation of the total load profile in 
deterministic regular frequency components and noise by a 
Fourier transformation has been described in [14]. This noise 
is, at least in part, related to the heavy use of the Swiss railway 
grid. With 160 trains per track and day [9] the Swiss railway 
grid is one of the most heavily used railway grids in the world 
[15]. 

We make two remarks concerning the concept of noise, as 
we presented it here. Firstly, the way how we define noise is 
not immanent to the system but reflects our knowledge about 
the system. As will be discussed in the next section, we can 
map certain frequencies in the Fourier spectrum of the power 
load onto aspects of the operation. This mapping defines what 
we understand by “deterministic”. Secondly, we emphasize 
that the term “noise” is mathematically adequate (since the 
fluctuations are stochastic in nature) but may lead to a 
misunderstanding. The noise we analyze in this paper is not 
white noise, at least not in general because the noise is not 
necessarily independent (i.e. exhibits non – trivial auto – 
correlation). This for (at least) two reasons: First, the 
contingencies mentioned above are not isolated events and 
may take effect over a longer period. Second, even if these 

contingencies are highly localized in time, they may lead to 
avalanche effects in the sense that one contingency may 
promote other events that disturb the traffic. In fact, as will be 
discussed in Sec. IV, a closer analysis of the noise suggests a 
non – trivial structure, i.e. a characteristics of the distribution 
of noise that indicates an operation of the railway system in 
multiple, separated regimes. 

B.  Frequency Analysis 

Based on time series of the load profile with a resolution of 
one second, the respective Fourier spectrum is presented in 
Fig. 2 and 3. We identify those characteristic frequencies 
which can be related to different aspects of the operation of an 
integrated regular interval timetable. 
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Fig. 2.  Absolute value of the Fourier spectrum of the SBB total load. 
Frequency domain from 0 to 2 mHz [14] 
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Fig. 3.  Absolute value of the Fourier spectrum of the SBB total load. 
Frequency domain from 15.9 to 17.5 mHz [14] 

 
The low frequency components under 0.5 mHz, describe 

the ground pattern of the load profile, caused by the traffic 
rush hours and environmental effects, such as the temperature 
influence, on the load. The half hour periodicity and its 
harmonics (i.e. 15 min, 10 min, 7.5 min periodicities) reflect 
the symmetrical regular interval timetable. Furthermore, one 
finds a periodicity of one minute that is due to the fact that 
punctual trains departure always happens some seconds after 
the full minutes (hh:mm:00). These components are 
predictable and are well explored. The other parts of the 
spectrum are regarded as noise and related to contingencies in 
the railway operation like door blockages with following 
delays or phenomena that are not yet adequately described like 
individual driving style of train operators. 

We analyze the power load with respect to one – hour time 
intervals. This choice is justified, because it is bigger than 30 
minutes, which is the natural time window of the Swiss regular 
interval time table. Furthermore, we expect the hour from, say, 
7:00 to 8:00 to be comparable for all workdays, whereas the 
frequency spectrum of a rush hour differs from the spectrum 
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observed during the night, when traffic is reduced. In what 
follows, we regard the deterministic part of the power load as 
composed of the Fourier components with periods bigger or 
equal to 30 min, and the components with periods 15, 10 and 1 
minute. As explained above and in [14], this choice is justified 
by consideration of the railway system operation; from a 
mathematical perspective other choices are conceivable. 

IV.  CORRELATION BETWEEN LOAD NOISE AND 

PUNCTUALITY: EVIDENCE FOR REGIME SWITCHING 

We relate the punctuality (i.e. the ratio of the number of trains 
that runs not more than three minutes late to the total number 
of trains) in the whole Swiss railway system to the variance of 
the load noise (i.e. the variance of that part of the load profile 
regarded as noise, according to the definition given in 
Sec. III. A). We focus on the time window from 6:00 to 10:00; 
this is motivated by Fig. 4. Starting from a relatively high level 
of average punctuality between 6:00 – 7:00, we observe a 
decrease and only between 9:00 – 10.00 the average 
punctuality recovers. The time intervals of decreased 
punctuality are those of interest for detailed analysis of the 
inner dynamics of the railway system, because these are the 
times which bear the potential for a direct benefit of the 
passengers and with the highest load peaks in the power 
demand. 
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Fig. 4.  Average punctuality of the SBB railway grid for the hours from 4:00 
to 18:00 

 
We compute the variance of the noise for time intervals 
covering full hours from 6:00 to 10:00 and plot it versus the 
punctuality in the according time interval. The result is given 
in Fig. 5. A closer analysis of the data reveals that the samples 
can be grouped into two clusters. In the lower right, one finds 
data points belonging to the hours from 6:00 to 7:00 with high 
punctuality (> 88%) and low variance of the noise (cluster 1) 
and a cluster (cluster 2) of hours from 7:00 to 10:00 with high 
variance of noise in a wide range of punctuality. 
The question arises whether the two clusters are truly distinct 
or result from a simple scaling effect. If it were the case that 
the system usage (i.e. the power demand) is higher during the 
hours from 7:00 to 10:00 compared to the interval from 6:00 
to 7:00, an upscaling of the noise would be no surprise. But as 
shown in Fig. 6 the hourly average of the total load 

consumption of the Swiss electric power grid during the hours 
from 6:00 to 9:00 is similar and during the hour from 9:00 to 
10:00 even lower than in the previous three hours. Therefore, 
simple scaling can be ruled out as explanation for the 
appearance of two clusters. 
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Fig. 5.  Variance of the noise vs. punctuality on an hourly base, the ratio of 
punctual trains in the SBB railway grid to the total number of trains in a given 
hour. Each plotted sample represent data from days within a period from 
19.01.2015 to 20.03.2015, the data are selected to workdays and the hours are 
from 6:00 to 10:00. 
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Fig. 6.  Hourly average of the SBB total load on workdays 

 
In the introduction, we mentioned that our investigation is 
guided by the idea that the appearance of clusters in a plot of 
variance of power load vs. a system variable such as 
punctuality is an indicator for a non – trivial distribution of the 
latter. The analysis of this distribution could in turn reveal 
relevant information useful for the design of a control strategy. 
This is particularly true if the distribution under consideration 
is multimodal. However, from Fig. 5 it is not obvious that the 
distribution of punctualities exhibits particular features. But 
we point out an issue to be considered. Analyzing the statistics 
of delays by aggregating data from the whole Swiss railway 
system may be misleading. As we will demonstrate (see later 
in Figs. 7 – 10), there are clear indications for multiple 
regimes if one analyzes the delay statistics of individual 
(major) train stations. The existence of local multiple regimes 
is obscured if the distribution of delays is analyzed aggregating 
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data from whole over Switzerland. This is no surprise; 
dynamic formation of regimes by self – organization (or self – 
stabilization of undesired states) may occur in a part of the 
railway system, but rarely affects the whole railway traffic. In 
order to overcome this problem, we work with the local delay 
statistics of Olten, a major hub in the Swiss railway system, for 
which according data is available. 
In order to study the internal structure of the clusters in Fig. 5, 
we take time intervals with a duration of one hour of different 
workdays as samples and compute the relative punctuality of 
passenger trains for each sample and day. The histograms use 
a bin width of 2.7 %. The samples are taken from the local 
delay statistics of the hub of Olten, spanning the period from 
19.01.2015 to 20.03.2015, selected to be workdays. The 
histograms represent the absolute frequency of punctuality on 
different workdays (Figs. 7 - 10). Visual inspection suggests 
multimodality for the distributions in Figs. 7, 8 and 10. Since 
visual inspection alone can be misleading, we apply a 
statistical test for multimodality, Hartigan’s dip test (Details 
about the test and references for the underlying theory and 
numerical implementations are given in the appendix). The 
major assumption to satisfied for the application of Hartigan’s 
dip test is independence of the samples. Since we analyze the 
punctuality of samples for identical time intervals of different 
days but always covering the same hour, this independence 
may safely be assumed (It is clear that if there are delays in, 
say, the interval from 6:00 to 7:00 of a given day, the 
probability to have also delay at a later hour of the same day is 
enhanced. But yesterday’s delay usually doesn’t affect the 
delays of today). 
The results of Hartigan’s dip test are in the captions of Figs. 7-
10 (p-value). The p-value is the probability of obtaining a test 
statistics, which is equal or more extreme than the observed 
value (cf. Appendix, Sec. VII. A), assuming the null 
hypothesis of unimodality. Any p-value less than a significance 
level of 0.05α = suggests that observed data is inconsistent 
with the null hypothesis of unimodality. 
From these results, we gain evidence that there are (at least) 
two modes of operation: a punctual mode (with punctuality 
higher than 92%) and a mode of low punctuality. A local 
switch between these modes in a central hub suffices to 
establish a mutual hindrance of many trains. Acceleration 
processes of these trains are coupled and will produce peaks in 
the total load of the Swiss railway grid. A local decrease in 
punctuality in a major hub of the railway grid amounts in an 
increase of variance of noise in the whole power grid. 
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Fig. 7.  Histogram of the punctuality of the trains for the hour 6:00-7:00; 
shown are delay statistics for Olten, a central hub in the Swiss railway system; 
p-value of the Hartigan’s dip test < 2.2e-16 
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Fig. 8.  Histogram of the punctuality of the trains for the hour 7:00 – 8:00; 
shown are delay statistics for Olten, a central hub in the Swiss railway system; 
p-value of the Hartigan’s dip test: 0.0311 
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Fig. 9.  Histogram of the punctuality of the trains for the hour 8:00 – 9:00; 
shown are delay statistics for Olten, a central hub in the Swiss railway system; 
p-value of the Hartigan’s dip test: 0.0795 
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Fig. 10.  Histogram of the punctuality of the trains for the hour 9:00 – 10:00; 
shown are delay statistics for Olten, a central hub in the Swiss railway system; 
p-value of the Hartigan’s dip test: 0.000217 

Page 5 of 7

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 6

V.  SUMMARY AND DISCUSSION 

We analyzed the variance of noise from the load profile and 
the punctuality of the Swiss railway system. Motivated by a 
visual inspection of the diagram of variance of noise versus 
punctuality, we hypothesized multimodality in the distribution 
of local punctualities and consequently (and for the operation 
of the railway system more relevant) evidence for the 
appearance of multiple regimes in the operation of the railway 
system. A statistical scrutiny, based on Hartigan’s dip test, 
corroborated the visual impression of multimodality insofar as 
the null hypothesis of unimodality can be rejected for several 
time intervals. We have to express a word of caution that has 
always to be applied when statistical tests are used; statistical 
tests may justify the rejection of a null hypothesis, but not 
more. What we have demonstrated is that the data is not 
compatible with the assumption of unimodality, this must not 
be confused with an actual proof for multimodality, although 
in practice, the rejection of unimodality constitutes strong 
evidence for multimodality. Furthermore, the appearance of 
multimodality does not necessarily imply the existence of 
multiple regimes, although multiple regimes are a very natural 
explanation for the observation multimodality. Moreover, 
multimodality is a strong sign for a complex underlying 
dynamics of the system under consideration. Lastly, even if the 
observed dynamics exhibits multiple regimes, the question 
remains whether these multiple regimes are caused by intrinsic 
mechanisms (self – organized regimes) or extrinsic causes (e.g. 
multimodality in the numbers of trains, which in turn leads to 
multimodality in other system observables). But in any case, 
whatever causes multiple regimes, awareness of their existence 
and a characterization of their stochastics is useful in order to 
determine operation procedures optimal for specific regimes. 
Our analysis suggests a correlation between punctuality (P) 
and noise (N) of the electric load profile. We discuss possible 
causations. First, the decrease in P and the accompanying 
increase in N could have a common source. Second, the 
decrease in P could cause an increase in N and finally, third, 
the increase in N could result in a decrease of P. This latter 
possibility seems not to be plausible, since a more noisy 
consumption of energy may increase costs, but has no direct 
influence on the operation of the railway grid. Although we 
cannot rule out the first possibility, we favor the hypothesis 
that decreased punctuality causes the emergence of larger 
noise which is in accordance with the findings in [16]. There, 
it has been shown that a decreased punctuality is correlated 
with an increased power consumption of the railway system. 

Even if one accepts a lowered P as a cause for increased N, 
one has not justified multiple regimes. A potential mechanism 
that could establish a “tipping point”, i.e. a switching between 
a punctual and an unpunctual mode of operation, is given by 
the following consideration. The regular interval timetable in 
the Swiss railway system exhibits a specific feature: the 
connections are organized in such a manner that trains depart 
from main hubs around the same minutes of the hour. This 
leads to a peak of the density of trains and in consequence to 
time windows with increased probability for track conflicts on 

main lines. Comparably small perturbations can therefore have 
a large impact which is readily transferred over the whole 
network. Track conflicts (and their resolution) in term lead to 
increased variations in the speed of trains and consequently to 
noise in the electric load profile. 

At the present state, the available data allows the 
identification of multimodal distribution but not the underlying 
dynamics. Concerning the analysis of the relation between 
noise in the power load and punctuality, a main obstacle for 
obtaining a deeper insights into the system behavior lies in the 
fact that we demonstrated that punctuality has to be analyzed 
with respect to local hubs. But analyzing power load on a local 
level doesn’t make sense, because local acceleration effects are 
swapping the influence of punctuality. 

VI.  CONCLUSION AND OUTLOOK 

Even if the detailed mechanisms leading to the multimodality 
observed are not known, optimal operation protocols should 
take into account the detailed stochastics of system variables. 
A further investigation should focus on the question whether 
such multimodality is caused by a multimodal usage profile or 
whether it is the result of some internal systems dynamics. If 
the latter turns out to be true, optimal operation could profit 
from the detection of early warning signals announcing the 
transition from one regime into the other. 

VII.  APPENDIX 

A.  Hartigan’s Dip Test 

A first step towards the determination of an appropriate 
control strategy is to analyze whether or not system variables 
exhibit uni- or multimodal distributions. According statistical 
tests exist; we use a test developed by Hartigan and Hartigan 
[17]. Since this test is not generally known, we provide a brief 
description. Given a sample of n  data points, Hartigan’s dip 

test statistics 
n
D  measures the departure of the empirical 

distribution function 
n
F  from unimodality. In their paper 

(cf. [17], theorem 6) the authors prove 
n
D d=  based on an 

interval ( ),
L U
x x  and a non - decreasing function G  

satisfying: 
 

(i) G  is the greatest convex minorant (GCM) of 
n
F d+  

in ( ),
L
x−∞  

(ii) G  has constant maximum slope in ( ),
L U
x x  

(iii) G  is the least concave majorant (LCM) of 
n
F d+  in 

),ux ∞  

(iv) ( ){ }sup ( ) ( ) : ,n U Ld F x G x x x x≥ − ∈  

 
Maechler’s R-package (cf. [18]) illustrates Hartigan’s method. 
We present an example, see Fig. 11. Samples of fifty points 
are drawn from two Gaussians with (0,1)N  and (5,1)N . Both 

samples are merged and its density is shown in Fig. 11. 
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Maechler’s package also computes the dip statistics value and 
its p-value for the test of unimodality by interpolating 

tabulated quantiles of 
n

nD  (for visualization see Fig. 12). In 

our example the p-value is 0.00015p = . On a significance 

level 0.05α =  the null hypothesis of unimodality is rejected. 
The dip test statistics is computed in order n  operations for n  
observations. Any unimodal distribution can be tested against 
any multimodal distribution. 
 

 
Fig. 11.  Density plot of a mixture of two Gaussians 

 

 
Fig. 12.  Depicts the empirical distribution function together with its GCM 

and LCM on the interval of interest ( ),L Ux x  
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