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State Estimation for Communication-Based Train
Control Systems With CSMA Protocol
Lei Zou , Tao Wen , Zidong Wang , Fellow, IEEE, Lei Chen, and Clive Roberts

Abstract— Train positioning is of critical importance for
communication-based train control (CBTC) systems. The objec-
tive of this paper is to provide an algorithm to generate the pre-
cise estimates of the train position and velocity for CBTC systems
with carrier-sense multiple access (CSMA) protocol scheduling,
thereby improving the accuracy of train positioning as well as the
availability of CBTC systems. First, the dynamics of a train with
N cars linked by couplers is described based on Newton’s motion
equations. Then, the transmission model reflecting the behaviors
of p-persistent CSMA protocol is presented by using a Bernoulli
distributed sequence whose probability distribution is dependent
on the number of trains sharing with one communication channel
[i.e., N(k)]. Furthermore, the value of N(k) is assumed to be
unknown but bounded by two known positive integers. The
purpose of the problem addressed is to design an estimator, such
that the estimation error is exponentially ultimately bounded
(with a certain asymptotic upper bound) in mean square subject
to the external resistive force. By utilizing the stochastic analysis
approach, sufficient conditions are established to guarantee the
ultimate boundedness of the estimation error in mean square.
For the purpose of designing the desired estimator gains under
different requirements (e.g., smallest ultimate bound and fastest
decay rate), two optimization problems are solved in terms of
linear matrix inequalities. Finally, a simulation example is given
to illustrate the effectiveness of the estimator design scheme.

Index Terms— State estimation, communication-based train
control systems, CSMA protocol, linear matrix inequalities.

I. INTRODUCTION

THE past decades have witnessed a growing urgency for
the safe, efficient and comfortable public mass transit

system in major emerging economies including China, India
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and Brazil. Owing to the human population explosions in a
number of metropolises, metro systems might be the most
proper choice to match the increasing demand for low emis-
sions and high capacity transport. For instance, from 2009 to
now, more than 80 urban rail transit lines have been or are
being built in China and most of them are metro systems. For
these metro systems, the highly accurate and dependable train
control systems are extremely vital in order to ensure safe
operations. In traditional rail systems, the track circuit tech-
nology is commonly employed to realize the data exchange
between the individual operating train and the train control
center [7] and such kind of data exchange has proven to
be reliable in early years. However, the track-circuit based
control (TBTC) system gives rise to high detection tolerance,
thereby leading to long operation headway for each train
to make sure there is no possibility for potential collisions.
In other words, the track-circuit based technique would proba-
bly result in low operation efficiency in the train control center.
Moreover, short operation headway of the TBTC system need
short length of the track circuit, which would give rise to high
cost of the TBTC system.

On the other hand, in response to the rapidly increasing
demand for a high efficient urban public transportation system,
the communication-based train control (CBTC) system has
been developed by utilizing modern radio frequency (RF)
technology. Compared with the TBTC system, the CBTC sys-
tem could achieve much higher detection resolution and mov-
ing block by applying wireless data communication (instead
of the track-circuit based technology). Up to now, some
preliminary results have been reported on the analysis and
design issues of CBTC systems [13]–[15], [21]–[23]. For
instance, in [4], a multiple-input-multiple-output (MIMO)-
assisted handoff scheme for CBTC systems has been proposed
in order to reduce handoff latency. The impact of the phe-
nomenon of random packet dropouts has been investigated in
[2] on the stability and performances of CBTC systems and,
furthermore, two novel schemes to improve the performances
of CBTC systems have been developed. In [11], a finite-
state Markov channel model has been developed for tunnel
channels in CBTC systems by taking the train locations into
account to have the accurate channel model. Based on the
MIMO-enabled wireless local area networks, a new train-
ground communication system has been presented in [19] to
improve the handoff latency performance in CBTC system
with the consideration of inaccurate channel state information.

In the working process of the CBTC systems, trains
should “report” their locations, velocities, identities and
other operation information to the train control centers with
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sufficient frequency, and then the train control centers notify
the corresponding trains of the relevant movement author-
ities (MAs) according to the working conditions of metro
systems. Trains are allowed to keep moving forward with
the required velocities after receiving their MAs. Apparently,
the exact information about the locations and velocities of
trains are of essential importance to the train control centers
for the purpose of safe operations. Nevertheless, it is prac-
tically difficult to acquire such information because of the
“inaccurate measurements” induced by measurement noises
and the “unreliable communication” caused by underlying data
transmission schemes. In particular, the location of a train for
most of CBTC systems is measured by the combination of
balises and speed odometers which could cause location errors
especially when the train is running on wet or leafy rail tracks.
Moreover, the signal transmissions between the trains and the
train control center are implemented based on network com-
munication technology which would give rise to data dropouts
and communication delays. “inaccurate measurements” and
“unreliable communication” will lead to inaccurate train status
information and unplanned traction/braking commands, which
will affect the safety and Quality of Service (QoS) of CBTC
systems. For example, the on-board system will extend the
distance between trains to ensure that the train operation will
not be affected by the communication delays [5], [10]. Hence,
it is of importance to develop certain technology to obtain
the precise information about the locations and velocities
of trains.

In order to obtain the accurate information of trains, in this
paper, we aim to develop a state estimation scheme to generate
the estimates about the locations and velocities. The state
estimation (or filtering) problems have long been fundamental
issues in control theory and a variety of algorithms have
been available in the literature. Clearly, the well-developed
state estimation techniques would provide a satisfactory means
for recovering the true values of the states (e.g. locations
and velocities of the trains) from the noisy measurements
transmitted from possibly unreliable wireless networks. So far,
considerable effort has been devoted to the state estima-
tion issues under different conditions and several effective
strategies have been proposed, see [1], [3], [6], [8] and the
references therein.

Due to the wireless nature of the communication network
of limited bandwidth, the signal exchange between trains
and train control centers would suffer from potential risks
such as probabilistic signal collisions. Generally speaking,
signal collisions in networked systems might occur in case
of simultaneous multiple accesses to a shared communication
network. As such, communication protocols have been intro-
duced to avoid or mitigate the collisions by orchestrating the
transmission order of nodes having permissions to transmit
signal. These communication protocols include, but are not
limited to, the Round-Robin (RR) protocol [24], [25], the Try-
Once-Discard (TOD) protocol [26] and the carrier-sense mul-
tiple access (CSMA) protocol (or stochastic communication
protocol) [9], [27]. These protocols have been deployed in
industry where sensor networks and networked systems are
vital parts. In particular, in CBTC systems, the CSMA protocol

is typically utilized to regulate the wireless communication
between trains and train control centers.

Summarizing the above discussion, it is of both theoret-
ical significance and practical importance to study the state
estimation problem for CBTC systems subject to the CSMA
protocol scheduling. This appears to be a challenging task
with two essential difficulties identified as follows: 1) how to
develop a dynamic model accounting for the random nature
of the CBTC system with the CSMA protocol? 2) how to
develop appropriate methodology to design the estimator for
the CBTC system with the consideration of uncertain nodes
(trains) in the CSMA protocol? In this paper, we aim to cope
with the identified challenges by examining how the CSMA
protocol scheduling alleviates the possible data collisions and
designing the state estimator capable of estimating the system
states to a prescribed accuracy. The main contributions of
this paper are highlighted as follows. 1) The state estimation
problem is, for the first time, investigated for CBTC systems
with protocol-based constraints. 2) The influence from the
uncertain number of trains sharing with the communication
channel is thoroughly studied. 3) The state estimator gains
are derived by solving two optimization problems with their
aims to obtain the minimum of the asymptotic bound and the
fastest decay rate, respectively.

The rest of this paper is organized as follows. In Section II,
the state estimation problem is introduced for a CBTC system
with the p-persistent CSMA protocol. In Section III, we deal
with the ultimate boundedness problem of the estimation
error in mean square by adopting the stochastic analysis
approach. Furthermore, two optimization problems are pro-
posed for the design issue of the desired estimator para-
meters. In Section IV, the effectiveness of the main results
is demonstrated by a numerical simulation example. Finally,
conclusions are drawn in Section V.

Notations: The notation used here is fairly standard except
where otherwise stated. R

n and R
n×m denote, respectively,

the n dimensional Euclidean space and set of all n × m real
matrices. N(N+, N

−) denotes the set of integers (nonnegative
integers, negative integers). The notation X ≥ Y (X > Y ),
where X and Y are real symmetric matrices, means that X −Y
is positive semi-definite (positive definite). Prob{·} means the
occurrence probability of the event “·”. E{x} and E{x |y} will,
respectively, denote the expectation of the stochastic variable
x and expectation of x conditional on y. 0 represents the zero
matrix of compatible dimensions. The n-dimensional identity
matrix is denoted as In or simply I , if no confusion is caused.
The shorthand diag{· · · } stands for a block-diagonal matrix.
|a| denotes the absolute value of the real number a. �A� refers
to the norm of a matrix A defined by �A� = �

trace(AT A).
MT represents the transpose of M . Matrices, if they are not
explicitly specified, are assumed to have compatible dimen-
sions. The Kronecker delta function h̄(a) is a binary function
that equals 1 if a = 0 and equals 0 otherwise.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first give the overview of the
communication-based train control (CBTC) system and
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Fig. 1. A communication-based train control system.

introduce some preliminaries related to the dynamic model
of the train. Then, we will describe the problem setup.

A. Overview of the CBTC System

As shown in Fig. 1, a typical CBTC system consists of
three distinctive parts, namely, the trains, the wayside access
points (WAPs) and the Zone Controller (ZC). In such a system,
the communication between the train and the WAPs, which is
named as train-ground communication, is realized through the
wireless local area networks (WLANs). The WAPs collect the
information about the train status (e.g. the identity, location,
direction and velocity) via the train-ground communication,
and then transmit the information to the ZC through the
backbone network. Based on the information, the ZC knows
the location of all the trains in its area and makes the timetables
for each train [18]. Unfortunately, due to the “unreliable”
communication through the WLANs, the signals collected by
WAPs are unavoidably subject to the negative impacts brought
from the wireless communication (e.g. protocol-induced con-
straints). In other words, it is quite common that the ZC cannot
obtain the “precise” information about the location and the
velocity of the train from the received information directly.
As such, particular efforts should be made to design the state
estimation algorithm for the ZC to provide a “satisfactory
estimation” of the states (location and velocity) of the train.

B. Impacts of Accurate Location and
Velocity on CBTC Systems

As a safety-critical system, how to achieve a safe operation
is a big issue for CBTC systems. To protect the train and
on-board passengers from happening serious hazards or even
catastrophes, automated train protection (ATP) systems are
employed to ensure the safety of CBTC systems. ATP systems
are formed by two parts. The first part is the on-board
equipment including the vehicle on-board controller (VOBC),
speed sensor, acceleration sensor, balise transmission module
and etc. The other is the wayside part, which belongs to
the ZC. By fusing the data from the axle counter and track
mounted balises, VOBC generates the real-time data about the
train’s location and speed, and then transmits them to the ZC
via the data communication system (DCS). In return, based on
these train operation data, including location and speed, the ZC

Fig. 2. The headway distance of the CBTC system.

can calculate and send back the limits of movement authori-
ties (LMAs) to trains, which must be respected by every train.
Following the received LMAs, VOBC can calculate the safety
profile and regulate the train to obey it. If the actual speed is
against to the safety profile, braking will be applied. So the
precise location and speed data is the fundament in achieving
functions for ATP. Low accurate location detection or too big
tolerance in measuring speed could lead to errors in generating
LMAs or malfunctions in regulating safety profile, which are
serious threats for the safety of CBTC systems.

Let’s show the impacts of inaccurate location and velocity
on the headway of a CBTC system. The typical headway time
represents the minimum time interval between two neighbor-
ing trains which the signaling will permit, so that the train
ahead does not affect a following train. The headway distance
denotes the minimum distance between two neighboring trains
that the signal will permit. Headway time/distance is the most
commonly utilized index to describe the railway capacity
within the signaling profession. Reducing the headway time is
beneficial to improve the line capacity. The headway distance
of a CBTC system is calculated by considering the infor-
mation about the train location, train speed and the braking
performance. The headway time is computed based on the
derived headway distance and the train speed. If there is no
communication delay in the system, the headway distance
could be shown in the Fig. 2.

As shown in Fig. 2, if we could obtain the exact information
about the train location and train speed, the headway distance
can be calculated as follows [5]:

HD = Ltrain + Lreact ion + Lbrake + Lsa f e

where Ltrain is the train length, Lreact ion is the train run-
ning distance during the reaction time of on-board system,
Lbrake represents the brake distance at current train speed and
Lsa f e denotes the safety margin. However, due to the effects of
“inaccurate measurements” and “unreliable communication”,
the precise location of the train is almost impossible to achieve.
For the purpose of safe operation, the train control system
always calculates the headway by replacing the train length
with the train safety envelope that is defined as the train length
at a high confidence level on the premise of safety. The train
safety envelope lS can be computed as follows:

lS = Ltrain + Lerror

where Lerror is the distance error that is defined as the differ-
ence between the actual train location and the measurement.
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Fig. 3. The diagram of the train.

Assuming that the maximum speed is vmax, we can calculate
the headway time HT as follows:

HT = lS + Lreact ion + Lbrake + Lsa f e

vmax

= Ltrain + Lerror + Lreact ion + Lbrake + Lsa f e

vmax
.

Obviously, we can reduce headway time HT by decreasing
the values of Lerror , which implies that an accurate estima-
tion algorithm for the train position could contribute to the
improvement of CBTC systems.

C. Dynamic Model of the Train

Let us consider the dynamics of a train which is modeled
by n cars (n ≥ 2) linked by couplers. The diagram of the train
is shown in Fig. 3. The dynamic characteristic of the train is
described by the following Newton’s motion equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = vi (t), i = 1, 2, · · · , n

m1v̇1(t) = u1(t) − f1(t) − fr,1(t)

mi v̇i (t) = ui (t) + fi−1(t) − fi (t) − fr,i (t),

i = 2, 3, · · · , n − 1

mn v̇n(t) = un(t) + fn−1(t) − fr,n(t)

(1)

where xi (t), vi (t), mi and ui (t) (i = 1, 2, · · · , n) represent,
respectively, the position, the velocity, the mass and the
traction force of the i -th car in the train. fi (t) (i = 1, 2, · · · , n)
denotes the in-train force from the coupler that connects the
i -th car and the (i + 1)-th car. fr,i (t) (i = 1, 2, · · · , n)
represents the resistive force that acts on the i -th car satisfying
| fr,i (t)| ≤ δi with a known constant positive scalar δi .

Remark 1: There are two design schemes for the composi-
tion of the traction force: push-pull driving (PPD) design and
distributed driving (DD) design. In the PPD design, only the
first and the last cars of the train have their traction forces
(i.e. u2(t) = u3(t) = · · · = un−1(t) = 0). For the DD design,
every car has its own traction force.

Remark 2: The resistive force fr,i (t) (i = 1, 2, · · · , n)
exists consistently during the train operation which is caused
by certain specified conditions. Generally speaking, the resis-
tive force can be expressed as the sum of the ramp resis-
tance, cure resistance, wind resistance and rolling mechani-
cal resistance. According to [16], the resistive force fr,i (t)
(i = 1, 2, · · · , n) could be described as follows:

fr,i (t)

=

⎧
⎪⎨

⎪⎩

(c0 + c1v1(t))m1 + c2

n�

i=1

miv
2
1(t) + ω1(t), i = 1

(c0 + c1vi (t))mi + ωi (t), i = 2, 3, · · · , n

where the coefficients c0, c1 and c2 are obtained by experimen-
tal test. ωi (t) denotes the ramp resistance of the i -th car sat-
isfying |ωi (t)| ≤ ωmax. Supposing that the speed limit is vmax
(i.e. vi (t) ≤ vmax). Hence, it is easy to see that | fr,i (t)| ≤ δi ,
where δ1 = (c0 + c1vmax)m1 + c2

�n
i=1 miv

2
max + ωmax and

δi = (c0+c1vmax)mi +ωmax (i = 2, 3, · · · , n). As such, in this
paper, it is assumed that these resistances are norm-bounded
scalars (i.e. | fr,i (t)| ≤ δi ) in order to reflect the reality.

The behavior of couples can be characterized by a spring
model where the restoring force is given by

fi (t) = k (xi (t) − xi+1(t) − ϑ − l) (2)

where k > 0 is a known constant positive scalar representing
the stiffness coefficient, ϑ denotes the slack length of the
couple, and l represents the length of a car.

Denoting

x(t) = 	
x1(t) x2(t) · · · xn(t)


T
,

v(t) = 	
v1(t) v2(t) · · · vn(t)


T
,

�x(t) = 	
xT (t)vT (t)


T
,

�fr (t) = 	
fr,1(t) fr,2(t) · · · fr,n(t)


T
,

h = 	
k(ϑ + l) 0 0 · · · 0 −k(ϑ + l)


T
,

�h = 	
0 hT


T
,

M = diag{In, diag{m−1
1 , m−1

2 , · · · , m−1
n }},

the dynamics of the train can be rewritten as follows:

�̇x(t) = �A�x(t) + �B �u(t) + �E �fr (t) + M�h (3)

where

�A = M
�

0 I
A 0

�
, �B = M

�
0
B

�
, �E = M

�
0

−I

�
,

B =

⎧
⎪⎨

⎪⎩

I, for DD design,


1 0 0 · · · 0 0

0 0 0 · · · 0 1

�T

, for PPD design.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−k k 0 0 · · · · · · · · · 0
k −2k k 0 0 · · · · · · 0
0 k −2k k 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

. . . · · · ...
0 · · · · · · · · · k −2k k 0
0 · · · · · · · · · · · · k −2k k
0 · · · · · · · · · · · · · · · k −k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�u(t) =

⎧
⎪⎨

⎪⎩

�
uT

1 (t) uT
2 (t) · · · uT

n (t)
�T

, for DD design,
�
uT

1 (t) uT
n (t)

�T
, for PPD design.

Note that the position and velocity can be easily measured
by sensors in the train with a certain sampling period. Assume
that the sampling period is T . The measurement output and
the signal to be estimated of system (3) are modeled by

�
�y(kT ) = C̃ �x(kT ) + ω(kT )

�z(kT ) = M̃ �x(kT )
(4)

where �y(kT ), �z(kT ) and ω(kT ) (k ∈ N
+) denote, respec-

tively, the measurement output, the signal to be estimated
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and the measurement noise of the k-th sampling instant.
C̃ = diag{c̃1 I, c̃2 I } is the weight matrix of the measurement
data. The constants c̃1 and c̃2 represent the weights of the
position and velocity, respectively. M̃ is a known matrix
with appropriate dimensions. Without loss of generality, it is
assumed that ω(kT ) is the zero-mean Gaussian white noise
with covariance � � �̄T �̄.

For technical convenience, we now transform the system (3)
into a discrete-time model according the sampling period T .
Suppose that ũ(k) = �u(kT ) and f̃r (k) = �fr (kT ) for kT ≤
t < (k + 1)T . It follows from (3) and (4) that

⎧
⎪⎨

⎪⎩

x̃(k + 1) = Ãx̃(k) + B̃ũ(k) + Ẽ f̃r (k) + H̃ �h
ỹ(k) = C̃ x̃(k) + ω̃(k)

z̃(k) = M̃ x̃(k)

(5)

where

x̃(k) = �x(kT ), ũ(k) = �u(kT ), f̃r (k) = �fr (kT ),

ỹ(k) = �y(kT ), z̃(k) = �z(kT ), ω̃(k) = ω(kT ), Ã = e
�AT ,

B̃ =
� T

0
e

�At dt �B, H̃ =
� T

0
e

�At dtM, Ẽ =
� T

0
e

�At dt �E .

D. Transmission Model Based on the CSMA Protocol

Let us now consider the data transmission via the train-
ground communication. In this paper, the communication
between each WAP and trains in its coverage area is scheduled
by certain protocol according to the IEEE 802.11p standard.
As show in [20], the IEEE 802.11p is a draft amendment to the
IEEE 802.11 standards and has been applied to fast changing
vehicular networks including the train-ground communica-
tion in CBTC systems. Furthermore, IEEE 802.11p could be
modeled as the p-persistent CSMA protocol [12]. In such a
protocol, only one train is permitted to communicate with the
corresponding WAP at each transmission instant. Each train
would transmit the signal with the probability p (0 < p ≤ 1) if
the communication channel is sensed idle. Otherwise, the train
waits until next available transmission instant. For the sake
of simplicity, we assume that the measurement output is
transmitted at each sampling instant. Then, the transmission
model of the system (5) subject to the p-persistent CSMA
protocol is given by

ȳ(k) = α(k)ỹ(k) (6)

where ȳ(k) represents the measurement signal received by
the ZC via WLANs and α(k) ∈ {0, 1} is a Bernoulli distrib-
uted stochastic variable indicating whether the communication
channel is idle at present. We assumed that α(k) is unrelated
to the measurement noise ω̃(k). The probability distribution
of α(k) can be calculated as follows [9]:

�
Prob{α(k) = 1} = p(1 − p)N(k)−1,

Prob{α(k) = 0} = 1 − p(1 − p)N(k)−1,
(7)

where N(k) is the number of trains in the coverage area of
certain WAP at time k. Obviously, N(k) is a bounded integer
variable due to the fact that trains must keep a distance far
enough between each other in order to guarantee safety.

Assuming that N ≤ N(k) ≤ N where N and N are known
constant positive integers, it follows from (7) that

�
ᾱ � E{α(k)} = p̄ + �1(k)

E
�
(α(k) − ᾱ)2� = p̂ + �2(k)

(8)

where

p̄ = 1

2

�
p(1 − p)N−1 + p(1 − p)N−1

�
,

p̂ = 1

2

�
p(1 − p)N−1�1 − p(1 − p)N−1�

+ p(1 − p)N−1�1 − p(1 − p)N−1�
�
,

�1(k) = p(1 − p)N(k)−1 − p̄,

�2(k) = p(1 − p)N(k)−1
�

1 − p(1 − p)N(k)−1
�

− p̂.

It is easy to verify that
�

|�1(k)| ≤ �̄p

|�2(k)| ≤ �̂p
(9)

where

�̄p = p(1 − p)N−1 − p(1 − p)N−1

2

�̂p = 1

2

�
p(1 − p)N−1�1 − p(1 − p)N−1�

−p(1 − p)N−1�1 − p(1 − p)N−1�
�
.

Remark 3: It is worth mentioning that the identity informa-
tion of each train is transmitted to the ZC simultaneously in
the transmission. As such, the value of the stochastic variable
α(k) is available to the ZC, but the exact number of trains
N(k) in the coverage area of a WAP could not be obtained.

E. Structure of the Estimator

Consider the following state estimator for the discrete-time
stochastic system (5) with the CSMA protocol scheduling (6):

⎧
⎪⎪⎨

⎪⎪⎩

x̂(k + 1) = Ãx̂(k) + B̃ũ(k) + H̃ �h
+K

�
ȳ(k) − α(k)C̃ x̂(k)

�

ẑ(k) = M̃ x̂(k)

(10)

where K is the estimator parameter to be designed.
Let the estimation error be e(k) � x(k)−x̂(k) and the output

estimation error be z̃(k) � z(k) − ẑ(k). Then, the estimation
error dynamics for the discrete-time system (5) is obtained as
follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e(k + 1) = �
Ã − α(k)K C̃

�
e(k) − α(k)K ω̃(k) + Ẽ f̃r (k)

= �
Ã − ( p̄ + �1(k) + α̃(k))K C̃

�
e(k)

− �
p̄ + �1(k) + α̃(k)

�
K ω̃(k) + Ẽ f̃r (k)

z̃(k) = M̃e(k)

(11)

where α̃(k) = α(k) − ᾱ(k).
Now, let us introduce the following definition that is neces-

sary for the problem statement.
Definition 1: The dynamics of the estimation error e(k)

(i.e. the solution of system (11)) is said to be exponentially
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ultimately bounded in mean square if there exist constants
μ ∈ [0, 1), θ > 0 and δ > 0 such that

E

�
�e(k)�2|e(0)

 
≤ μkθ + δ. (12)

We denote by μ and δ, respectively, the decay rate and the
asymptotic upper bound of E

��e(k)�2
�
.

We are now in the position to state the main goal of
this paper. We are interested in investigating the ultimate
boundedness of the estimation error dynamics in mean square
and designing the estimator gain matrix according to two
performance optimization problems. More specifically, our
objectives in this paper are to

1) derive sufficient conditions for the dynamical system
(11) under which the ultimate boundedness is guaranteed
for the estimation error e(k) in mean square.

2) design the estimator gain matrix K in order to obtain
the minimization of the ultimate bound and the fastest
decay rate of the output estimation error.

III. MAIN RESULTS

In this section, the ultimate boundedness is analyzed for
the estimation error e(k) in mean square. Before proceeding
further, we introduce the following lemma which will be
needed for the derivation of our main results.

Lemma 1 (Schur Complement Lemma): Given constant
matrices S1, S2 and S3 where S1 = ST

1 and 0 < S2 = ST
2 ,

then S1 + ST
3 S−1

2 S3 < 0 if and only if
�S1 ST

3∗ −S2

�
< 0, or

�−S2 S3
∗ S1

�
< 0. (13)

A. Ultimate Boundedness Analysis of the Estimation Error

The following theorem provides a sufficient condition under
which the dynamics of the estimation error is exponentially
ultimately bounded in mean square.

Theorem 1: Let the estimator parameter K be given.
Assume that there exist a positive definite matrices P ∈
R

2n×2n , three positive scalars λ1, λ2 and γ satisfying

�̄ �

⎡

⎣
�̄11 �̄12 �̄13

∗ �̄22 �̄23

∗ ∗ �̄33

⎤

⎦ < 0 (14)

where

�̄11 = �
Ã − p̄K C̃

�T
P
�

Ã − p̄K C̃
� − (1 − γ )P + �̄2

pλ1 I

+ �
p̂ + �̂p

�
)C̃T K T P K C̃,

�̄12 = −�
Ã − p̄K C̃

�T
P K C̃, �̄13 = �

Ã − p̄K C̃
�T

P Ẽ ,

�̄22 = C̃T K T P K C̃ − λ1 I, �̄23 = −C̃T K T P Ẽ ,

�̄33 = ẼT P Ẽ − λ2 I.

Then, the dynamics of the estimation error e(k) is ulti-
mately bounded in mean square subject to the measurement
noise ω̃(k) and the resistive force f̃r (k).

Proof: To analyze the ultimate boundedness of the esti-
mation error e(k), we choose the following Lyapunov-like
function:

V (k) = eT (k)Pe(k). (15)

The corresponding difference of V (k) along the trajectory of
system (11) can be calculated as follows:

�V (k)

� eT (k + 1)Pe(k + 1) − eT (k)Pe(k)

=
��

Ã − p̄K C̃
�
e(k) − �1(k)K C̃e(k) − α̃(k)K

�
C̃e(k)

+ ω̃(k)
� − �

p̄ + �1(k)
�
K ω̃(k) + Ẽ f̃r (k)

�T
P
��

Ã − p̄

× K C̃
�
e(k) − �1(k)K C̃e(k) − α̃(k)K

�
C̃e(k) + ω̃(k)

�

+ Ẽ f̃r (k) − �
p̄ + �1(k)

�
K ω̃(k)

�
− eT (k)Pe(k). (16)

Since E{ω̃(k)} = 0 and E{ω̃(k)ω̃T (k)} = �, it follows
from (16) that

E{�V (k)}
= E

!
eT (k)

��
Ã − p̄K C̃

�T
P
�

Ã − p̄K C̃
� − P

�
e(k) + �2

1(k)

× eT (k)C̃T K T P K C̃e(k) − 2�1(k)eT (k)
�
Ã − p̄K C̃

�T

× P K C̃e(k) + �
p̂ + �2(k)

��
eT (k)C̃T K T P K C̃e(k)

+ ω̃T (k)K T P K ω̃(k)
� + f̃ T

r (k)ẼT P Ẽ f̃r (k) + �
p̄

+ �1(k)
�2

ω̃T (k)K T P K ω̃(k) + 2eT (k)
�
Ã − p̄K C̃

�T
P

× Ẽ f̃r (k) − 2�1(k)eT (k)C̃T K T P Ẽ f̃r (k)

"

= E{ϑT (k)�ϑ(k)} + �
( p̄ + �1(k))2 + p̂

+ �2(k)
�
tr
�
�̄T K T P K �̄

�
(17)

where

�11 = �
Ã − p̄K C̃

�T
P
�

Ã − p̄K C̃
� − P

+ �
p̂ + �2(k)

�
C̃T K T P K C̃,

�12 = −�
Ã − p̄K C̃

�T
P K C̃, �13 = �

Ã − p̄K C̃
�T

P Ẽ,

�22 = C̃T K T P K C̃, �23 = −C̃T K T P Ẽ , �33 = ẼT P Ẽ ,

ϑ(k) =
⎡

⎣
e(k)

�1(k)e(k)

f̃r (k)

⎤

⎦ , � =
⎡

⎣
�11 �12 �13
∗ �22 �23
∗ ∗ �33

⎤

⎦.

Noting that |�1(k)| ≤ �̄p and |�2(k)| ≤ �̂p , it can be
derived from (17) that

E{�V (k)} ≤ E{ϑT (k)�ϑ(k)} + εtr
�
�̄T K T P K �̄

�
(18)

where ε = p(1 − p)N−1. Moreover, one can infer from (18)
that

E{�V (k)}
≤ E{ϑT (k)�ϑ(k)} + εtr

�
�̄T K T P K �̄

� − λ2� f̃r (k)�2

+ λ1�
2
1(k)�e(k)�2 − λ1�

2
1(k)�e(k)�2 + λ2� f̃r (k)�2

+ εtr
�
�̄T K T P K �̄

�

≤ −γ E{V (k)} + ε̄ (19)

where ε̄ = εtr
�
�̄T K T P K �̄

� + λ2
�n

i=1 δ2
i . Hence, for any

scalar ρ > 0, it follows that

E{ρk+1V (k + 1)} − E{ρk V (k)}
= ρk+1�

E{V (k + 1)} − E{V (k)}�+ ρk(ρ − 1)E{V (k)}
≤ ρk (ρ − 1 − ργ ) E{V (k)} + ρk+1ε̄. (20)
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It is obvious that 0 < γ < 1. Letting ρ = ρ0 = 1
1−γ and

summing up both sides of (20) from 0 to κ − 1 with respect
to κ , we obtain

E{ρκ
0 V (t)} − E{V (0)} ≤ ρ0(1 − ρκ

0 )

1 − ρ0
ε̄ (21)

which implies that

E{V (κ)} ≤ ρ−κ
0

#
E{V (0)} + ρ0

1 − ρ0
ε̄

$
− ρ0

1 − ρ0
ε̄

= (1 − γ )κ
#

E{V (0)} − ε̄

γ

$
+ ε̄

γ
. (22)

Finally, it follows readily from Definition 1 that the error
dynamical system (11) is exponentially ultimately bounded
in mean square where the asymptotic upper bound of the
estimation error can be computed as ε̄

γ λmin{P} . The proof is
complete.

Remark 4: In Theorem 1, a sufficient condition has been
derived under which the estimation error e(k) is exponentially
ultimately bounded in mean square subject to the measure-
ment noise ω̃(k) and the resistive force f̃r (k). It is worth
mentioning that a guaranteed ultimate bound of the estimation
error dynamics can be associated with a kind of estimation
performance about the “attenuation” against the effect of
perturbations. On the other hand, it can be seen from (14) that
the decay rate of the estimation error (i.e. 1−γ ) should be large
enough to guarantee the ultimate boundedness of e(k). From a
practical point of view, the decay rate and the ultimate bound
in mean square can be regarded as two important performance
indices for the estimation performance.

B. Optimization Problems

In this subsection, we focus our attention on design problem
of the state estimator gain matrix k by solving two optimiza-
tion problems.

1) Optimization Problem 1: Minimization of the ultimate
bound in mean square of the estimation error dynamics for
most accurate estimate performance.

Corollary 1: For system (11), let a scalar 1 > θ > 0 be
given. Suppose that there exist two positive definite matrices
P ∈ R

2n×2n , Q ∈ R
2n×2n , two positive scalars λ1, λ2, and a

matrix K ∈ R
2n×2n satisfying

� =

⎡

⎢
⎢
⎢
⎢
⎣

�11 0 0 �14 �15
∗ �22 0 �24 0
∗ ∗ �33 �34 0
∗ ∗ ∗ �44 0
∗ ∗ ∗ ∗ �55

⎤

⎥
⎥
⎥
⎥
⎦

< 0

(23)�−Q �̄TKT

∗ −P

�
< 0 (24)

P ≥ M̃T M̃ (25)

where

�11 = �̄2
pλ1 I −θ P, �14 = ÃT P − p̄C̃TKT , �15 = C̃TKT,

�22 = −λ1 I, �24 =−C̃T KT , �33 =−λ2 I, �34 = ẼT P,

�44 = −P, �55 =− P

p̂+�̂p
, ε = p(1− p)N−1.

Then, the dynamics of the estimation error e(k) is ulti-
mately bounded in mean square subject to the measure-
ment noise ω̃(k) and the resistive force f̃r (k). Furthermore,
the decay rate of the estimation error is less than θ , and the
minimum of the asymptotic upper bound of E{�e(k)�2} can
be derived by solving the following minimization problem

min
�
εtr{Q} + λ2

n�

i=1

δ2
i

 
(26)

subject to the matrix inequality constraints (23)-(25). The
desired state estimator gain can be obtained by

K = P−1K. (27)

Proof: Based on the Schur Complement
Lemma (Lemma 1) and the desired state estimator gain
in (27), it can be concluded that the inequality (14) holds
with the condition γ = 1− θ if and only if the inequality (23)
is satisfied. Hence, it follows from Theorem 1 that the
dynamics of the estimation error e(k) is ultimately bounded
in mean square.

On the other hand, along similar lines as the proof of
Theorem 1, it can be derived that

E{V (k)} ≤ θ k
#

E{V (0)} − ε̄

1 − θ

$
+ ε̄

1 − θ
(28)

where

ε̄ = εtr
�
�̄TKT P−1K�̄

� + λ2

n�

i=1

δ2
i .

Moreover, one can infer from (24) that

�̄TKT P−1K�̄ ≤ Q. (29)

Therefore, it follows from (28) and (29) that

E{V (k)} ≤ θ k
E{V (0)}− θ k ε̄

1−θ
+ εtr{Q}+λ2

�n
i=1 δ2

i

1−θ
. (30)

Since �z̃(k)�2 ≤ V (k), we have

E{�z̃(k)�2}
≤ E{V (k)}
≤ θ k

#
E{V (0)} − ε̄

1 − θ

$
+ εtr{Q} + λ2

�n
i=1 δ2

i

1 − θ
. (31)

As such, we can conclude that the asymptotic bound of
E{�e(k)�2} is

εtr{Q} + λ2
�n

i=1 δ2
i

1 − θ

and the minimum of this asymptotic bound can be derived by
minimizing

εtr{Q} + λ2

n�

i=1

δ2
i

which is equivalent to (26). The proof is complete.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

2) Optimization Problem 2: Optimization of the decay
rate of the estimation error dynamics for fastest convergence
performance.

Corollary 2: For system (11), let a scalar � > 0 be given.
Suppose that a nonsingular matrix R ∈ R

2n×2n , four positive
scalars λ1 > 0, λ2 > 0, γ̄ > 1, � > 0, and a matrix
K ∈ R

2n×2n satisfying

� =

⎡

⎢
⎢
⎢
⎢
⎣

�11 0 0 �14 �15
∗ �22 0 �24 0
∗ ∗ �33 �34 0
∗ ∗ ∗ �44 0
∗ ∗ ∗ ∗ �55

⎤

⎥
⎥
⎥
⎥
⎦

< 0 (32)

�−�(γ̄ − 1) + λ2
�n

i=1 δ2
i ϒ

∗ −ε−1 I

�
< 0 (33)

�−R − RT + �I γ̄ M̃T

∗ −�I

�
≤ 0 (34)

where

�11 = −R − RT + γ̄ I + �̄2
pλ1 I, �14 = ÃT RT − p̄C̃T KT,

�15 = C̃T KT ,�22 = −λ1 I, �24 =−C̃TKT , �33 = −λ2 I,

�34 = ẼT RT , �44 = −I, �55 = − I

p̂ + �̂p
,

�i = 	
h̄(i − 1) h̄(i − 2) · · · h̄(i − 2n)


T
,

ϒ = 	
�T

1 �̄TKT �T
2 �̄TKT · · · �T

2n�̄
TKT



,

ε = p(1 − p)N−1,

and h̄(·) ∈ {0, 1} is the Kronecker delta function. Then,
the dynamics of the estimation error z̃(k) is exponentially
ultimately bounded in mean square with the decay rate γ̄ −1

subject to the measurement noise ω̃(k) and the resistive
force f̃r (k). Furthermore, the upper bound of E{�z̃(k)�2} is
less than � and the optimum of the decay rate can be derived
by solving the following maximization problem

max{γ̄ } (35)

subject to the matrix inequality constraints (32)-(34). The
desired state estimator gain can be obtained by

K = R−1K. (36)

Proof: Choose the following Lyapunov-like function:

V (k) = eT (k)RT Re(k). (37)

Along the similar lines as the proof of Theorem 1, it can be
derived from (36) that

E{�V (k)} = E{ϑT (k)�̄ϑ(k)}−
#

1 − 1

γ̄

$
E{V (k)}+ε̂ (38)

where

�̄ = diag
�
−γ̄ −1 RT R + �̄2

pλ1 I,−λ1 I,−λ2 I
 

+
⎡

⎣
�14
�24
�34

⎤

⎦

⎡

⎣
�14
�24
�34

⎤

⎦

T

+ 1

p̂ + �̂p

⎡

⎣
�15

0
0

⎤

⎦

⎡

⎣
�15

0
0

⎤

⎦

T

,

ε̂ = εtr
�
�̄TKTK�̄

� + λ2

n�

i=1

δ2
i

= ε

2n�

i=1

�T
i �̄TKT K�̄�i + λ2

n�

i=1

δ2
i

= εϒϒT + λ2

n�

i=1

δ2
i .

Since

−γ̄ −1 RT R ≤ −RT − R + γ̄ I,

it follows from the Schur Complement Lemma (Lemma 1),
(32) and (38) that �̄ < 0, which implies that

E{�V (k)} ≤ −
#

1 − 1

γ̄

$
E{V (k)} + ε̂. (39)

Then, it can be concluded from Theorem 1 that the dynamics
of the estimation error e(k) is ultimately bounded in mean
square.

On the other hand, one can infer from (34) that

RT R ≥ �
�

R + RT − �I
�

≥ γ̄ 2 M̃T M̃ . (40)

Hence, we have

E{�z̃(k)�2} ≤ E{V (k)}
≤ γ̄ −k−2

#
E{V (0)} − γ̄

γ̄ − 1

$
+ ε̂

γ̄ − 1
. (41)

According to the inequality (33) that

−�(γ̄ − 1) + λ2

n�

i=1

δ2
i + εϒϒT < 0

which implies that the upper bound of E{�z̃(k)�2} is less than
� . Furthermore, the decay rate of the estimation error in mean
square is γ̄ −1. Therefore, the minimization of the decay rate
can be derived by maximizing γ̄ which is equivalent to the
condition (35). The proof is complete.

Remark 5: Our main results are derived based on the
LMI-based algorithm which has a polynomial time complexity.
Specifically, the number N (ε) of flops needed to compute
an ε-accurate solution is bounded by O(MN 3 log(V/ε)),
where M is the total row size of the LMI system, N is the
total number of scalar decision variables, V is a data-dependent
scaling factor, and ε is relative accuracy set for algorithm.
As such, the computational complexities of the established
result can be represented as O(n7). Obviously, such a com-
putational complexity depends polynomially on the variable
dimensions. Nevertheless, research on LMI optimization is a
very active area in the applied math, optimization and the
operations research community, and substantial speed-ups can
be expected in the future.

IV. AN ILLUSTRATIVE EXAMPLE

To verify the effectiveness of the proposed estimation
schemes, a simulation example is conducted based on a high-
speed train with 6 cars. The parameters are given in Table I,
which are chosen from the experimental results of the Japanese
Shinkansen high speed train [16]. The parameters of the
CSMA protocol are selected to be p = 0.5, N = 1 and N = 3.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZOU et al.: STATE ESTIMATION FOR CBTC SYSTEMS WITH CSMA PROTOCOL 9

TABLE I

PARAMETERS OF THE HIGH SPEED TRAIN

TABLE II

CONTROL COMMANDS OF THE HIGH SPEED TRAIN

Fig. 4. The position and velocity trajectories by BRaVE simulator
(x̃1(k) and x̂1(k)).

The matrices C̃ and M̃ are selected to be C̃ =
diag{10−3 I, 3.6I } and M̃ = diag{0.01I, 0.1I }. The covariance
of the noise ω(k) is chosen as � = diag

�
10−6 I, 3.62 I

�
.

Let the sampling period be 0.1s. The corresponding control
commands are presented in Table II.

Based on the given parameters and control commands,
the simulation about the position and velocity trajectories is
given in Fig. 4 by using the simulator BRaVE, which is a
comprehensive railway simulator developed by the Birming-
ham railway research and education center at the university of
Birmingham in the UK.

First, let us consider Optimization Problem 1 with the
given decay rate θ = 0.98. By applying Corollary 1,
the minimization problem (26) subject to the inequality
constraints (23)-(25) can be solved and the estimator gain
matrix is given in the box on the bottom of next page.

Using the Matlab software, the simulation results
about the estimation issue are shown in Figs. 5-8,

Fig. 5. The position tracking trajectories (x̃1(k) and x̂1(k)).

Fig. 6. The position tracking error (e1(k)).

Fig. 7. The velocity tracking trajectories x̃7(k) and x̂7(k)).

where Fig. 5 and Fig. 7 plot the position tracking
trajectories and velocity tracking trajectories, respectively.
Fig. 6 and Fig. 8 show the position tracking errors and
velocity tracking errors of the train, respectively. Obviously,
the simulation results of the position and velocity trajectories
are very close to the simulation results obtained by simulator
BRaVE which implies that the train model developed in this
paper indeed characterizes the dynamic behavior of the train
to a satisfactory precision.

Conventionally, the information about the position and
velocity is always measured by the combination of balises and
speed odometers. The ZC would receive such information via
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Fig. 8. The velocity tracking error (e7(k)).

TABLE III

ACCURACY COMPARISON RESULTS

network-based communication. The tracking errors associated
with the direct measurements and our proposed estimation
scheme are shown in Table III. Obviously, the estimation
scheme presented in this paper could improve the accuracy
of the information about the position and velocity.

Next, let’s show the improvement on the headway time.
As we have discussed in Section. II-B, the headway time HT

could be calculated as follows:

HT = Ltrain + Lerror + Lreact ion + Lbrake + Lsa f e

vmax
.

The safety margin is selected from [5] as follows: Lsa f e = 50.

The brake distance is given by Lbrake = v2
max
2b where b is

the deceleration rate. Lreact ion is the train running distance
during the reaction time of on-board system. A reasonable
values of Lreact ion is given by Lreact ion = vmaxTreact ion

where Treact ion denotes the reaction time of on-board system.
Assume the reaction time of on-board system is 1 second
(i.e. Treact ion = 1s).

TABLE IV

HEADWAY TIME COMPARISON RESULTS

The headway time with the direct measurements and our
proposed estimation scheme are shown in Table IV. It can be
observed from Table IV that our proposed estimation scheme
could significantly reduce headway time HT .

V. CONCLUSION

This paper has addressed the state estimation problem for
a train with n cars linked by couples. The dynamics of the
train has been modeled by a continuous-time system and then
reformulated as a discrete-time system. Considering the data
transmission of the train-ground communication, the trans-
mission behavior of the train subject to the p-persistent
CSMA protocol has been described by a Bernoulli distrib-
uted sequence whose probability distribution is dependent on
the number of competing nodes (trains). The correspond-
ing state estimator has then been developed to generate the
estimate of states. A sufficient condition has been derived
to guarantee the ultimate boundedness of estimation error
in mean square. In order to calculate the desired estimator
gains under different requirements, two optimization problems
have been solved to obtain the minimum of the asymptotic
bound and the decay rate, respectively. A simulation example
has been used to illustrate the effectiveness of the proposed
design method. Further research topics include the extension
of the main results to: 1) the state estimation problem for
CBTC systems with time-varying parameters; 2) the fault
tolerant filtering for CBTC systems subject missing measure-
ments; and 3) the control for CBTC systems with unmodeled
dynamics [17].
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