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A Stochastic Programming Approach for Electric
Vehicle Charging Network Design

Sina Faridimehr, Saravanan Venkatachalam, Ratna Babu Chinnam

Abstract—Advantages of electric vehicles (EV) include reduc-
tion of greenhouse gas and other emissions, energy security,
and fuel economy. The societal benefits of large-scale adoption
of EVs cannot be realized without adequate deployment of
publicly accessible charging stations. We propose a two-stage
stochastic programming model to determine the optimal network
of charging stations for a community considering uncertainties
in arrival and dwell time of vehicles, battery state of charge
of arriving vehicles, walkable range and charging preferences
of drivers, demand during weekdays and weekends, and rate
of adoption of EVs within a community. We conducted stud-
ies using sample average approximation (SAA) method which
asymptotically converges to an optimal solution for a two-stage
stochastic problem, however it is computationally expensive for
large-scale instances. Therefore, we developed a heuristic to
produce near to optimal solutions quickly for our data instances.
We conducted computational experiments using various publicly
available data sources, and benefits of the solutions are evaluated
both quantitatively and qualitatively for a given community.

Index Terms—two-stage stochastic programming, electric ve-
hicle, charging network, sample average approximation.

I. INTRODUCTION

Electric vehicles (EVs) hold much promise including di-
versification of the transportation energy feedstock, reduction
of greenhouse gas and other emissions, and improved public
health by improving local air quality. In general, widespread
adoption of EVs is in alignment with sustainable transportation
objectives due to its social, economic, and environmental
perspectives. It is estimated that an EV that draws its power
from the U.S. electrical grid emits at least 30% less COq
than comparable gasoline or diesel-fueled vehicles [1]. As EV
usage for daily commute increases, the consideration for the
ability to recharge these vehicles away from home will become
even more important. Ever-growing need to recharge EVs
away from home necessitates designing effective networks of
charging stations. Using multiple linear regression, Sierzchula
et al. [2] examined the effect of consumer financial incentives
and several socio-economic factors on national EV market
shares of 30 countries for the year 2012. The analysis shows
that installing one charging station (per 100,000 residents)
could have twice the impact on EV adoption rate compared
to a $1,000 financial incentive.

Many studies have been done on locating charging stations
for EVs. However, majority of them concentrated on large-
scale state-wide networks and only a few articles have inves-
tigated design of public charging station network in an urban
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area. Existing papers on charging station location problem
often assume that demands for charging service are determin-
istic and known to the decision makers, while in reality, the
traffic flows are stochastic in nature (varying by hour of day,
weekday, weekend, commute purpose, destination etc) and
carry significant uncertainty. The optimal solution of a deter-
ministic model might become infeasible and/or significantly
sub-optimal in the presence of these uncertainties. This paper
adds to the growing field of designing EV charging station
network by proposing a two-stage stochastic programming
model to determine location and size of charging stations for
a community. Considering uncertainties in charging pattern,
demand, and drivers’ behavior, the proposed stochastic model
provides more robust charging network design decisions and
thus access to charging service can be improved. However, a
two-stage stochastic programming model often needs a large
number of scenarios for good representation of uncertain-
ties. We use sample average approximation (SAA) method
as this will asymptotically converge to an optimal solution
for a two-stage stochastic problem. SAA is a Monte Carlo
simulation-based sampling technique in which we approximate
the expected value of the objective function using a finite
sample of scenarios. Since SAA can only solve small size
problems within reasonable amount of time in general, an
effective heuristic is also proposed for large-scale instances.
The two-stage model and solution approach are evaluated by
a case study constructed using the data representing Detroit
midtown area in Michigan, U.S. In summary, the major
contributions of this paper include: (1) formulation of a two-
stage stochastic programming model to determine the location
and capacity of public EV charging stations in an urban
area to maximize access; (2) incorporation of uncertainties
in EV demand flows, EV drivers’ charging patterns, arrival
and departure time, purpose of arrival to a community, and
preferred walking distance; (3) adoption of SAA to solve
the two-stage model; (4) an effective heuristic that provides
near optimal solutions for large-scale instances; and (5) a case
study representing public charging network planning in Detroit
midtown area and a post-analysis framework to analyze the
outputs of the two-stage model on accessibility and utilization
of charging service. The remainder of this paper is organized
as follows: A review of related literature is presented in
Section Il Section provides problem description and the
uncertainties considered in our model. Model formulation and
the solution methodology are presented in Section Section
[V]presents the case study, scenario construction, computational
experiments and evaluations of results. Finally, conclusion and
directions for future studies are provided in Section



II. LITERATURE REVIEW

During the last decade, many researchers have focused on
optimally locating alternative-fuel-vehicle refueling stations.
However, most of them are focused on EV charging net-
work in large networks to cover demand between cities and
metropolitan areas, and only a few articles examined the
design of charging network in a community or an urban area.
We review the existing literature related to design of an EV
charging network and categorize it into two major groups: (A)
deterministic approach which assumes that all parameters and
demand are known for charging station network problem, and
(B) stochastic approach that considers uncertainties regarding
available budget for constructing charging network, type of
charging stations, total short-term and long-term charging
demand, and charging behavior of EV drivers.

A. Deterministic approach

Upchurch et al. [3|] introduced capacitated flow refueling
location model that considers a limit on the traffic flow that
any location can refuel to maximize vehicle miles traveled by
alternative-fuel vehicles. Frade et al. [4] proposed a maximal
covering model to find the optimal location of EV charging
stations in an urban area by maximizing covered demand
within a given distance. To deal with the computational burden
of generating combinations of locations capable of serving the
round trip on each route, a mixed-binary-integer optimization
model is developed [5]. Capar et al. [[6] presented a more
computationally efficient model for flow-refueling location
model to answer some strategic questions such as what is the
minimum number of charging stations required for refueling
a certain percentage of traffic flow; and what are the impacts
of refueling demand forecast on the location of fuel stations.
A mixed-integer programming method to model capacitated
multiple-recharging-station-location problem considering bud-
get constraint and vehicle routing behavior, and using the
concepts of set coverage and maximum coverage is proposed
[7]. The model in [8] finds the optimal locations of charging
stations for EVs in an urban area while minimizing total costs,
consisting the travel cost from demand zones to charging loca-
tions and investment cost. Cavadas et al. [9]] proposed a mixed-
integer programming model to locate slow-charging stations
for EVs in an urban environment considering the possibility
that there might be several stops by each driver during the
day and the driver can only charge the vehicle at one of
these locations. Since tour-based network equilibrium model
can precisely track the state-of-charge (SOC) of the battery
and also consider the dwell time at each destination, model
is proposed to optimally locate public charging stations for
EVs considering recharging behavior of drivers [10]. Huang
and Zhou [[11]] developed an integer programming formulation
to minimize the lifetime cost of equipment, installations, and
operations of charging stations for plug-in EVs at workplaces
by considering different charging levels and demographics
of employees. In order to maximize the amount of vehicle-
miles-traveled for an EV, a model is presented to select
the optimal locations for public charging stations considering
vehicle travel patterns [[12]]. The authors applied their model on

vehicle trajectory data of taxi fleet over a three week period in
Beijing, China. A major limitation with all these studies is that
they assume a deterministic problem setting. As we confirm
through our experiments, employing a stochastic formulation
can lead to a significant improvement in the objective of the
planners.

B. Stochastic approach

While planning under uncertainty has been addressed in
many settings such as transportation, energy, disaster plan-
ning, supply chain management and production planning, the
literature considering uncertainty in planning for EV charging
network is limited. By considering both the transportation sys-
tem and the power grid, Pan et al. [|[13]] developed a two-stage
stochastic programming model to find the optimal locations for
battery exchange stations for plug-in hybrid electric vehicles
(PHEV) accounting for uncertainty in demand for battery,
loads, and generation capacity of renewable power sources.
Tan and Lin [14]] formulated the EV charging problem as a
flow capturing location-allocation problem. They compared
a deterministic case where charging demand is fixed over
time to a stochastic one where consumer demand for charging
service is random, and concluded that stochastic programming
provides more realistic results. Hosseini and MirHassani [[15]
proposed a two-stage stochastic program to locate permanent
and portable charging stations with and without considering
capacities to maximize the served traffic flows. A stochastic
flow-capturing location model is also developed to locate a
predetermined number of fast EV-charging stations within a
given region considering uncertainties in EV flows [16].

To efficiently assist city planners and policy makers in plan-
ning for public EV charging network within a community, we
need to adequately capture uncertainties that exists in demand
for public charging service. To the best of our knowledge, this
is the first study to address the problem of locating public EV
charging stations for a community using a two-stage stochastic
programming approach while accounting for uncertainties in
total customer demand for public charging service, arrival and
dwell time, battery SOC at the time of arrival, preference for
charging away from home and willingness to walk patterns of
EV drivers.

III. PROBLEM DESCRIPTION AND UNCERTAINTIES

Unlike a conventional vehicle, an EV must often be parked
for several hours to be recharged. Hence, public parking
facilities are considered as potential locations for installing
charging stations, which can in turn improve access to EVs
as well as their adoption. Maximum number of installable
charging stations depends on the total capacity of a parking
lot. Without loss of generality, we assume that all charging
point terminal types are semi-rapid charging ones (level 2 type
charging stations) that are typically recommended for public
and private parking lots, and provide 10 to 20 miles range per
hour of charging. Also, a driver’s walking distance to final
destination is considered as the decisive contributing factor
in choosing a parking lot [[17]. Based on a driver’s walking
distance preference, we determine a possible set of parking



lots that a driver can park the EV and then driver is randomly
assigned to one of them. If charging stations are installed in
any of parking lots that are within a driver’s walking distance
preference, driver will be attracted to one of those parking
lots depending on the availability of a charging station at the
time of arrival. If there is no parking lot within the maximum
distance that a driver is willing to walk, we assume that driver
will park the car on street, and since it is difficult to track the
walking distance to final destination in this case, this demand
is not considered in our analysis. It is also assumed that once
a driver starts using a charging station, vehicle would not be
unplugged until driver’s activity is finished.

Designing a public EV charging network entails estimation
of demand for charging service. Like facility location models,
we assume that demand occurs at fixed points on a network.
Demand will be attracted to different parking lots based on
drivers’ willingness to walk to use charging stations. Scenarios
representing demand uncertainty in the two-stage model will
represent time and purpose of arrival to the community, EV’s
battery SOC at the time of arrival, duration of activity, drivers’
preference for charging away from home and willingness to
walk based on demographics, community size and seasonality
factors. The following uncertainties are considered to affect
demand for public EV charging stations:

A. State of charge

A recent study analyzing two years of data from January
2011 to December 2013 of charging events that occurred away
from home concluded that Nissan Leaf (pure battery electric
vehicle, BEV) drivers prefer to charge their vehicles before
their battery SOC drops to lower levels while Chevrolet Volt
(a plug-in hybrid electric vehicle, PHEV) drivers tend to start
recharging when there is a little charge in the battery since they
rely on both electric motor and internal combustion engine
[18]. Fig.[T]compares the probability of recharging for different
values of battery SOC at the time of arrival for Nissan Leaf
and Chevrolet Volt.
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Fig. 1: Probability of recharging as a function of the battery
SOC at arrival time; Source: [18].

B. Dwell time

We define six different destination categories based on
NHTS (National Household Travel Survey) data: Work, Social,
Family, Meal, Study, and Shopping. Fig. 2] shows average time
that people tend to park their vehicles based on their activity
type [19. Zhong et al. [20] concluded that Weibull, log-
normal and log-logistic distributions are the best distributions

for modeling duration of weekday and weekend activities.
While their analysis shows that model type and parameters
or both might be different for an activity in weekday versus
weekend, they found Weibull distribution the most applicable
one. In addition, they found that certain activities such as
social and shopping tend to last longer during weekends.
Weibull distribution is used in our analysis to estimate parking
duration of EV drivers considering average staying time, and
we have also differentiated the durations of all weekday and
weekend activities except meal activity.

Average dwell time (hrs)
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Fig. 2: Average dwell time for activity types; Source: [18].

C. Weekday vs. weekend

Demand pattern for public EV charging service can vary
from day to day since people tend to attend social events,
visit their families and go to shopping centers more during
weekends than weekdays, in which demand mostly consists
of people traveling to work or school. Fig. [3] confirms that
demand for charging stations depends on time and type of day.
During weekdays, maximum load occurs in morning when
people are arriving at work or school while maximum demand
usually happens around noon during weekends when people
are going to shopping malls and social places. According to
[21]], the best fitted distribution for arrival time to parking lot
is a Weibull distribution. Hence, without loss of generality, we
recommend the use of two Weibull distributions to estimate
the arrival time of EVs to parking lots during weekdays and
weekends.
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Fig. 3: The expected breakdown of vehicle arrival percentages
in A) weekdays and B) weekends; Sources: [18] and [19].



D. Preference for charging away from home

Analysis by Idaho National Laboratory on data from 2012
and 2013 over 4,000 Leafs and 1,800 Volts across the U.S.
shows that 13% of Leaf drivers and 5% of Volt drivers only
charge their vehicles at home. This indicates that vast majority
of drivers intend to use publicly accessible charging stations.
This analysis also shows that although many people that drive
more daily miles tend to charge their vehicles in places other
than their homes, the effect of daily miles traveled on the
chance of charging away from home is small. Hence, without
loss of generality, we do not consider the effect of driving
distance to community as a factor that affects the chance of
using EV charging stations.

E. EV market penetration

There are many social, environmental and economic factors
that can significantly contribute to the increasing market share
of different types of EVs. The survey in [22] about adult
drivers in large U.S. cities in fall 2011 comprehended factors
affecting the purchase of a plug-in EV. Besides demographic
variables that can strongly predict intent of purchase, their
results show that the presence of a charging station inside the
community is the only awareness variable that has a significant
effect on intent of purchase. Environmental Protection Agency
estimated that 3.5% of the vehicle fleet will be BEV or PHEV
in the 2022-2025 time frame [23]].

F. Willingness to walk

The drivers’ willingness to walk can be affected by their
socio-demographic characteristics such as age, gender, educa-
tion level and occupation. Many researchers have used distance
decay function that shows the willingness to walk or bike as a
distance towards different types of destinations. The parameter
of this decay function depends on the activity type. Estimation
results from [24] confirm that negative exponential distribution
can better describe walking trips over short distances than
other distributions such as Gaussian. They specify the distance
decay function as

P(d) = e P> (1)

which shows the percentage of people willing to walk d
or longer distances than d. They used 2009 NHTS data to
estimate the decay parameter 5 for different groups and trip
purposes. Their analysis shows that people are more willing
to walk for recreation, social events and work activities rather
than for studying, shopping or eating meal. Table [I| shows the
parameters of distance decay function influenced by variations
in natural and built environment factors. The effects of season,
region and community size on willingness to walk patterns are
considered as well.

Our research aims at maximizing coverage of demand for
public EV charging network in an urban/community area by
proposing a two-stage stochastic programming model consid-
ering uncertainties in EV total flow, arrival and departure time,
battery SOC at arrival time, preference for charging EV away
from home, and walking preference patterns in the community.
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Fig. 4: Distance decay function for walking trips to different
destination types; Source: [24].

TABLE I: Estimated parameter for distance decay function

Factor Category B
Winter (Dec to Feb) 1.88
) Spring (Mar to May) 1.68
e Summer (Jun to Aug) 1.64
Autumn (Sep to Nov) 1.7
Northeast 1.85
Region Midwest 1.65
South 1.76
West 1.65
Town and country 1.68
Community Suburban 1.63
Urban and second city | 1.78

IV. MODEL FORMULATION AND SOLUTION APPROACH
A. Model formulation

Two-stage stochastic programming is a common approach
for modeling problems that involve uncertainty in decision
making. First-stage decision variables represent ‘here-and-
now’ decisions which are determined before the realization
of randomness, and the second-stage decisions are determined
after scenarios representing uncertainties are presented. In our
model, binary variables in the first-stage determine the parking
lots, and number of charging station installations for the
selected parking lots. In the second-stage, a recourse decision
is made on assigning EV drivers to one of their preferred
parking lots based on their willingness to walk so that the
expected access of EV drivers to public charging network is
maximized.

We first define the following model sets, parameters and
variables:

e Sets

S: Set of parking lots, indexed by s € S.

L: Set of number of charging stations in a parking
lot s, indexed by | € L.

B: Set of buildings, indexed by b € B.

T Set of time slots, indexed by t € T'.

I': Set of arrival and departure times, indexed by
~(t) € T' containing time slot ¢ € 7.

— Q: Set of scenarios, indexed by w € €.

e Model Parameters

— p: Number of parking lots to be considered for
installing charging stations.

— my: Number of charging stations, [ € L.

— dy(t),p,s(w): Demand with arrival and departure time
set of y(¢) € T for a given ¢t € T for a building b
that are willing to park their vehicle in parking lot
s€ 8’8" C S in a scenario w € Q.



« First Stage Decision Variables
— x4 1, if parking lot s € S is considered for installing
charging stations; 0, otherwise.
- #1601, if I € L, charging stations are installed in
parklng lot s € S.
o Second Stage Decision Variables
— Yy(t),b,s(w): Proportion of demand with arrival and
departure time set of y(¢) € I for a building b willing
to charge their vehicle in parking lot s € S, S’ C S
in a scenario w € {.
The two-stage stochastic programming model is as follows:

First-Stage Model:

Max Eqlp(z, z,w)] 2)
s.t.

» za=p 3)
seS

215 < T Vse S, le Ly (4)
Zzl,sg Vse S (5
leL,

Ts,2l,s € {07 1}
Second-Stage Model:

Vse S,leLs (6)

Max ¢(z,z,w)
=D D DD twes@)dynps(@) (7)
teT v(t)er beB s€S
Z Z Yy ()55 (W) (1) .5 ( Z mia,s
~y(t)er beB leL,

VseS,teT (8)
vteT,y(t)eT,be B (9)

Zy'y(t),b,s(w) <1
seS
0 <yy)pslw) <1

In this model, first-stage decisions are made regarding the
locations of charging stations and charging capacity in each
location. The first-stage objective function maximizes the
expected access, and Eq is an expectation operator, and
Eaqle(x,z,w)] represents ) o pu@(z,2,w), where p, is
probability of occurrence for scenario w, and ) pw = 1.
Constraint (3) ensures that p parking lots are selected to install
EV charging stations. Constraints (4) and (5) determine charg-
ing capacity in any parking lot that is selected for providing
EV charging service. Constraints (6) define the feasible set for
the binary first-stage variables. In the second-stage, recourse
decisions are made to maximize the coverage of potential EV
traffic flows based on the decisions chosen in the first-stage
and a realization w € 2. Constraints (8) describe the supply-
demand balance restrictions. They ensure that demand that
has arrival and departure time set of ~(¢) and are assigned to
parking lot s for EV charging does not exceed the charging
capacity in parking lot s. Constraints (9) state that demand
with arrival and departure time set of +(¢) can be assigned
to at most one parking lot for EV charging. Constraint set
(10) are the non-negativity constraints. Though we have not
considered any budgetary restrictions, such constraints can be
added to the first-stage model if appropriate.

VteT,v(t)el,be B,se S (10)

B. Solution approach

1) Sample average approximation: According to [25[, un-
less there are small number of scenarios that can represent
uncertainties in a problem, it is usually impossible to solve a
stochastic programming problem. They showed that optimal
solution of stochastic programming can be approximated by
a sample of scenarios much smaller than the actual size of
scenarios and this approximation monotonically improves as
we increase the number of scenarios. SAA is also an effective
approach when sufficient number of scenarios to estimate
optimal solution is unknown. SAA was proposed by [25] and
for the sake of completeness, we provide the procedure for
sample average approximation method as follows:

1) Estimating an upper bound for the optimal solution:
o Generate M independent sample sets of scenarios

each of size N, ie., (w},w?,..,w)) for j =
1,2,...,. M

o For each sample set j = 1,2, ..., M, find the optimal
solution:

(In

N
E ZEZ(A)

« Compute the followings:

| M
Tvar = — > vk (12)
M =
1 M
2 j — 2
5N = m Z(Ugv - ’UN,J\I) . (13)

The expected value of vy is greater than or equal
to the optimal value v*. Since the sample average
Un,m 1S an unbiased estimation of the expected
value of vy, Un,» provides an upper statistical
bound for the optimal solution.

2) Estimating a lower bound for the optimal solution:

o If (z,2) is a feasible solution for the first-stage
problem, then f(Z,z) < v*. Hence, choosing any
feasible solution of the first-stage problem will
provide a lower statistical bound for the optimal
value.

o Choose a sample of size N’ of scenarios, much
larger than N, ie., (w!, w?,...,w"") and indepen-
dent of samples to find the upper limit and estimate
the objective function:

f(z,2) N,Zgomzw (14)
o Compute the variance for this estimation:
1 & .
o (T,2) = W;(@(Jfa%wl)
~f@2)% (15

3) Estimating the optimality gap:



e Use the upper bound and the lower bound that
are computed in previous steps to estimate the
optimality gap:

(16)
4) Checking the quality of the estimated optimality gap:

gapMN,N/(E,E) =UN,M — f(f, 5).

e Variance of the estimated optimality gap can be
found by

2 2

Ogap = Oonas T o2 (T,Z) (17)

2) Heuristic: SAA requires high computational resources,
hence we developed a heuristic to solve large-scale problems
efficiently. This heuristic is inspired by a score measure
introduced by [26]. The score incorporates charging capacity
of each parking lot as well as its distance to other parking lots.
The heuristic consists of a construction phase during which
we build an initial solution, and an improvement phase where
we employ local search moves to find a better solution. The
pseudo-code of the heuristic is presented as follows:

Algorithm 1 Pseudo-code of the heuristic

bestsolution < 0.
for s + 1 to Numberof ParkingLots do:
Compute score measure 7.
end for
Construction phase:
initialsolution < ()
Compute attractiveness ratio p, for all parking lots.
Add parking lots to the initial solution in decreasing order
of the attractiveness ratio until p parking lots are selected.
9: Improvement phase:
10: currentsolution < initialsolution
11: while f(currentsolution) can be improved do
12: remove-insert(currentsolution)
13: end while
14: Store best solution found so far.

A A R e

In the construction phase, a score measure for each parking
lot as a potential location for installing charging stations is
calculated as:

s,8'€8,8'#s

~hdso (18)

rs = cse
where [ is a user parameter. The score is measured as an
incentive for the charging capacity (cs) of each parking lot,
and distance (d, ) to other parking lots as a cost. If a parking
lot has more capacity for installing charging stations and is
nearer to other parking lots, its score would be higher.

To consider randomness in constructing the initial solution,
we use a set of sample scenarios to get the probability of
parking lot s being chosen as one of the optimal locations
for installing charging stations. This estimated probability
for parking lot s, g¢s, is computed based on the fraction
of scenarios in which parking lot s is among the optimal
locations. The attractiveness measure of parking lot s, ps, is
computed by multiplying this probability to the corresponding
score measure:

Ps = Ts(qs (19)

Parking lots will be added to the initial solution in a
decreasing order of attractiveness measure until p parking lots
are selected. In the improvement step, we use local search
method of remove-insert procedure. For every parking lot that
is already in the initial solution, we replace it with one of
the parking lots that has not been selected based on a parking
lot that has the highest attractiveness measure. This process
is continued until there is no improvement in the objective
function. We repeat this procedure for all parking lots that are
selected in the initial solution and store the best value found
for the objective function.

V. CASE STUDY AND COMPUTATIONAL EXPERIMENTS

To demonstrate the efficacy of the proposed approach, our
case study investigates the community area data of Detroit
midtown area in Michigan, U.S. There is a wide range of
employment types (type of final destinations) in this area,
it attracts a lot of traffic, and is characterized by an urban
university, commercial offices, hospitals, and museums. This
area includes 135 buildings among which 67 are office build-
ings, 12 are social places, 5 are family related buildings, 4
are restaurants, 44 are schools buildings and 3 are shopping
places. There are 32 parking lots that are considered as
potential locations for installing EV charging stations. We
assume that parking lots are open between 6am and 6pm, and
have different capacities for installing charging stations. The
center of each parking lot is considered as our candidate for
installing a charging station, and Euclidean distance is used to
measure distance between any two points in the community.
Data from Southeast Michigan Council of Governments shows
that average annual daily traffic of Detroit midtown area is
approximately between 10,000 and 20,000 and like [6], we
assume that total daily traffic of this community follows a
uniform probability distribution.

Fig. 5: Part of Detroit midtown area used for our analysis.

Based on Environmental Protection Agency (EPA) analysis,
we examine cases in which EVs constitute 3% and 5% of the
light-duty vehicle fleet. According to [27], weather/climate is
positively correlated with BEV market share. Since our case
study is done in an area with low winter temperatures, BEV
market share is considered lower than PHEV market share.
Two cases are constructed for our computational experiments.
In the first case, we assume that the market share is 1% and 2%
for BEVs and PHEVs, respectively. In the second case, these
market shares are assumed to be 2% and 3%, respectively.

In this study, negative exponential distribution functions
estimated by [24] are used to describe willingness to walk



patterns for various activity types which considers the effects
of season and community size in U.S. Drivers are randomly
assigned to a parking lot that is within their walking distance
preference. In both cases of EV market share, 13% of total
demand is not considered in our model since there is no park-
ing lot within their walking distance preference, and also it is
difficult to track their walking distance to their final destination
if they use other EV charging sources placed in streets, etc.
Four different values (2,4,6 and 8) for number of parking lots
(p) to install charging stations are considered. The optimization
models for SAA and heuristic were implemented in Python 2.7
using Gurobi 6.5.1 software for solving optimization problems.
All the computations were performed using a system with Intel
(R) Xeon(R) CPU 3.10 GHz and 24GB RAM.

A. Scenario construction

For the two-stage model, uncertainties are modeled by use
case scenarios. A scenario represents a single day of public
EV charging service and is influenced by short-term (weekday
vs. weekend) and long-term (seasonal) variations, and total
number of EVs arriving to the community. The probability of
occurrence for a scenario is based on a uniform probability
distribution. Without loss of generality, we assume that any
given scenario day can belong to winter, spring, summer, and
autumn seasons with equal probability.

In each scenario, a random number from U (0, 1) determines
type of each vehicle in a community, and if the random number
is less than BEV market share, between BEV market share
and sum of BEV and PHEV market shares, or greater than
sum of BEV and PHEV market shares, then the vehicle is
assumed to be a BEV, a PHEV or an ICE (internal combustion
engine), respectively. If it is an EV, Weibull distributions with
parameters (8,3) and (13,4) are used to determine arrival time
of EV drivers to the community in a weekday and weekend
day, respectively. As explained in the earlier section, the
purpose of arrival for a driver is determined based on arrival
time and distributions. Furthermore, Weibull distribution is
used to estimate duration of various types of weekday and
weekend activities. Table [lI| represents the parameters for this
distribution based on type of activity. In this table, the first and
second numbers represent the shape parameter and the scale
parameter, respectively.

For a final destination, each EV driver is randomly assigned
to a target destination/building using a uniform distribution
based on a driver’s purpose of arrival to the community. A
random number is generated from exponential distribution as
shown in Fig. ] to determine each EV driver’s willingness to
walk distance based on his/her purpose of arrival, and also,
community size and type of region are considered in willing-
ness to walk distributions. If there is no parking lot within
a driver’s willingness to walk distance, then this demand is
not considered in our model. In order to incorporate charging
preference of EV drivers, uniform distribution U (0, 1) is used.
If the random number is greater than 13% for BEV or 5%
for PHEV, a driver’s willingness to charge away from home is
decided. Consistent with recommendations from [28]] and [29]],
without loss of generality, we assume that the initial battery

SOC for vehicles arriving at the charging stations follows a
normal distribution V(0.3,0.1) with a mean 0.3 and standard
variation 0.1. Based on battery SOC at arrival time, uniform
distribution U(0,1) is used to determine each EV driver’s
willing to charge EV at public charging stations. This is further
compared with associated probability of recharge based on
type of EV discussed in SOC section earlier. If the random
number is less than or equal to the probability of recharge, that
EV is considered as demand for EV charging network in the
community. Similarly, multiple scenarios are constructed for
the two-stage stochastic programming model to simulate the
arrival pattern, battery SOC, dwell time, charging preference
and willingness to walk in the community.

B. SAA settings

To estimate an upper bound for expected accessibility to
public EV charging stations, N = 30, 50 and 100 scenarios are
used and this is repeated M = 20 times. The average of these
20 runs is an estimate of upper bound on the accessibility. A
sample of N’ = 1,000 scenarios, which are separate from those
that were used to get the upper bound, is used to estimate
a lower bound for the optimal solution. Computation times
for each test problem along with the heuristic performance
are summarized in Tables and The computation times
show that the optimization model using SAA method is able
to solve problems with eight optimal locations in less than five
hours. In these tables, UB (%) and LB (%) represent upper and
lower bounds for expected accessibility to public EV charging
service using SAA method. Gap (%) and gap SD indicate
the differences between upper and lower bounds and standard
deviation, respectively. Opt(s) is the running time of SAA. The
best solution found by our heuristic for upper bound of the
objective function and its running time are shown as Heuristic
(%) and Heuristic (s).

C. Performance measures

Number of public chargers per capita could have a signif-
icant effect on both BEV market share and PHEV market
share. In terms of monetary benefits for EV consumers, the
average of total benefits across 25 major metropolitan areas
is around $2,800 per BEV and $1,600 per PHEV [30]. In
order to deal with uncertainties in demand for public EV
charging service and simulate the expected output measures
with different number of chargers in the community, a set
of 50 scenarios are generated and used for our analysis. We
study two different cases for willingness to walk pattern in
the community to generate optimistic and pessimistic bounds
for level of walking in people that have access to public
EV charging network. In the optimistic case, we assume that
people are willing to walk long distances and will always
choose the farthest available charging station to their final
destination whereas in the pessimistic case people are willing
to walk short distances and always choose the nearest available
station to their building. Five different indicators are used to
measure the performance of public EV charging placement:
accessibility, lost demand, charging utilization, total walking
distance, and walking distance per capita. Access is defined as



TABLE II: Weibull distribution parameters for activity duration

Type of day ‘Work Social Family Meal School Shopping
Weekday (5.89,10) | (1.89,10) | (1.05,10) | (0.79,2) | (3.61,2) (0.56,2)
Weekend (6.04.,6) (2.03,2) (1.13,2) | (0.79.2) | (3.36,10) | (0.25,0.5)

TABLE III: SAA performance when (M, N') = (20,1,000) and (BEV,PHEV) = (1%,2%)

p N UB (%) LB (%) gap (%) gap SD Opt(s) Heuristic (%) Heuristic (s)
30 57.98 56.59 2.39 0.0064 397 57.98 68
2 50 58.70 58.25 0.77 0.0062 1,226 58.70 74
100 58.56 58.54 0.02 0.0055 4,564 58.56 93
30 73.89 73.42 0.63 0.0056 720 73.88 114
4 50 74.61 73.85 1.02 0.0041 1,759 74.61 131
100 74.59 73.74 1.14 0.0040 7,406 74.59 193
30 83.97 83.62 0.35 0.0039 1,071 83.21 160
6 50 84.11 83.80 0.31 0.0034 2,173 83.17 186
100 83.40 83.30 0.10 0.0031 9,572 82.86 303
30 91.16 90.61 0.61 0.0026 1,124 90.28 185
8 50 91.13 90.78 0.38 0.0021 3,099 90.18 245
100 90.87 90.86 0.02 0.0018 12,832 90.11 414

TABLE IV: SAA performance when (M, N’) = (20,1,000) and (BEV,PHEV) = (2%,3%)

p N UB (%) LB (%) gap (%) gap SD Opt(s) Heuristic (%) Heuristic (s)
30 50.42 50.00 0.85 0.0056 462 50.42 82
2 50 50.91 50.10 1.58 0.0054 1,141 50.91 87
100 50.91 50.31 1.17 0.0048 4,761 50.91 106
30 63.35 63.16 0.30 0.0064 1,595 63.33 169
4 50 63.19 63.11 0.13 0.0063 3,644 63.19 211
100 63.46 63.42 0.07 0.0057 16,656 63.41 317
30 72.56 71.55 1.39 0.0071 1,663 72.34 208
6 50 72.04 71.46 0.81 0.0059 3,246 71.84 273
100 71.82 71.40 0.58 0.0050 12,165 71.73 474
30 78.91 78.49 0.52 0.0048 1,494 78.53 273
8 50 79.44 78.92 0.66 0.0045 2,908 79.01 374
100 79.12 78.69 0.54 0.0044 12,248 78.70 667

the percentage of EV drivers that could charge their vehicles
in public charging stations in the community, and lost demand
is the percentage of EV drivers that are willing to use public
EV network but there is not enough capacity to serve them.
Charging utilization is the percentage of time that a charging
station is being used by an EV. To assess walking patterns
among people before network and after installing pubic EV
charging stations, we use total walking distance and walking
distance per capita measures.

As shown in Figs. [6] and [7] accessibility to public charging
service increases in both cases of EV market share as more
charging stations are installed in the community but utilization
level of these stations reduces simultaneously. Increase in
EV market share can reduce accessibility to public charging
network up to 32% in both optimistic and pessimistic cases.
Howeyver, this increase in demand will increase utilization level
up to 41% and lost demand up to 68%.

Figs. [8] and [9] compare the average percentage of hourly
utilization level of charging stations in weekdays versus week-
ends in an optimistic case of willingness to walk, and indicate
a difference in utilization pattern from weekday to weekend.
Utilization peaks around 8 in the morning during a weekday
while it is around noon during weekend. These patterns
match the expected arrival pattern of people to the community
in weekdays and weekends. These plots also indicate that
charging stations would not be fully utilized as more charging
stations are available for EV drivers. This is important from
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Fig. 6: Percentage of accessibility, lost demand and charging
utilization in A) optimistic and B) pessimistic cases when
(BEV,PHEV) market shares are (1%,2%).

revenue perspective since utilization level is among the major
drivers of profitability of investment on public EV charging
stations [31].

An important measure of livability analysis via transporta-
tion is increasing the travel options so that people can meet at
least a part of their travel needs through walking and biking,
and improve their health condition [32]. It has been estimated
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Fig. 9: Average percentage of hourly utilization in A) week-
days and B) weekends in an optimistic case when p = 6 and
(BEV,PHEV) market shares are (1%,2%).

that a shift from driving to walking can save the average
approximately 25c per vehicle-mile traveled and 50c under
urban-peak condition, when emission and parking costs are
high, in external costs such as traffic congestion, noise and air
pollution [33]]. Design of an effective EV charging network
can also provide opportunities for people in a community to
increase their level of physical activity.

Figs. [10] and [TT] compare total walking distance and walking
distance per capita among people that have access to public
EV charging service in the community before and after in-
stalling charging stations. As mentioned earlier, two cases are
evaluated, an optimistic case where we assume that people
will always choose the farthest available parking lot and a
pessimistic case where people will always choose the nearest
available parking lot for EV charging. These plots show that
increasing number of charging stations in the community
can raise total walking distance and walking distance per
capita among people that have access to public EV charging
stations up to 40% in an optimistic case. However, the rate
of increase in total walking distance and walking distance per
capita decreases as more charging stations are installed in the
community. This happens as people get closer to the charging
stations and their need to walk is reduced.
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Fig. 10: A) Total walking distance and B) walking distance
per capita for people that have access to public EV charging
service when (BEV,PHEV) market shares are (1%,2%).

Another interesting aspect is the relationship between will-
ingness to walk pattern and access to charging stations as
young and old communities are expected to have a different
level of willingness to walk. Young people tend to walk more
while elderly people are not willing to walk long distances.
Fig. [12] shows that if the average walking distance preference
drops to half, accessibility to public EV charging stations
will reduce by 4.23% and 1.32% when p = 4 and p = 6,
respectively. However, if the average of willingness to walk
distribution is doubled, accessibility increases by 2.86% and
2.43% when p = 4 and p = 6, respectively. This provides an
additional perspective for policy makers, and also indicates the
robustness of the model toward any change in willingness to
walk pattern in a community.
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D. Value of stochastic solution

Value of stochastic solution was first introduced by [34], and
is a standard means to quantify the usefulness of stochastic
programming approach. Let the objective value of recourse
problem be given as RP = Eq[¢(x, z,w)], and the expected
value problem is obtained by replacing all random variables in
scenarios with their expected values, EV = ¢(z, z, &), where
@ for the demand parameter will be D o, Pudyy(),5,s(W), Do
representing probability of occurrence for a scenario w, and
> weaPw = 1. Let Z, Z represent solutions for E'V problem,
then the expected result of using expected value solution
(z,%), is given as EEV = Eq[¢(Z, zZ,w)]. Then, value of
stochastic solution can be defined as VSS = RP — EEV.
For obtaining VSS, we used the same number of scenarios as
in SAA results. Based on five different runs, Fig. shows
that using stochastic programming brings up to 10.56% and
7.69% improvements in accessibility to public EV charging
network when EV market share is 3% and 5%, respectively.

VI. CONCLUSION

In this paper, we have presented a two-stage stochastic
programming model for public EV charging station network
design problem in a community. We considered several un-
certainties such as total EV flows, arrival time, dwell time,
battery SOC at the time of arrival, charging preference of
EV drivers and willingness to walk patterns in estimating
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Fig. 13: Median of value of stochastic solution for five
different runs and different values of p and EV market share.

demand for public EV charging service. We used sample
average approximation method, and for better computational
performance, we proposed an effective heuristic that can
solve large-scale problems and produce near optimal solu-
tions. On a post analysis, our model presented a number of
insights about the design of public EV charging network in
an urban/community area. The results show that increasing
number of charging stations in the community will improve
accessibility to charging service for EV owners but will reduce
the utilization level of these stations. Although all charging
stations have similar demand patterns but increasing number
of charging stations will increase the difference among stations
in terms of utilization. While having more charging stations in
the community can potentially increase total walking distance
and walking distance per capita but the rate of increase in these
measures decreases as we install more charging stations. Our
model also shows robustness toward any change in willingness
to walk pattern of community in the future. We suppose
these analogies will provide better insights for a policy maker.
Though we have used expected value function for the two-
stage model, it will be interesting to see the use of risk-
measures for these strategic decisions in the future.
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