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Efficient Transport Simulation With Restricted
Batch-Mode Active Learning

Francisco Antunes , Bernardete Ribeiro, Senior Member, IEEE,
Francisco C. Pereira, Member, IEEE, and Rui Gomes

Abstract— Simulation modeling is a well-known and recurrent
approach to study the performance of urban systems. Taking
into account the recent and continuous transformations within
increasingly complex and multidimensional cities, the use of
simulation tools is, in many cases, the only feasible and reliable
approach to analyze such dynamic systems. However, simula-
tion models can become very time consuming when detailed
input-space exploration is needed. To tackle this problem, simu-
lation metamodels are often used to approximate the simulators’
results. In this paper, we propose an active learning algorithm
based on the Gaussian process (GP) framework that gathers the
most informative simulation data points in batches, according
to both their predictive variances and to the relative distance
between them. This allows us to explore the simulators’ input
space with fewer data points and in parallel, and thus in a
more efficient way, while avoiding computationally expensive
simulation runs in the process. We take advantage of the
closeness notion encoded into the GP to select batches of points
in such a way that they do not belong to the same high-
variance neighborhoods. In addition, we also suggest two simple
and practical user-defined stopping criteria so that the iterative
learning procedure can be fully automated. We illustrate this
methodology using three experimental settings. The results show
that the proposed methodology is able to improve the exploration
efficiency of the simulation input space in comparison with
non-restricted batch-mode active learning procedures.

Index Terms— Active learning, transport simulation, simula-
tion metamodels, Gaussian processes.

I. INTRODUCTION

URBAN environments are highly complex systems involv-
ing a multitude of both internal and external variables,

and their respective interrelationships, which are not often easy
to identify. Additionally, these systems also exhibit an inherent
stochastic nature and other unknown random phenomena that
cannot be realistically described by a closed and tractable
mathematical formula.
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To successfully overcome the problem of intractability,
simulation approaches are often employed to virtually explore
the behavior of such urban systems and to assess their per-
formances. Urban dynamics require theoretical approaches
and planning methodologies that are capable of modeling the
subjacent spatio-temporal transformations processes from a
multidimentional prespective. In fact, urban planning mod-
els usually encompass the possibility of predicting future
scenarios of urban intervention focused on infrastructure
improvement and service promotion. These models are sim-
plified representations of the urban space, embedded into
a computer-generated reality, considered as an experimental
ground to understand the long-term performance of urban
policies decisions and corresponding interventions [1]. Never-
theless, when detailed with enough realism, urban simulation
models can become computationally expensive to run due to
their overwhelming complexity. Moreover, if the simulator
output space proves to have a complex functional structure,
we might need to systematically explore the input domain with
further detail, which often requires multiple and exhausting
simulation experiments, turning the exploration process virtu-
ally intractable.

To address the problem of expensive simulation runs,
i.e., simulations that require great computational workload
and exhibit prohibitive runtimes, simulation metamodels are
often used to approximate the simulation results and thus the
simulation model itself. Futhermore, in experimental scenarios
in which simulation data is computationally expensive to
obtain, active learning also emerges as a powerful approach,
as it aims to provide high prediction performance with fewer
data points. Among many significant machine learning tools,
the Gaussian Processes (GP) [2], a fully Bayesian modeling
approach, allow for an intuitive way to develop active learning
algorithms, by providing the posterior mean and variance
which in turn can be eventually used to search for the most
informative data points.

In this paper, we propose an active learning approach,
based on GPs, that gathers the most informative simulation
data points in batches, not only according to their variance
but also taking into account the relative distance between
them. This allows us to explore the simulation input space
with fewer training points in a faster, more efficient and
parallel manner, while avoiding computationally expensive
simulation runs at the same time. Taking advantage of the
closeness and similarity notions encoded into the GPs, mainly
via the kernel function, our approach selects batches of points
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that do not simultaneously belong to the same high variance
neighborhoods. In addition, we also suggest two simple and
practical user-defined stopping criteria so that the iterative
learning procedure can be fully automated.

We illustrate our methodology using three independent
settings, within a controlled experimental environment. The
first consists of a synthetic data generated by a known
function, which plays the role of an arbitrary simulation
model. Then, we proceed to a one-dimension study of a
Demand-Responsive Transportation (DRT) simulator. Finally,
we explore the behavior of a road intersection implemented
in a micro traffic simulation software, expanding our study
to a two-dimensional input case. The obtained results show
that the proposed batch-mode approach is able to improve
the exploration efficiency of the simulation input space in
comparison with non-restricted batch-mode active learning
procedures.

The remainder of the paper is organized as follows. In the
next section we provide a brief review on the main back-
ground topics and related literature. The proposed approach is
detailed in Section III, followed by the presentation of studied
simulation data, experiments and discussion (see Section IV).
Then we proceed to the validation of the obtained results in
Section V. Finally, we end this paper with some conclusions
and possible lines of future work.

II. BACKGROUND

Active learning is a special case of supervised machine
learning consisting of an iterative sampling scheme that allows
the algorithm to choose the data points from which it learns,
and an oracle, i.e., an instance label provider. It is particularly
useful under scenarios where labeled data is expensive to
obtain. Thus, the general idea of this learning paradigm is
to actively select the most informative data points, as few as
possible, in order to simultaneously boost the model training
efficiency and its prediction performance [3]. When the active
learning paradigm was first proposed, the oracle was typically
represented by a human annotator. Nowadays, however, due to
the development of technology, the oracle’s role can be taken
by an algorithm, a sensor, a simulator, etc. Most importantly
is that the oracle is able to provide labeled instances from
the ground truth underlying function describing the process of
interest.

Depending on how the unlabeled data is presented to the
oracle, the active learning algorithms can be divided into two
classes, namely, stream-based and pool-based. Whereas in the
latter the entire unlabelled data set is available for querying,
in the former each data point is presented individually or
in sucessive blocks [4]. In addition, because of its intrinsic
iterative nature, active learning procedures must be stopped
at a certain time. Although there is a vast research under
the active learning paradigm, not many approaches suggest
a stopping criteria [5], [6], and, according to [4], there is no
best stopping rule that is suitable across all applications.

In most of the proposed active learning algorithms, the
queries are presented sequentially, i.e., one at a time. This
strategy can become quite inefficient for some heavy learn-
ing tasks. One way to address this issue is to select data

points in batches in order to speed-up the learning process
by parallelizing it. However, to avoid redundancy within
each batch, it should simultaneouly account for diversity and
informativeness among the selected data points [4]. Several
batch-mode schemes have addressed this challenge, most of
them within classification problems [7]–[10].

Although active learning has been applied in many different
fields, we are particularly interested in those of simulation
metamodels [11] applications. Their main purpose is to serve
as surrogates for simulation models so that expensive sim-
ulations can be avoided. These models are essentially sim-
ple functions that approximate the true and more complex
unknown function inherently defined by the simulation model
itself [12]. They are fitted to the input-output data generated
by computer experiments and then can be used for prediction
purposes, among others [13]. Hence, these simulation meta-
models provide a practical framework to explore the behavior
of complex and time-consuming simulation experiments in a
rather less expensive way.

In our case, we assume that the simulation model is
perfectly validated and calibrated with respect to the prob-
lem of interest. The metamodel, which should be a valid
approximation of the simulation model, is then used to effort-
lessly explore its inner structure and, consequently, to provide
yet another analysis tool for the problem under study. The
Gaussian Processes (GP) framework has been widely used
for simulation metamodelling [14]–[17], and other works
combining GP metamodeling with active learning strategies
have also been conducted [18], [19]. Its Bayesian formalism
provides an easy way to develop algorithms that actively
learn with uncertainty. Other machine learning techniques,
such as Artificial Neural Networks (ANN), have also been
employed [20], [21].

Within the transportation literature, the application of simu-
lation metamodels is relatively recent. Only a handful of works
is currently available and, with respect to their application
domain, they can be essentially divided into two groups,
namely, traffic prediction and network optimization [22].
In 2013, Ciuffo et al. [23] developed a methodology that
applies a GP-based metamodel to conduct a sensitivity analysis
using the mesoscopic traffic simulator AIMSUN as a case
study. Using 512 different input combinations, the authors
concluded that the metamodel estimated outputs and the
real simulation outputs were significantly similar, thereby
showing the strength and parsimony of their methodology.
In [24] Zhang et al. developed a Bayesian stochastic Kriging
metamodel that simultaneously optimizes travel behavior
and dynamic traffic management using, as case study, the
real-world corridors of I-270 and MD355 in the state of
Maryland, USA. Using a similar case study, Chen et al. [25]
used a GP metamodel to approximate the response surface of
a transportation simulation with expensive-to-evaluate objec-
tive functions and random noise. The goal was to mini-
mize the network-wide average travel time by implementing
the optimal toll rates predicted by the metamodel. Sim-
ilarly, in [26] a metamodel-based optimization framework
was developed to solve the bilevel Mixed Network Design
Problem (MNDP).
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Fig. 1. Pool-based batch-mode active-learning scheme with a simulation
model serving as the oracle.

A mesoscopic Dynamic Traffic Assignment (DTA) simu-
lator, DTALite, was used to evaluate the system response to
several network design strategies. The authors showed that the
optimal investment could reduce the network average travel
time in approximately 18% during the morning period. Finally,
and very recently, Song et al. [22] presented a GP-based
metamodeling framework that approximates Dynamic Net-
work Loading (DNL) models. The authors show that the tested
DNL metamodels attain high accuracy, providing predic-
tion errors below 8%, and superior computational efficiency,
up to 455 times faster than the traditional DNL approaches.
Although these and other works constitute important applica-
tions of simulation metamodeling in transport problems, the
research in this area is still scarce.

III. APPROACH

In this work, we adopt a pool-based batch-mode active
learning approach in which a simulator plays the role of
oracle, as depicted in Fig. 1. The machine learning model,
used as metamodel, is a GP and the unlabeled pool, U , is the
input space where we want to explore the simulation behavior.
The pool of labeled instances, L, is formed by the results
of the simulation runs already performed. From a regression
perspective, we want to establish a functional relationship
between the simulation inputs, x ∈ R

D , where D is the
number of inputs, and its output, y ∈ R, by assuming a GP
prior over this relation, y = f (x). Then, taking advantage
from the Bayesian formalism from which the GP frameworks
derives, we aim to infer the conditional distribution of the
output given a set of unlabeled inputs. By doing so, we are
not only bypassing the simulation computational workload but
also providing a way to effortlessly approximate and therefore
analyze the simulator behavioral structure. Notice that the
simulation model is treated as a black box from which we
aim to get better insights in terms of its functional behavior,
while avoiding as many simulation runs as possible.

In the following we present the basis of Gaussian Processes
and then we detail the proposed active learning procedure
which is built upon this modeling framework.

A. Gaussian Processes

A GP [2] is a stochastic process completely characterized
by a mean and a covariance function, respectively denoted
as m f (x) and k f (x, x′), with x and x′ being two input data
points and simply denoted by GP(m f (x), k f (x, x′)) where

Fig. 2. General batch-mode active learning approach with spatial restriction.

m f (x) = E[ f (x)] and k f (x, x′) = E[( f (x) − m f (x))( f (x′) −
m f (x′))]. More formally, the GP framework assumes a prior
over functions, i.e., y = f (x) + ε, where ε ∼ N (0, σ 2) and
f (x) ∼ GP(m f (x), k f (x, x′)). For simplicity, it is common
practice to fix m f (x) = 0. Thus, the prior over the latent
function is given by p(f|x1, x2, . . . , xn) = N (0, K f ) where
f = [ f1, f2, . . . , fn]�, fi � f (xi ) and K f is the covariance
matrix, with its elements given by [K f ]i j = k f (xi , x j ).

Most of the covariance functions, or kernels, have several
free parameters which can be optimized to fit the training data
by maximizing the marginal likelihood. After these parame-
ters are obtained, the conditional distribution at a new test
point x∗ is given by f∗|X, y, x∗ ∼ N (k�

f ∗[Ky]−1y, k f ∗∗ −
k�

f ∗[Ky]−1k f ∗), where k f ∗ = k f (X, x∗), k f ∗∗ = k f (x∗, x∗)
and y is the vector of the target values. Thus, we can naturally
use the predicted Gaussian distribution at any given test point
to guide the active learning process and therefore learn with
its associated uncertainty.

B. Active Learning Procedure

The algorithm presented in Fig. 2 refers to the general
batch-mode active learning procedure used in this work and it
serves as the base for other algorithms forwardly presented and
tested. Here, L represents the set of labeled training points,
whereas U the set of unlabeled ones. The latter is defined
according to input space region we aim to explore. This algo-
rithm selects batches of k test points with the highest variance
values (provided by the GP) in a way that each point does not
originate from the same high variance neighborhood. Taking
into account the spatial notion of closeness and similarity
encoded into the GP via its kernel, it is expected that spatially
closer input points are more likely to have similar output
values. Therefore, the hypothesis is that sampling multiple
batch points from the same region may not be efficient.
To avoid this situation we introduce β to therefore control the
minimum distance between the selected active learning points.
This parameter is a ratio with respect to the maximum possible
distance between any two points (diameter) of the input space.
So, if β = 0.4, then the minimum distance between the points
is 40% of the maximum distance. We call it space or spatial
restriction induced by β. Notice that this approach is only valid
for continuous input metric spaces. The parameter k defines
the size of the batch.
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We also propose two simple variance-based stopping criteria
controlled by α1 and α2, respectively. The first, which we
call Criterion A, states that the algorithm stops when the
total current variance (T CV ) of the test points, at iteration
i , is less than (1 − α1)% of the initial total variance (I T V )
at iteration 0. Thus, if, for example, α1 = 0.3, the process
stops when T CV is reduced by 70% with respect to I T V ,
i.e., when I T V (1 − α1) ≥ T CV . Note that, instead of the
total variance, which is simply the sum of the variances of all
test points, we could have considered the average variance per
iteration. However, since this criterion is defined as a ratio, the
total number of test point would cancel out. On the other hand,
Criterion B is defined as a ratio between the average variance
of the training (AV T r ) points and the average variance of
the test (AV T s) points at each iteration i . Here, contrary to
Criterion A, since the total number of training and testing
points is not the same, it makes sense to consider the average.
When AV Tr/AV T s ≥ α2, the algorithm stops. The average
variance at training points is less than the average variance
at testing points, so this ratio lies in [0, 1]. Moreover, as the
process advances, AV T s is likely to decrease, while AV Tr
is expected to approximately maintain its values. However,
this is a more demanding criterion to be satisfied if α2 is
close to 1. If the model, in our case the GP, is very certain
at the training points and the contrary at the test points,
AV T r/AV T s ≈ 0, which will prevent the algorithm from
converging at an acceptable speed. Its performance will also
depend on the noise structure of the underlying function being
estimated.

In each iteration a new GP model is fitted to L. Its
hyper-parameters are obtained by maximizing the log like-
lihood function conditional on this training set in a Leave-
One-Out Cross-Validation (LOOCV) scheme. This constitutes
a simple scheme to minimize potential overfitting problems
during the training stage. Afterwards, the trained GP is used to
predict the simulation output values (labels) associated to the
unlabeled points in U , therefore avoiding many simulations
runs. Then, several testing points are selected according to
the approach described in Fig. 2, their respective true labels
are obtained via oracle, i.e., the simulator, and finally L is
expanded. This iterative process is repeated until the chosen
stopping criterion is satisfied.

Given the parametric nature of the proposed algorithm,
many variants can be derived depending on the concrete values
assigned to α1, α2, β and k, as well as on the used stopping
criteria. We test the four following combinations which are
built upon the base structure of this general approach:

• Algorithm 1: base approach + Criterion A with β = 0.
• Algorithm 2: base approach + Criterion A with β > 0.
• Algorithm 3: base approach + Criterion B with β = 0.
• Algorithm 4: base approach + Criterion B with β > 0.
The parameters used in these algorithms, α1, α2 and β,

vary according to the different simulators in study and were
obtained from a series of preliminary experiments using line
search. The size of the batch was fixed at k = 3. Moreover,
note that in Algorithms 1 and 3 we assume that β = 0, which
means that there is no spatial restriction during the batch
selection. Thus, these two cases correspond to the standard

Fig. 3. Initial learning state for the toy data set, where the first 10 training
points were randomly scattered in the input domain [−6, 6]. This corresponds
to iteration 0, which is shared by the four algorithms in study.

batch-mode schemes, serving as the baseline approaches in our
comparative study. In the following, we present and discuss
the results obtained within three experimental settings.

IV. EXPERIMENTS

In this section, we test the proposed methodology using
three independent experimental settings. The first consists of
a synthetic data generated by a known function playing the
role of an arbitrary simulation model. Then, we proceed to
a one-dimension study of a Demand-Responsive Transporta-
tion (DRT) simulator. Finally, we move to a two-dimensional
study of a simple road intersection implemented in a free and
open-source microtraffic simulation software. We use the GP
implementation from [2] and select the Squared Exponential
function as the GP kernel. Our study focus on the analysis
of the number of iterations required for each algorithm to
satisfy the stopping criteria, rather than on the observation
of the corresponding CPU times, despite its great importance
from a practical point-of-view. This allows us to conduct
a more meaningful and hardware-independent performance
analysis, making it possible to compare the results originated
from different simulation experiments with different hardware
specifications.

A. Toy Data Set

For the first set of experiments, we used a toy data set
generated by f (x) = cos(5x)+ 1

2 x+2 U(0, 1), which plays the
role of oracle, where U(a, b) denotes the Uniform distribution
in the interval [a, b]. Fig. 3 shows the initial GP learning
state. The initial labeled pool, L, is comprised of 10 randomly
generated training points, U is formed by 10000 unlabeled test
points uniformly spaced in [−6, 6]. Fig. 4 and 5 present the
results.

Comparing Algorithms 1 and 2, the superiority of the latter
is clear from an efficiency point-of-view (see Fig. 4). For the
same criterion threshold (α1 = 0.6), Algorithm 2 is over
than four times faster than Algorithm 1, due to the space
restriction induced by β = 0.2. This means that the testing
points constituting the batches were not selected from the same
high variance neighborhoods, scattering the input exploration
process and thus turning it more efficient. Moreover, it is
important to note the number of iterations alone does not
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Fig. 4. Final results for the toy data set using (a) Algorithm 1 with user-defined parameters α1 = 0.6, β = 0 and k = 3, and (b) Algorithm 2 with α1 = 0.6,
β = 0.2 and k = 3. The active points are labelled with the number of the iteration in which they were selected. Panel (c) compares the total variance reduction
between both algorithms, displaying it as a function of the iteration number.

Fig. 5. Final results for the toy data set using (a) Algorithm 3 with user-defined parameters α2 = 0.4, β = 0 and k = 3, and (b) Algorithm 4 with α2 = 0.4,
β = 0.2 and k = 3. The active points are labelled with the number of the iteration in which they were selected. Panel (c) compares the training and test
average variance between both algorithms, displaying them as a function of the iteration number.

directly measure the real involved computational workload,
which is intrinsically related with the simulation model. As we
adopted a batch-mode active learning scheme, we should addi-
tionally take into account the size of the batch, k. Therefore,
whereas Algorithm 1 requested the oracle 17 × 3 = 51 times,
in Algorithm 2 this number decreased to 4 × 3 = 12.

For Algorithms 3 and 4, a similar scenario has occurred.
Using the same stopping rule, based on Criterion B with
α2 = 0.4, Algorithm 4 required three less iterations than
Algorithm 3. This represents a total difference of 3 × 3 = 9
simulation requests. However, note that, as previously men-
tioned in Section III-B, Criterion B, may be harder to satisfy,
which explains the lesser performance in comparison in both
Algorithms 1 and 2.

B. DRT Simulator

Demand Responsive Transportation (DRT) systems are a
kind of hybrid transportation approach between the taxi and
bus solutions that address the problems that emerge from the
use of fixed routes and schedules, typically found in regular
public road transportation. From the transport operators’ point-
of-view, this traditional approach can prove to be quite expen-
sive and inefficient in lower population density zones, such as
rural areas, and in certain periods of the day. Both cases are

characterized by a low, variable and unpredictable demand.
Thus, DRT systems aim to provide transportation solutions
that are able to adapt, in real-time, its routes and frequencies
to match the actual observed demand.

Service design is critical for the success of DRT systems,
so decision-makers need to understand well how the different
ways of operating the service affect its performance. The
flexibility of DRTs may cause organizational problems such as,
a) the number and type of requests may involve an exceedingly
high number of vehicles, b) very sparse requests that are
hard to combine efficiently or c) the quality of the service
in terms of pickup/delivery time and travel duration might not
be guaranteed with the available resources or when unpre-
dictable events occur. These effects are often studied through
simulation, whose purpose is to obtain a better understanding
of the behavior of a system under a given set of input con-
ditions, even with uncertain events. The performance of these
systems can be determined by observing what happens on
the network, during simulation, for different input conditions.
However, when dealing with real-world events (especially
with high degree of dynamism) and extremely complex road
networks and demand, simulation models can become very
time-consuming.

We now consider the problem of exploring the outcome of
the DRT simulation model developed by Gomes et al. [27].
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Fig. 6. Initial learning state for the DRT simulation data set, where the
first 10 training points were randomly scattered in the input domain [1, 10].
This corresponds to iteration 0, which is shared by the four algorithms in
study.

This simulation system integrates four submodels, covering
the service area, trip requests (demand), vehicles, and real
time events. It has 22 inputs/parameters and, among a few
outputs that measure the system overall performance, we focus
on the DRT system total operating cost. For a given demand
structure, different input combinations will lead to different
costs and service quality levels. We loaded the simulator with
a real road-network structure, within the metropolitan region
of Oporto (Portugal), with symbolic parameters values. For
the sake of illustration, we then considered the Ticket Price as
the input domain for which we aim to explore the outcome,
Total Cost, of the simulator, maintaining the remaining inputs
unchanged. From previous experiments, we concluded that,
for our particular application, the simulation running times do
not vary significantly from each other. Therefore, it does make
sense to focus only on the number of iterations to assess the
performances of the studied algorithms.

Similarly to the previous experimental setting, we decided
to explore the input domain contained in the interval [1, 10]
using 10000 uniformly spaced test points. This test set corre-
sponds to U , whereas L is constituted by 10 random simulation
data points within the same interval, as presented in Fig. 6.
The results for this simulation data are generally aligned with
the results obtained for the toy set experiment. Again, and as
depicted in Fig. 7, Algorithm 2 is more than two times faster
than Algorithm 1. For the same level of variance reduction,
induced by α1 = 0.60 (about 40% of the initial total variance),
the former requested the simulator 5 × 3 = 15 times, against
2 × 3 = 6 requests in the latter. It is obvious that the less
runs the simulator executes the better. Therefore, for the same
stopping criteria and threshold, Algorithm 2 proved to be more
efficient as it was able to scatter the learning points forming
the batch along different high variance neighborhoods.

For Algorithms 3 and 4 we obtained an interesting result
which highlights our concerns presented in Section III-B
regarding Criterion B. In Fig. 6 we can obverse that for
the first approximation (Iteration 0), the GP model assigned
very little variance to the training points, meaning that, in the
context of Criterion B, AV Tr ≈ 0. As the process iteratively
evolves, i.e., as more simulation data points are added to the
expanding data set, AV Tr seems to remain close to zero.
On the other hand, AV T s clearly shows a decreasing behavior

towards zero. In several preliminary experiments, which we
do not present due to space restrictions, we noticed that
setting, for example, α2 = 0.6, as we did for α1, was too
ambitious for both Algorithms 3 and 4 to yield competitive
performance. This means that these algorithms were taking
too many iterations to converge to be fairly comparable to
Algorithms 1 and 2. Therefore, after fixing α2 = 0.1, which
is equivalent to say that the stopping criterion is satisfied
when AV Tr is approximately 10% of AV T s, we concluded
that both Algorithms 3 and 4 converged in reasonable and
comparable running times. Despite these initial configuration
problems, these algorithms attained similar results to those
of Algorithm 1 and 2. It is worthwhile to mention that,
once again, the restriction applied during the formation of the
batches was a decisive factor in the reduction of the number
of iterations.

C. Traffic Simulator

In this section we move to a microscopic traffic simulation
example, by exploring a road intersection implemented with
the Simulation of Urban Mobility (SUMO) [28], in which
the traffic flows in three directions only, North-South (NS),
West-East (WE) and East-West (EW).1 The vertical axis is
dedicated to important vehicles, whereas in the horizontal axis
we only have light passenger car traffic. Moreover, the model
is designed to prioritize the NS traffic over the remaining
flows. Therefore, it is expected that if this flow increases, the
horizontal traffic flows will potentially form more and longer
queues, consequently increasing the overall total waiting time.

During each simulation run, the demand, or traffic flow,
generated from each operational axis is randomly gener-
ated according to a Poisson distribution, approximated by
a Binomial distribution with parameter p ∈ [0, 1]. This
parameter sets how many vehicles are generated, on average,
within a certain period of time. For example, if p = 1/s,
then it means that one vehicle is expected every interval
of s seconds. Notice that the traffic flow actually increases
when s → 0.

The simulated example encompasses three input parameters
that have a direct influence in the intersection performance,
namely, the NS, WE and EW demands, each of which asso-
ciated with different Binomial parameters. Moreover, it is
assumed that the three different traffic flows are mutually
independent. To assess the performance of the simulated road
networks, SUMO has a large number of different output
measures. Raw vehicle positions, trip and route information
and simulation state statistics are just a few examples of pos-
sible outputs. For the sake of illustration of our methodology,
we decided to focus on the total waiting time spent by all the
vehicles crossing the intersection as our aggregated traffic per-
formance measure. Our objective is to use the proposed active
learning scheme to explore the simulation input space and to
evaluate how it affects the total waiting time. Therefore, fol-
lowing a similar experimental design of the one-dimensional
analyses presented in Sections IV-A and IV-B, we now extend
our study to a two-dimensional case where the traffic demands

1See http://sumo.dlr.de/wiki/Tutorials/TraCI4Traffic_Lights
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Fig. 7. Final results for the DRT simulation data using (a) Algorithm 1 with user-defined parameters α1 = 0.6, β = 0 and k = 3, and (b) Algorithm 2 with
α1 = 0.6, β = 0.2 and k = 3. Each active point is labelled with the number of the iteration in which it was selected. Panel (c) compares the total variance
reduction between both algorithms, displaying it as a function of the iteration number.

Fig. 8. Final results for the DRT simulation data using (a) Algorithm 3 with user-defined parameters α2 = 0.1, β = 0 and k = 3, and (b) Algorithm 4 with
α2 = 0.1, β = 0.2 and k = 3. Each active point is labelled with the number of the iteration in which it was selected. Panel (c) compares the training and test
average variance between both algorithms, dislplaying them as a function of the iteration number.

Fig. 9. (a) Initial learning state for the traffic simulation data, where the first 10 training points were randomly scattered in the input space [0, 40] × [0, 40].
This corresponds to iteration 0, which is shared by the four algorithms in study. (b) Variance behavior across the input region.

from NS and WE operational axes are considered as inputs,
and the expected vehicular waiting time is our output perfor-
mance of interest.

The new input region of interest (U) is defined by the square
[0, 40] × [0, 40], from which 10 random training points were
selected, corresponding to the initial set of simulation runs (L),
as depicted in Fig. 9(a). On the other hand, Fig. 9(b) shows
the variance across the entire test region. As expected, the
variance near the training points is lower than the variance

associated to the test points. Starting from this initial learning
stage, our approach is designed to actively search for the top
k highest variance neighborhoods (yellow tones regions), that
are not mutually within a radius of β × 100% of the diameter
of the input region. In any case, in this first approximation
we can already observe that the values of the average waiting
time (z-axis) tend to increase when both NS and WE demands
increase, matching our initial guess regarding the simulation
output behavior.
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Fig. 10. Final results for the traffic simulation data using (a) Algorithm 1 with user-defined parameters α1 = 0.95, β = 0 and k = 3, and (b) Algorithm 2 with
α1 = 0.95, β = 0.3 and k = 3. Panel (c) compares the training and test average variance between both algorithms, dislplaying them as a function of the
iteration number.

Fig. 11. Final results for the traffic simulation data using (a) Algorithm 3 with user-defined parameters α2 = 0.2, β = 0 and k = 3, and (b) Algorithm 4 with
α2 = 0.2, β = 0.2 and k = 3. Panel (c) compares the training and test average variance between both algorithms, dislplaying them as a function of the
iteration number.

TABLE I

AVERAGE RESULTS OBTAINED FROM 30 RANDOM COMPUTER RUNS USING 20 TEST POINTS

FOR THE DIFFERENT EXPERIMENTAL SETTINGS AND ALGORITHMS

Fig. 10 and 11 present the final results, showing fairly
identical GP approximations across the four algorithms.
We observe that Algorithm 1 took 11 iteration to achieve
a total variance reduction of 95%, against seven iterations
from Algorithm 2 (see Fig. 10(c)). Both are based on Criterion
A and on the same stopping threshold. However, due to the
proposed space restriction (imposed by β = 0.3), the latter
presents a more efficient performance than the former, with
a difference of (11 − 7) × 3 = 12 simulation runs. Finally,
we can see from Fig. 11(c) that Algorithm 4 took three
iterations to stop, whereas Algorithm 3, whose batch formation
is not restricted by β, required six to satisfy Criterion B with

α2 = 0.2. Although these differences in the iteration numbers
may seem to be of little significance for the current academic
example, they can prove to be quite relevant in real-world and
thus computationally heavy simulation models, which can take
up to several days to finish.

V. VALIDATION

We now conduct a series of computer runs to not only
compare the algorithms’ results but also to assess the quality of
the obtained GP approximations with respect to the underlying
simulation functions in study. These results are summarized
in TABLE I.
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To evaluate the performance of the studied algorithms we
used the Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), Root Relative Squared Error (RRSE) and Pear-
son’s linear correlation coefficient (Cor.). Within each exper-
imental setting, these metrics were computed by comparing
the predicted values provided by the GP (in the last iteration
of the algorithms) and the true simulation output values
over a set of 20 test points scattered along the different
studied input regions. We also obtained the average iteration
difference between Algorithms 1 and 2 (Criterion A), and
Algorithms 3 and 4 (Criterion B), respectively. Additionally,
in order to evaluate the statistical significance of this differ-
ence, we conducted a paired sample t-test. Each computer run
is determined by a different set of 10 random initial training
points. The values for the parameters α1, α2 and β were
maintained the same as in the previous section.

Overall, the results show that the GP was able to provide
rather good approximations for the underlying simulation
functions associated with the three experimental settings and
across the four studied algorithms. However, the main differ-
ence resides in the average number of iterations required to
satisfy the stopping criteria. Additionally, the reported p-values
indicate that there are no evidences to support the acceptance
of the null hypothesis, meaning that such iteration number dif-
ferences seem to be statistically different from zero (criterion-
wise). This shows that the introduction of the parameter β
which induces a space restriction during the formation of the
active point batches can improve the exploration performance
while maintaining a reasonably good approximation to the
underlying simulation function at the same time.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a restricted batch-mode active
learning approach, along with two practical user-defined stop-
ping criteria, in the context of transport simulation metamod-
eling. The proposed algorithm seeks for the most informative
test points in spatially restricted batches. The parameter β,
which represents a fraction of the maximum possible dis-
tance (diameter) within the input region of interest, controls
the minimum distance between each gathered point. This
prevents each batch from being formed with points from the
same high variance regions, making the learning process faster
and parallelizable, and thus more efficient. Our objective is
to obtain a reasonable understanding regarding the behavior
of the simulator of interest with as few simulation runs as
possible.

The results obtained from three independent experimental
settings show that the introduction of a spatial restriction,
induced by β, in the formation of the batch is able to turn
the metamodeling process more efficient, while maintaining a
good approximation to the underlying simulation functions at
the same time. Additionally, we concluded that different data
contexts and experimental settings require different parameter
values configurations so that comparable results are attained.

There are several directions in which this work can be
improved. The different values for the algorithms’ parameters
(α1, α2 and k) were obtained from a series of preliminary

experiments and approximations using a simple line search,
essentially to test the proposed active learning approach.
Thus, we plan to develop proper strategies to fine tune these
parameters, as well as to conduct the associated sensitivity
analysis. Moreover, we intend to not only expand the current
study with more parameter configurations but also to explore
their relationship with the size, shape and dimensionality of
the simulation input regions of interest.

On the other hand, the problem of metamodeling bounded
simulation outputs, which is the case of the DRT simulator
(costs should not be negative) used in this work, constitutes an
interesting challenge to address in a near future, as well as the
combination of both simulation and optimization metamodels
using active learning strategies. Ultimately, we aim to apply
our approach using a large-scale transportation simulation
problem, whose runs can take up to days to finish, in order to
assess its feasibility in comprehensive real-world applications.

ACKNOWLEDGMENT

The anonymous reviewers are also gratefully acknowledged
for their interesting comments and suggestions.

REFERENCES

[1] M. C. Marengo, “Urban simulation models: Contributions as analysis-
methodology in a project of urban renewal,” Current Urban Stud., vol. 2,
no. 3, p. 298, 2014.

[2] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). Cambridge,
MA, USA: MIT Press, 2005.

[3] B. Settles, “Active learning literature survey,” Comput. Sci., Univ.
Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1648, 2010.

[4] X. Wang and J. Zhai, Learning With Uncertainty. Boca Raton, FL, USA:
CRC Press, 2016.

[5] A. Vlachos, “A stopping criterion for active learning,” Comput. Speech
Lang., vol. 22, no. 3, pp. 295–312, 2008.

[6] W. Wang, W. Cai, and Y. Zhang, “Stability-based stopping criterion
for active learning,” in Proc. IEEE Int. Conf. Data Mining (ICDM),
Dec. 2014, pp. 1019–1024.

[7] K. Brinker, “Incorporating diversity in active learning with support
vector machines,” in Proc. ICML, vol. 3, 2003, pp. 59–66.

[8] S. C. H. Hoi, R. Jin, and M. R. Lyu, “Large-scale text categorization by
batch mode active learning,” in Proc. ACM 15th Int. Conf. World Wide
Web, 2006, pp. 633–642.

[9] Z. Xu, R. Akella, and Y. Zhang, “Incorporating diversity and density
in active learning for relevance feedback,” in Proc. Eur. Conf. Inf. Retr.
Berlin, Germany: Springer-Verlag, 2007, pp. 246–257.

[10] Y. Guo and D. Schuurmans, “Discriminative batch mode active learn-
ing,” in Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 593–600.

[11] L. W. Friedman, The Simulation Metamodel. Norwell, MA, USA:
Kluwer, 1996. [Online]. Available: https://www.springer.com/la/book/
9780792396482

[12] J. P. C. Kleijnen and W. C. M. van Beers, “Application-driven sequential
designs for simulation experiments: Kriging metamodelling,” J. Oper.
Res. Soc., vol. 55, no. 8, pp. 876–883, 2004.

[13] J. P. C. Kleijnen and R. G. Sargent, “A methodology for fitting and
validating metamodels in simulation,” Eur. J. Oper. Res., vol. 120, no. 1,
pp. 14–29, 2000.

[14] A. Boukouvalas, “Emulation of random output simulators,” Ph.D. dis-
sertation, Dept. Eng. Appl. Sci., Univ. Aston, Birmingham, U.K., 2010.
[Online]. Available: http://www.aston.ac.uk/study/, https://research.
aston.ac.uk/portal/en/theses/emulation-of-random-output-simulators(3a
584d57-bad2-4a87-9e3f-b242f6b2b7ed).html, https://research.aston.ac.
uk/portal/en/persons/alexios-boukouvalas(6fe997c9-b00f-48dc-b982-d5
a0059ee290).html, http://www.aston.ac.uk/departments/, and http://
www.aston.ac.uk/eas/

[15] T. Chen, K. Hadinoto, W. Yan, and Y. Ma, “Efficient meta-modelling
of complex process simulations with time–space-dependent outputs,”
Comput. Chem. Eng., vol. 35, no. 3, pp. 502–509, 2011.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[16] S. Conti and A. O’Hagan, “Bayesian emulation of complex multi-output
and dynamic computer models,” J. Stat. Planning Inference, vol. 140,
no. 3, pp. 640–651, 2010.

[17] J. P. C. Kleijnen, “Kriging metamodeling in simulation: A review,” Eur.
J. Oper. Res., vol. 192, no. 3, pp. 707–716, 2009.

[18] J. A. Christen and B. Sansó, “Advances in the sequential design of
computer experiments based on active learning,” Commun. Stat.-Theory
Methods, vol. 40, no. 24, pp. 4467–4483, 2011.

[19] T. Pfingsten, “Bayesian active learning for sensitivity analysis,” in Proc.
Eur. Conf. Mach. Learn. Berlin, Germany: Springer, 2006, pp. 353–364.

[20] D. A. Cohn, “Neural network exploration using optimal experiment
design,” in Proc. Adv. Neural Inf. Process. Syst., 1996, pp. 1071–1083.

[21] D. J. Fonseca, D. O. Navaresse, and G. P. Moynihan, “Simulation
metamodeling through artificial neural networks,” Eng. Appl. Artif.
Intell., vol. 16, no. 3, pp. 177–183, 2003.

[22] W. Song, K. Han, Y. Wang, T. Friesz, and E. del Castillo, “Sta-
tistical metamodeling of dynamic network loading,” Transp. Res.
Procedia, vol. 23, pp. 263–282, Jul. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352146517302934

[23] B. Ciuffo, J. Casas, M. Montanino, J. Perarnau, and V. Punzo,
“Gaussian process metamodels for sensitivity analysis of traffic
simulation models: Case study of AIMSUN mesoscopic model,”
Transp. Res. Rec., J. Transp. Res. Board, vol. 23, pp. 263–282,
Dec. 2013. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2352146517302934

[24] L. Zhang, X. He, C. Xiong, and Z. Zhu, “Bayesian stochastic Kriging
metamodel for active traffic management of corridors,” in Proc. IIE
Annu. Conf. Georgia, U.K.: IISE, 2014, p. 1790.

[25] X. Chen, L. Zhang, X. He, C. Xiong, and Z. Li, “Surrogate-based
optimization of expensive-to-evaluate objective for optimal highway
toll charges in transportation network,” Comput.-Aided Civil Infrastruct.
Eng., vol. 29, no. 5, pp. 359–381, 2014.

[26] X. Chen, Z. Zhu, X. He, and L. Zhang, “Surrogate-based optimization
for solving a mixed integer network design problem,” Transp. Res. Rec.,
J. Transp. Res. Board, vol. 2497, pp. 124–134, Dec. 2015. [Online].
Available: https://trrjournalonline.trb.org/doi/10.3141/2497-13

[27] R. Gomes, J. P. de Sousa, and T. Galvão, “An integrated approach
for the design of demand responsive transportation services,” in
Computer-Based Modelling and Optimization in Transportation. Cham,
Switzerland: Springer, 2014, pp. 223–235.

[28] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of SUMO-simulation of urban mobility,”
Int. J. Adv. Syst. Meas., vol. 5, nos. 3–4, pp. 128–138, 2012.

Francisco Antunes is currently pursuing the Ph.D.
degree in transportation systems with University of
Coimbra, within the framework of the MIT-Portugal
Doctoral Program. He started his research activ-
ity in the Center for Informatics, University of
Coimbra, in 2013. He is currently a member of
the Research Centre for Territory, Transports and
Environment. His main research interests include
statistical models, intelligent transportation systems,
machine learning, and transport/urban simulation
models.

Bernardete Ribeiro (SM’15) received the Ph.D.
and Habilitation degrees in informatics engineering
from University of Coimbra. She is currently a
Full Professor with University of Coimbra, also the
Director of the Center of Informatics and Systems,
University of Coimbra, also the President of the
Portuguese Association of Pattern Recognition, and
also the Founder and the Director of the Laboratory
of Artificial Neural Networks for over 20 years. Her
research interests are in the areas of machine learn-
ing, and pattern recognition and their applications

to a broad range of fields. She has been responsible/participated in several
research projects both in international and national levels in a wide range
of application areas. She is an IEEE SMC Senior Member, a member of
the IARP International Association of Pattern Recognition, a member of the
International Neural Network Society, a member of the APCA Portuguese
Association of Automatic Control, a member of the Portuguese Association
for Artificial Intelligence, a member of the American Association for the
Advancement of Science, and a member of the Association for Computing
Machinery. She received several awards and recognitions.

Francisco C. Pereira (M’05) received the Ph.D.
degree from University of Coimbra, Portugal,
in 2005. He was a Senior Research Scientist with
the MIT/CEE ITSLab, where he was involved
in real-time traffic prediction, behavior modeling,
and advanced data collection technologies, both in
Boston and Singapore, as part of the Singapore-MIT
Alliance for Research and Technology, Future Urban
Mobility Project. He was also a Professor with Uni-
versity of Coimbra. He is currently a Full Professor
with Technical University of Denmark, where he

leads the Machine Learning for Mobility Research Group. He has authored
or co-authored a long list of journal and conference papers in areas such
as pattern recognition, transportation, knowledge-based systems, or cognitive
science. His main research focus is on applying machine learning and pattern
recognition to the context of transportation systems with the purpose of
understanding and predicting mobility behavior, and modeling and optimizing
the transportation system as a whole. The thesis relates Artificial Intelligence
with Creativity and originated a book. In 2013, he was awarded the prestigious
Singapore Challenge prize for a collaborative paper with researchers from
A*Star, SUTD, and MIT.

Rui Gomes received the degree in informatics engi-
neering, the M.Sc. degree in informatics engineering
from the Faculty of Engineering, University of Porto
(FEUP), and the Ph.D. degree in transport systems
from the MIT-Portugal Program in 2013. He was
a Visiting Graduate Student with the Massachusetts
Institute of Technology in 2011 and an Invited
Assistant Professor with FEUP from 2008 to 2012.
He has been a teacher at several higher education
institutions. He is currently a Senior Researcher and
a Project Coordinator with the Centre for Informatics

and Systems, University of Coimbra. He has authored or co-authored several
book chapters, journal articles, and over 25 conference papers. His research
interests include intelligent transport systems, demand responsive transport
systems, combinatorial optimization, metaheuristics, ambient intelligence, and
artificial intelligence. He has been a reviewer for several international scientific
conferences and journals in the area of transportation, logistics, and artificial
intelligence.


