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Abstract—This paper focuses on measuring the motion of a 

cyclist moving adjacent to a heavy goods vehicle (HGV), from 
the detections of ultrasonic sensors installed along the side of the 
vehicle. The measurements are used in a prototype collision 
avoidance system that predicts the future relative motion and 
assesses the likelihood of a collision. An array of ultrasonic 
sensors is adopted to cover the near side of the HGV, where most 
of fatal collisions with cyclists occur. A method combining 
quadratic programming and Kalman filtering is developed in 
this paper for recovering the bearing angles of the cyclist from 
the detected distances provided by off-the-shelf ultrasonic 
sensors. The algorithms are developed for use in real time and 
practical constraints are considered. The simulation and testing 
results prove the effectiveness of the proposed method for a 
reasonable range of the speed differential between the cyclist and 
the HGV. 

 
Index Terms—collision avoidance, heavy goods vehicles, motion 

estimation, quadratic programming, ultrasonic sensors, 
vulnerable road users 
 

I. INTRODUCTION 

HGVs are a major contributing factor for accidents 

involving cyclists, especially those resulted in fatalities. 
Between 2009 and 2013 they were involved in around a quarter 
of cyclist deaths in the UK [1]. 

Transportation Research Laboratory (TRL) investigated 
HGV-related accidents between 2006 and 2008. They reported 
that on average, HGVs cause 27 deaths and 72 serious injuries 
to cyclists each year in the UK. Among these,  side-to-side 
collisions account for 43% of fatalities and 36% of serious 
injuries to cyclists [2]. In recent years, research and commercial 
systems have started focusing on collision prevention for 
cyclists and pedestrians, based on either camera only ([3] [4] 
[5] ) or sensor fusion of camera and radar [6]. 

Existing technologies have also looked into protecting 
cyclists on the nearside of heavy vehicles, by: 

(i) providing the driver with side-view cameras, 360° view 
cameras [7], or simply more wing mirrors [8] for better 
visibility of blind spots; 

(ii) utilising ultrasonic sensors on the side of the vehicle to 
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detect cyclists who are in close proximity;  
(iii) use of radar based technology [9] for cyclist monitoring. 
A collision avoidance strategy was introduced in [10] and 

[11], aimed at estimating the motion of the cyclist relative to the 
truck and intervening in the truck's motion when a collision is 
predicted. The methods of collision prediction is detailed in 
[10]. There are a variety of sensing methods for detecting 
objects around a vehicle (summarized in [11]), including 
camera, radar, lidar and ultrasonic sensors. Ultrasonic sensors 
were selected in this study because: 
1) The characteristics of the detection geometry are well 

suited to ultrasonic sensors. The lateral distance from the 
cyclist to the HGV is normally less than 2m, which matches 
the detection range of a typical ultrasonic sensor. 

2) Ultrasonic sensors can provide distance measurements of 
acceptable accuracy (5mm of error can be achieved); 

3) Ultrasonic sensors can work in a variety of weather 
conditions (including fog, rain, low and high temperatures, 
etc) and any light levels; 

4) The low cost of ultrasonic sensors makes them 
commercially attractive.  

An ultrasonic sensor suitable for detecting humans has a beam 
width typically less than 2m, which is significantly less than the 
length of a typical lorry (>10m).  So it is necessary to deploy 
multiple sensors to cover the near side of an HGV.  

Ultrasonic sensors have been used in various applications in 
recent years. In [12] the authors describe spatial reconstruction 
of orthogonal planes using a rotary array of ultrasonic sensors. 
In [13], 24 ultrasonic sensors were used, spaced with an angular 
displacement of 15° and mounted on top of the robot, to achieve 
navigation of autonomous mobile systems. Multiple sensors are 
also used for improving accuracy in distance measurement [14] 
and [15]. For parking assistance on automobiles, four sensors 
are often deployed to locate objects by triangulation [16]. None 
of these research or commercial systems tracks the motion of 
the objects they detect. 

An array of multiple ultrasonic sensors is also akin to the 
layout of SONAR sensors (‘multi-beam echo sounders’) used 
in 'bathymetry' and underwater navigation. With SONAR, 
target positioning relies on beamforming (or beam steering), 
which require processing raw reflected waves [17].  The sensors 
are used to scan a line across the sea floor underneath a towing 
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vessel and the data is used to map the topography (depth) of the 
sea-floor. 

Given the distance to the target measured by ultrasonic 
sensors, it is not possible to pinpoint the exact position of a 
target because the bearing angle from the sensor to the target is 
unknown. The position of a target alongside a vehicle could be 
anywhere on the arc with the same radius as shown in Fig. 1. 
This is termed 'position ambiguity'. To construct the cyclist’s 
motion relative to the truck, it is necessary to recover the 
bearing information (Fig. 2). This paper discusses a novel 
approach for bearing angle estimation, purely based on the 
detected distances from ultrasonic sensors. The approach 
discussed in this paper is designed for cyclist motion estimation 
and tracking for a collision avoidance system ([10] and [11]) 
whose focus is to prevent side-to-side collisions between HGVs 
and cyclists. 

 
Fig. 1 Illustration of position ambiguity by ultrasonic sensor detection 

 
Fig. 2 Illustration of the bearing angle for the ultrasonic sensor detection 

Ultrasonic sensors are installed at the cyclist’s shoulder height 
position on the HGV [10]. This allows the sensors to capture a 
narrow side profile of the cyclist bicycle combination, 
eliminating the risk of detections being from different parts of 
the bicycle and cyclist.  The detections are always consistent 
and the whole problem can be simplified to that of estimating 
the location and motion of a point mass and then extrapolating 
to the combination of the rider and the bicycle. The field testing 
of the system described in [11] has proved the effectiveness of 
this methodology.  

The methods proposed in this paper are concerned with object 
localisation. They are not in the same category as the computer 
vision based methods, such as [18], [19], [20], [21], [22] and 
[23], which are generally concerned with front-end collision 
warnings or traffic monitoring from roadside cameras. Nor are 
they related to wave based methods for radar [24] and sonar 
[17], which are concerned with bearing calculations and are not 
cyclist detection. The approach described in this paper is 
unique. The combination of an array of multiple, high-
performance ultrasonic sensors, processed using Quadratic 

Programming and Kalman Filtering, provides an accurate 
measurement of (past and) current position of the cyclist and a 
prediction of future relative motion.  This was not previously 
possible. 

II. POSITION ESTIMATION ALGORITHM 

A. Overview of the Propose Algorithms 

Fig. 3 is a schematic diagram of the overall algorithm for 
cyclist position information.  It shows how the positions of the 
cyclist can be estimated in real time, based on detected 
distances from ultrasonic sensors. Each ultrasonic sensor 
outputs the measured distances with its sensor ID. This 
information is first sent to a processor that checks if there are 
any possible triangulations formed between neighbouring 
sensor detections (discussed in more detail in the next section). 
As there can be multiple detections at each time step, a process 
called ‘ID sequencing is introduced to help discount spurious 
sensor detections that are irrelevant to the motion of a cyclist. 
An optimization algorithm using a quadratic programming (QP) 
approach is used to determine the best set of detection angles θ 
and the corresponding positions of the cyclist. A Kalman filter 
is then used to smooth the trajectory of the cyclist based on a 
kinematic model of the cyclist’s relative motion. The steps are 
detailed below. 

 
Fig. 3 Schematic for position estimation in real time 

B. Triangulation 

If two neighbouring ultrasonic sensors USk and USk+1 have 
overlapping detection ranges and the cyclist falls into the 
overlap area, there will be two detected distances �� and ����	 
available to process at the same time in the data stream, as 
shown in Fig. 4. Two sensors and the target form a triangle, and 
it is straightforward to find out each angle inside the triangle by 
applying cosine rules. It is not necessarily true that any two 
detections from neighbouring sensors at the same time could 
form a triangulation. The detailed methods for forming 
triangulations are described in [11]. Once a triangulation is 
found, it is necessary to check whether the calculated bearings 
are valid or not by comparing them with the maximum angle 
that forms the field of view of the sensors. The bearings 
resulting from triangulations can be used to provide ‘equality 
constraints’ in the Quadratic Programming step (see later). 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3

 
Fig. 4 Illustration of triangulation for cyclist po sition 

C. Sensor ID Sequencing 

It is important to associate detected distances with specific 
objects correctly. This is termed as ‘data association’ in object 
tracking tasks.  The purpose of this paper is to illustrate a new 
method for motion estimation only; therefore, data association 
methods will not be used.  Instead it is assumed that only one 
object is in view of the sensor system at any time.  Estimating 
the motion of multiple cyclists moving in an array of ultrasonic 
sensors is the subject of ongoing work. 

For the case where only one object of interest is concerned, it 
is also possible that there is more than one detection at a time, 
due to (i) ultrasonic reflections from neighbouring sensors; (ii) 
environmental noise and random reflections or sensor errors. 
This problem can be compounded by occasional spurious 
detections from noisy sensors.  As a result, it was found 
necessary to eliminate sensor detections that prevented the 
forming of a smooth cyclist trajectory. 

A heuristic method of ID sequencing for one object of interest 
is detailed in [11].  In summary, the output of the ID sequencing 
step is a string of sensor IDs, with each element corresponding 
to a time step during the period to inspect (PTI) chronologically. 
All possible ID combinations are generated for the PTI and for 
all these combinations, the differences between elements in 
each combination are calculated. These differences indicate the 
motion ‘trend’ of the cyclist. If they are positive, the cyclist is 
moving forwards relative to the truck; if they are negative, the 
cyclist is moving backwards.  

If valid triangulations are found during the PTI, the associated 
sensor IDs with shorter detected distances in each triangulation 
pair are used as ID ‘boundaries’ that divide the full ID string 
into several sections. In each ID section, the same rules for 
sequencing IDs are applied, i.e.: 
1) ID discontinuities are not allowed; 
2) non-monotonic ID sections are not allowed; 
3) IDs associated with outliers are ignored. 

D. Problem formulation of position estimation 

It is assumed that an array of ultrasonic sensors is installed on 
the nearside of HGV to cover the entire lateral side of the truck. 
The front sensor is assigned with ID number 1, while the rear 
sensor has number N. The choice of N depends on vehicle 
length and sensor spacing.  

A coordinate system defines the positions of ultrasonic 
sensors on the truck as well as the cyclist’s position. The origin 

is set at the mid-point on the front edge of the vehicle, with x 
axis along the longitudinal direction and y axis pointing to the 
left of the vehicle (shown in Fig. 2). 

A reference line (UA) is defined for each sensor, pointing 
along the outwards normal to the side of the vehicle. The line 
from the sensor to the target is a position vector. The angle from 
the reference line to the position vector is defined as the target 
bearing θ. Clockwise rotation of θ is defined as positive.  

Given the lateral and longitudinal positions of one ultrasonic 
sensor ���	, ����  in this coordinate system and the detected 
distance d, the cyclist position ��	 , ��� relative to the HGV 
can be expressed by the following equations: 	 �	 � ��	 � � ∙ ����	 (1) 	 �� � ��� � � ∙ cos�	 (2) 

On the right hand side of both equations (1) and (2), the only 
unknown parameter is θ. Therefore, the problem essentially 
becomes to choose a value for θ given the detected distance and 
sensor positions on the truck. 

E. Quadratic Programming 

1) Equation formulation 

It is not possible to solve (1) and (2) independently, as the 
number of equations is smaller than the number of unknowns, 
rendering the equations indeterminate mathematically. For a 
single object, given a series of detected distances 
(d1,d2,d3,…,dn) for a short period of time (t1,t2,…,tn), it is 
necessary to find out the corresponding bearings (θ1, θ2,…,θn) 
so that the longitudinal positions (Pcx,1, Pcx,2, Pcx,3,…,Pcx,n) and 
lateral positions (Pcy,1, Pcy,2, Pcy,3,…,Pcy,n)  can be determined; 
i.e. the following equations must be solved: 	 ��,� � ���,� � �� ∙ cos��	 (3) 	 �	,� � ��	,� � �� ∙ ����� 	 (4) 

where i=2,3,…n. 
Using simple numerical differentiation, the cyclist’s velocity 

V and the acceleration A relative to the HGV can be obtained, 
as follows: 	 �	,� � ��	,� � �	,������� � ����	� 	 (5) 

	 ��,� � ���,� ���,������� � ����	� 	 (6) 	 �	,� � ��	,� � �	,������� � ����	� 	 (7) 	 ��,� � ���,� � ��,������� � ����	� 	 (8) 

where j=2,3,…n; and l=3,4, …n  and t is the time stamp for each 
detection. Given n samples, n-2 lateral and longitudinal 
acceleration terms, can be obtained from (7) and (8). 

It is worth highlighting that the subscripts i,j and l represent 
instances for detections over a contiguous period of time, and 
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these detections can be from one single sensor or several 
sensors, depending on the relative speed between the object and 
the truck. It is important not to misread these subscripts as 
sensor ID numbers. 

Combining equations (5) and (7), the longitudinal 
acceleration Acx,l  at the lth’s step of the object can be expressed 
as: �	,� �  �,�	 ∗ ������" � ",� ∗ ������� � #,� ∗ ����� � $,�	 (9) 

Where l=3,4 …,n, W represents the coefficients whose 
detailed expressions are provided below.  �,� �	 ���"����� � ���"� ∙ ��� � ����� 	 (10) 

  ",� � ���� � ���"� ∙ ����������� � ���"� ∙ ��� � �����"	 (11) 

  #,� � ����� � �����"	 (12) 

  $,� � ����� � ���"� ∙ ��	,������ � ���"� ∙ ��� � �����"	� ��� � ���"� ∙ ��	,�������� � ���"� ∙ ��� � �����"	� ��� � ����� ∙ ��	,��"����� � ���"� ∙ ��� � �����"	
(13) 

 
For each acceleration term �	,�, the only unknowns are sinθl-

2, sinθl-1, and sinθl. Treating sinθ as a whole, the expression of  �	,�  can then be seen as a summation of three linear terms. 
cosθl can be obtained once sinθl is determined. Consequently, 
the positions Pcx,l, and Pcy,l can be found.  

 
2) Objective Function 
 

It is hypothesised that the best set of θ values in the time span 
PTI are the ones that yield the smoothest longitudinal 
acceleration profile. These are found by finding the set of θ 
values that minimize the objective function: 

% �&'�	,� � �̅	)"*
�+# 	 (14) 

where, �̅	  is the average longitudinal acceleration of the 
cyclist during the PTI. The objective in (14) indicates that the 
minimum of J can be achieved when  �	,� equals �̅	, which is 
an unknown parameter at the start of the optimization as we 
have no a priori  knowledge of the cyclist motion. 

 Expanding (14) in polynomial form and treating �̅	  as a 
coefficient, this equation can be rewritten as: 

% �&��	,��"*
�+# � 2 ∙ �̅	 ∙ �&�	,�*

�+# �
� �n � 3��̅	" 	 (15) 

 

The term �n � 3�	�̅	"  in (15) does not contain any bearings 
and therefore does not affect the optimization results and can be 
neglected. The term 2 ∙ �̅	 ∙ �∑ �	,�*�+# �  contains linear 
functions of the bearing angles.  

Each acceleration term �	,� can be expressed in a function of 
bearing angles �������", �������, ������ as shown in Equation 
(9). Replacing �	,�  by �����  and defining   0 �1�����, ����", … , ����*34 (superscript T means transpose), the 
objective function can be rewritten in quadratic form: 5�0� � 120780� 90	 (16) 

where Q is an n by n matrix and is called the quadratic matrix, 
and L is a n-variable row vector and is called the linear matrix. 

This cost function can be minimized subject to sets of 
'equality' and 'inequality' constraints, using one of the standard 
'quadratic programming' (QP) methods [25]. The equality 
constraints are defined by: �:;0 � <:; 	 (17) 

while the inequality constraints are: ��*0 ≤ >�*	 (18) 

Equality constraints provide strict limits on some of the 
variables in Θ and thus enable more accurate optimization 
results. These are derived from possible triangulations found in 
the sensor outputs. In constructing matrices Aeq and Beq, the 
number of inequality constraints should not be equal or greater 
than the number of variables in Θ, otherwise the problem is 
over-constrained and QP cannot converge to a solution. 

The inequality constraints in (18) are associated with two 
types of conditions: angle limits and motion limits. For angle 
limits, each element in Θ must be limited to its own upper and 
lower boundaries which come from the expected width of the 
sensor beams. For motion limits, elements in Θ should follow a 
trend that conforms to the motion of the object relative to 
sensor.  If the cyclist overtakes the truck, the bearing associated 
with each sensor changes from –ve to +ve in each sensor’s 
detection range, and vice versa when the truck is overtaking the 
cyclist. If the cyclist stays in one sensor’s range for a short 
period of time, it is necessary to be consistent with the motion 
trend deduced from previous step 

If no prior knowledge about cyclist’s motion is available, it is 
safe to assume that the cyclist is travelling at a similar speed to 
the truck. In this case, it’s impossible to pose motion constraints 
other than upper and lower bounds. 

It is possible to estimate the relative yaw angle, based on the 
trajectory of the cyclist and this is used in [11] to predict the 
future position of the bicycle.  For the collision scenarios that 
we are trying to measure, the yaw angle between cyclist and 
lorry is relatively small.  If the angle is large, the approach 
velocity is likely to be high and a collision is inevitable. 

For the objective function (14) under constant acceleration 
assumption, 0  can only be solved when the value of �̅	  is 
known. In practice �̅	 is inherited from previous steps. When 
no previous knowledge of �̅	 is available, it is estimated using 
an iterative method that takes guesses for �̅	 . An initial 
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estimate for �̅	 is made by selecting values in the range from -
2m/s2 to 2m/s2 with a resolution of 0.1m/s2. With each sample 
for �̅	 , a candidate for 0  can be derived using QP. Each 
candidate for 0  is passed to (3) and (4) to get the cyclist 
positions for the PTI and the accelerations using (5) to (8). The 
standard deviation of the lateral accelerations is calculated.  

 After running through all the candidates for 0, a series of 
standard deviations is obtained. Comparing these standard 
deviations, the smallest deviation is chosen and the 
corresponding 0  is then selected as the best estimation for 
cyclist bearings. The sample for �̅	  that produces 0  is 
believed to be the best estimation for the acceleration during the 
PTI. It is possible that this calculation can be streamlined to 
reduce the computation time. 

Another possible assumption is constant longitudinal velocity 
for the object during PTI, in which case, �̅	 is changed to 0 
and the objective function J (14) becomes.  

% �&�	,�"*
�+# 	 (19) 

The standard quadratic form of this function contains the 
same Q term but different L term. The constraints (17) and  (18) 
still hold.  

The resulting ����* corresponds to the most recent detection 
and can be used in real time to derived the cyclist’s current 
location based on Equation (3) and (4).  

F. Kalman Filtering for Position Estimation 

In practice, there are some inaccurate detections (ultrasonic 
pings are not always reflected from the same point of the 
cyclist) and signal dropouts. It is therefore difficult to obtain a 
smooth trajectory for the cyclist purely based on quadratic 
programming. 

Further smoothing is needed to produce a trajectory from 
which velocities and accelerations can be derived – and used 
for estimating the future motion. A Kalman filter was selected 
to smooth the output of QP process. Kalman filters are widely 
used in guidance, navigation and control systems for vehicles, 
as well as motion tracking [26]. Using a model of the system, a 
Kalman filter can smooth a time series of measurements, 
containing noise and other inaccuracies.  

The cyclist’s motion can be described purely in terms of its 
kinematics. The state vector expressing the kinematics is coined 
as S and it is constructed by cyclist’s positions and velocities in 
both longitudinal and lateral directions: ? � 1�	, ��, �	 , ��34	 (20) 

 
The state space equation for Kalman filter can be written as: 	?��� � ��@ ∙ ?� 	� <�@ ∙ A��� �B� 		 (21) 

��@ � C1 0 �� 00 1 0 ��0 0 1 00 0 0 1 E	  

<�@ �	 F12��" 12��" �� ��G7	  

 
The 'control input' U is the cyclist acceleration, and w 

represents Gaussian white noise in the process. This noise is 
assumed to have zero mean and a variance matrix defined as G. 

H �
IJJ
JJJ
JJK
∆�$4 0 ∆�#2 0
0 ∆�$4 0 ∆�#2∆�#2 0 ∆�" 0
0 ∆�#2 0 ∆�"NOO

OOO
OOP ∙ QR"	 (22) 

 
The measurement equation is expressed as: S��� � >�@ ∙ ?� � T� 	 (23) 

>�@ � U1 0 00 1 0					00V	  

with H being the output vector, and v being the measurement 
noise, which is also of Gaussian white distribution, and its 
covariance matrix is denoted as R. 

W � XQ	" 00 Q�"Y	 (24) 

 
The Kalman filter works in two stages: time update and 

measurement update [26]. Time update, also known as 
prediction, is for predicting values of the current state variables 
and error covariance estimates, to obtain the a priori estimates 
for the next time step. The following two equations are called 
time update equations, with Z being the model covariance 
matrix: ?Z���� � ��@ ∙ ?Z� � <�@ ∙ A[�	 (25) \���� � ��@ ∙ \��� ∙ ��@7 � H�	 (26) 

The ‘^’ indicates that the derived value is an estimate, and the 
superscript ‘-’ means an a priori estimate. The measurement 
update equations incorporate a new measurement into the a 
priori  estimate to obtain an improved a posteriori estimate. 

Once new measurements are available, these estimates are 
updated based on a weighted average of the estimates and 
measurements, with more weighting being assigned to 
estimates with higher certainty.  

In the measurement update stage, the Kalman gain K is 
updated using (27). With the updated Kalman gain, the state S 
is recalculated considering measurement H in (28). The 
covariance matrix Z is further updated in the meantime, as per 
(29).  
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]��� � \���� ∙ >�@7'>�@ ∙ 	\���� ∙ >�@7� W)��	 (27) 

?Z��� �	?Z���� � ]��� ∙ 1S��� � >�@ ∙ ?Z���� 3	 (28) \	��� � �^ � ]��� ∙ >�@�\���� 	 (29) 

 
The variable I in (29) is a 4 by 4 identity matrix.  
Equations (25) to (29) are the core equations in a Kalman 

filter which can be run recursively to find the best estimate of 
the state vector. In this study, it was found reasonable to assume A�  is 0, because the experimental tests were performed at 
essentially constant relative velocities. However, this 
assumption needs to be verified for a wider range of conditions. 

To start the Kalman filter, the initial state is estimated as a 
column vector with 4 zero elements and the initial value of 
covariance matrix Z is set as G. The algorithm is recursive and 
therefore is suitable for real time application. 

III.  SIMULATION RESULTS 

A. Constant velocity simulations 

A simple simulation model was set up to test the QP approach 
for deducing a cyclist’s trajectory from knowledge of the 
detected distances. A sensor spacing of 0.8m was defined in the 
model and a triangular range was assumed for each sensor in 
the simulation. This shape defined the upper and lower limits 
for the target bearing angle. The sampling rate was initially 
fixed at 7.5Hz to match the outputs of commercially available 
sensors.  Various constant relative velocities were simulated, 
ranging from -15 to 15 km/h. A negative relative speed 
indicates that the truck overtakes the cyclist.  Several cyclist 
manoeuvres were tested in the model. These were: 
1) Cyclist travelling parallel to the truck, with a lateral 

spacing of 1.2m, moving from the rear end towards the 
front of the truck; 

2) Cyclist travelling diagonally, starting at 1.2m away from 
the truck laterally, from the rear end and closing towards 
the front end; 

3) Cyclist travelling diagonally, starting at 1.2m away from 
the truck laterally, from the front end and closing towards 
the rear end. 

1) Parallel Motion 

For the parallel motion tests, the relative speed of the cyclist 
was set as 3km/h. Fig. 5 shows the results of the quadratic 
programming step for five outputs from a single sensor. Fig. 5(a) 
shows the estimated positions of the cyclist compared with its 
true simulated positions. The positions of the sensors that are 
associated with these samples are plotted as well. Fig. 5(b) 
shows estimated and true target bearings relative to the sensor.  

During the time span when 5 samples are collected (Fig. 5(a)), 
the detected distances are all from the same sensor. In this case, 

the deviation of the estimated positions from the true positions 
is relatively large because the objective function is not strictly 
convex and the optimization stops when a local minimum is 
found for the objective function. These local minima may not 
be the desired solutions. Two or more sets of bearings could 
lead to the same minimum value of the objective for the same 
dataset. When the sample number is increased to 10 and two 
sensors are involved, the estimation is significantly improved, 
as shown in Fig. 6(a). The bearing angles increase up to 18° as 
the cyclist passes the first sensor (Fig. 6(b)), from 0.3 to 0.9s. 
The reading at 1.1s comes from the second sensor, so the 
bearing angle 'flies back' to -17°, then increases as the cyclist 
passes the second sensor. The agreement between the 'true' and 
estimated values of the bearings is good. 

Fig. 7 is for the same manoeuvre as described in Fig. 5 and 
Fig. 6, but showing just the bearing angles. Fig. 7(a) is for the 
case where the sample size is 15 and Fig. 7(b) is for size 20.  
These two graphs show a similar pattern of accuracy for the 
estimated positions. When more sensors are involved in the QP, 
the estimated positions almost overlap the true positions. Given 
that the sampling rate is fixed, when more sensors are involved 
in the QP, more samples are needed.  

Conversely, more samples require a longer calculation time, 
which is less favourable because less time is available for 
predicting and avoiding potential collisions. A larger sample set 
for QP can also lead to a greater computational overhead, as the 
size of the matrices increase (especially for generating all of the 
ID combinations in the ID sequencing stage).  15 samples in the 
PTI are selected for a good accuracy, yet efficient computation 
for real time estimation. 

 

 

(a) 
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(b) 
Fig. 5 Output of Quadratic Programming calculation for five sample points 
from one sensor, assuming constant relative velocity. (a), Positions of the 
sensor and cyclist. (b) Estimated values of θ 

 

(a) 

 

(b) 
Fig. 6 Output of Quadratic Programming calculation for ten sample points 
from two sensors, assuming constant relative velocity. (a), Positions of the 
sensor and cyclist. (b) Estimated values of θ 

 

(a) 

 

(b) 
Fig. 7 Comparison of different sample set sizes for the quadratic programming 

2) Converging and Diverging Motion 

The QP should be able to calculate the cyclist’s trajectory no 
matter what the motion of the cyclist relative to the truck. The 
simulation results shown in Fig. 8 are for a manoeuvre where 
the cyclist moves at an angle relative to the truck. Fig. 8(a) 
illustrates the case when the cyclist moves from the rear end of 
the truck to the front, while steering away from the truck. In 
Fig. 8(c), the cyclist moves from the front end of the truck to 
the rear. This equates to a manoeuvre where the truck overtakes 
the cyclist. The lateral distance between the two increases as the 
manoeuvre progresses. Both figures show that the estimated 
positions of the cyclist match the true positions accurately. Fig. 
8(b) and (d) show that the bearing angles are estimated 
accurately by the QP process. 

Both a faster sampling rate and a larger number of samples 
improve the accuracy of the QP algorithm. In practice, the 
sampling rate depends solely on the type of ultrasonic sensors. 
In a real-time system, the number of samples in each QP 
calculation needs to be kept constant because this number 
determines the sizes of most of matrices in the calculation. 
Given that both the sampling rate and the number of samples 
are essentially fixed, it is of interest to understand how the 
relative speed of the motion between the cyclist and the truck 
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affects the performance of the optimization.  
To evaluate the performance of the QP across a range of 

relative speeds, the bearing associated with each sample was 
compared with the true bearing. The maximum, average and 
minimum value of the bearing errors for all the samples at each 
run of the QP were recorded. These values are plotted for 
relative speeds ranging from -15 km/h to 15 km/h in Fig. 9 with 
the sample size in each QP calculation being fixed at 15. In the 
figure, the three ‘+’ signs in each vertical line are the maximum 
positive, average, and maximum negative bearing errors 
respectively.  

It is noticeable that QP produces large estimation error when 
the relative speed is zero. If the cyclist stays in one sensor’s 
detection range for the PTI and the detected distance doesn’t 
change, QP fails to estimate the relative motion of the cyclist 
correctly. However, this scenario is regarded as safe because 
that there is no relative motion between the cyclist and the truck. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
Fig. 8 Comparison of diagonal manoeuvres: (a) cyclist steers away from the 
truck on the front side; (b) estimated cyclist bearings for the manoeuvre in (a); 
(c) equal to truck overtakes the cyclist and steers away from the cyclist; (d) 
estimated cyclist bearings for the manoeuvre in (c) 

Fig. 9 shows that the mean error is close to zero and 
essentially independent of the relative speed. There are some 
speeds where the errors are very small, and some where they 
are larger. This variation is a result of interaction between the 
sampling time, the speed, the start position of the cyclist and the 
field of view of the sensors. 

Comparisons for different sample sizes were conducted in [11] 
and it was concluded that higher sample sizes can offer better 
optimization results, but there is no benefit of increasing the 
sample size above 15 for these test conditions.  
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Fig. 9 Comparison of absolute bearing errors for different relative speed 
between the cyclist and the HGV 

B. Constant acceleration assumption for quadratic 

programming 

This section investigates the efficacy of the constant 
acceleration approach. In the simulations, the cyclist was 
assigned a relative longitudinal acceleration of 1m/s2 for the 
relative speed range of 1km/h to 15km/h and -1m/s2 for the 
range of -1km/h to -15km/h. The cyclist started from the rear 
end of the truck for the case with a positive relative speed, and 
the front end for a negative relative speed. A parallel manoeuvre 
was used with the lateral distance being 1.2m. The sampling 
rate was 7.5Hz and the size of the sample set was 15. Both 
versions of the QP calculation were used: constant velocity and 
constant acceleration.  

Fig. 10 offers some comparisons between the bearings 
resulted from the QPs with both constant velocity model and 
constant acceleration model for a relative speed at 6km/h. It can 
be seen that the model with constant acceleration works better 
for the QP than the constant velocity model when there is no 
knowledge of the acceleration of the cyclist. Very similar 
results were found for simulations at other relative speeds [11]. 

 
Fig. 10 Comparison of the bearings using the two QP models with a relative 

speed of 6km/h. 

The estimated accelerations for each relative speed are 
plotted in Fig. 11 The maximum absolute acceleration error is 
0.2m/s2 while a majority of the estimated accelerations match 
the 'true' values. For instance, at a relative speed of 3km/h, the 
acceleration error is -0.1m/s2. The scale of the error also 
depends on the resolution of the acceleration sample set: a finer 
resolution would produce an estimate of the acceleration closer 

to the true value; however, it would add significantly to the 
computational time because more runs of QP would be needed.  

It can be concluded that the results are not perfectly 
accurate, but are still good enough for estimating the 
longitudinal acceleration and significantly more accurate than 
using constant velocity model in constructing the QP equations.  

 
Fig. 11  Estimation results using QP only and QP with Kalman filter, cyclist 

5kph faster than the HGV, cyclist parallel to HGV 

C. Optimization Results for QP and Kalman 

Filtering 

In practice, the ultrasonic sensors use the strongest reflection 
from the cyclist to form successful registrations. The ultrasonic 
waves reflected to the sensor are not always from the same point 
on the side of the cyclist, because the closest point from the 
cyclist to the sensor varies depending on the cyclist’s posture 
and relative positions. So the detected distances registered by 
the ultrasonic sensors are likely to be noisy. 

At each time step, the QP optimization is run for the PTI 
which includes a fixed number of samples, with the last sample 
being the latest detection. The cyclist positions in the PTI are 
deduced accordingly. On the next time step, the sample set is 
updated by including the newest detected distance and 
removing the oldest data. The QP is conducted for the new 
series of cyclist positions in the current PTI. In the real-time 
process, only the last element of the each QP run is stored as it 
represents the most recent position for the cyclist. The QP is 
then conducted for the new series of cyclist positions in the 
current PTI.  

The QP does not use the optimization results from previous 
steps as equality constraints in the next step. Instead, it outputs 
a fresh final position from each time step.  The reasons for this 
are as follows: 
1) The optimized results could be derived from inconsistent 

detections, and feeding the inaccurate results to the next 
run of QP might accumulate more errors in the true 
positions; 

2) Adding too many equality constraints can over-constrain 
the QP and thus deliver erroneous results. 

3) It is better to keep the errors in each data point independent 
and to filter the noise in a second step than to accumulate 
biased errors that cause long-term drift and are difficult to 
correct. 

When the first run of QP finishes (i.e., 15 samples have been 
accumulated), the Kalman filter is activated to smooth the data. 
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Each time there is a new estimate from the QP, the Kalman filter 
weighs this new measurement against the positions derived by 
the model and outputs a better estimate of the current position. 

To model variation in the width of the cyclist when viewed 
from the side, the noise in detected distance is assumed to be a 
Gaussian white noise process with a standard deviation of 
0.05m.  

The examples below are used to show the performance of the 
Kalman filter. In the examples, the relative speed was 5km/h 
and the lateral distance started at 1.2m. The sampling rate was 
7.5Hz and the size of each QP sample set was 15.  

The parameters in the Kalman filter were tuned manually for 
a balanced performance for various relative speeds and 
manoeuvres. Fig 12 shows the trajectories of the cyclist and the 
sensor positions in the truck coordinate system. The relative 
motion is from left to right. The QP-only method generates an 
error exceeding 10cm at some points in time. The cyclist 
positions are not consistent longitudinally as if the cyclist 
moves back and forth, and these cannot be used in predicting 
the future position of the cyclist. The Kalman filter improves 
the position estimations by eliminating the longitudinal 
inconsistencies. At the beginning of the Kalman filtering 
process, the estimated positions are closer together because the 
initial velocity of the cyclist in the state vector is set to zero. 
With more measurement inputs to the Kalman filter, the 
estimation improves. The errors involved in cyclist positions 
are no greater than 5cm and this is tolerable for predicting the 
future positions of the cyclist. 

 
Fig. 12 Estimation results using QP only and QP with Kalman filter, cyclist 

5kph faster than the HGV, cyclist parallel to HGV 

Fig. 13 shows a case when the cyclist steers away from the 
HGV while maintaining all other parameters the same. The 
lateral speed of the cyclist is set to 0.1m/s. A smoother 
trajectory is estimated by Kalman filter. The position errors 
after Kalman filtering are considered to be sufficiently accurate 
for the position prediction step.  

 
Fig. 13 Estimation results using QP only and QP with Kalman filter, cyclist 

5kph faster than the HGV, getting closer to the front end of HGV 

IV. EXPERIMENTAL MEASUREMENTS 

Twelve ultrasonic sensors were mounted onto the left side of 
a 4 axle Scania tipper, with a gap between sensors being 0.8m 
(see Fig. 14). A real time signal analysis and control program 
was developed using Simulink Real Time (formerly known as 
‘xPC target’). The solver for QP and the Kalman filter were 
coded in an Embedded MATLAB function to perform the 
calculations in real-time. A dummy cyclist mounted on a 
moving platform was used during the test and followed a 
specified speed profile. Details of the testing set up and 
procedures are described in [11] and [27]. 

 
Fig. 14 Testing set up for experimental measurements 

Various dummy speeds were used, with the maximum speed 
differential set to 5km/h. A speed differential exceeding 5km/h 
would result in loss of detections by the experimental ultrasonic 
sensors used in the prototype system [11].  

An example is provided in Fig. 15 which has a dummy 
speed of 3km/h. It is noticeable that Kalman filter (black 
crosses) significantly reduces estimation errors of the QP. The 
maximum error in lateral position is approx. 5cm.  

The standard deviation of the estimation errors and 
maximum detection errors for all five different relative speeds 
are provided in Table 1. These results demonstrate that the real 
time processing system can track the dummy to an acceptable 
level of accuracy. 

It is important to check whether similar performance could be 
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achieved when cyclists moves at an angle relative to the truck. 
Fig. 16 shows the estimated positions using QP with Kalman 
filter for the dummy moving at various speeds. The error 
characteristics are summarized in Table 2. The results show a 
similar level of accuracy to the parallel case for relative speeds 
up to 5km/h, with RMS errors less than 5cm for relative speeds 
up to 5km/h. 

 
Fig. 15 Testing result of a moving dummy at 3km/h in parallel with a 

stationary truck 

 
Fig. 16 Estimated position comparisons for different speeds for the dummy 

travelling diagonally 

The limited range of differential speeds possible is a result of 
low sampling rate possible with the experimental ultrasonic 
sensors. This paper aims to determine the feasibility of the 
approach – not to demonstrate a market-ready system. 
Alternative suppliers are approached to develop ultrasonic 
sensors with higher sampling rates. 

Quadratic programming is often regarded as computationally 
intensive and various methods [28] have been described to 
enhance its performance in real time. A primal-dual quadratic 
solver was written and implemented in Simulink. Based on 
profiling results of real time execution on a real-time 
prototyping system (2.6GHz Intel Core processor for target 
machine), it takes around 4.2ms maximum to complete the QP 
process, and another 0.1ms to complete all other tasks. Since 
the sampling rate of sensors is 7.5Hz, all calculations need to 
be done in 130ms. This means only about 3% of the allowed 
computation time is used, thus offering a sufficient computation 
margin.  

V. CONCLUSIONS 

This paper describes algorithms for estimating the relative 
position and motion of a cyclist based on detection from a set 
of ultrasonic sensors mounted along the side of a lorry. This 
approach is the first of its kind to use ultrasonic sensor arrays 
for tracking cyclists moving alongside trucks, and more 
specifically, to perform position estimation using Quadratic 
Programming, which takes in distance information (one 
dimension) and outputs positions (two dimensions). The 
proposed package of methods does not require fusion with other 
sensory inputs.  

 
The following conclusions can be drawn: 

1) Quadratic programming is effective in estimating the 
cyclist position by optimising the bearing angle relative to 
the sensor. The objective in the QP is to minimise the 
deviation of the cyclist’s longitudinal acceleration from a 
constant value. The constant acceleration model for the QP 
works better than the constant velocity model in cases 
when there is no a priori  knowledge of the cyclist motion. 
The constant velocity model provides good accuracy and 
requires significantly less computation. 

2) A Kalman filter was designed to improve the estimation 
accuracy in the presence of sensor noise. It significantly 
improved the prediction accuracy. 

3) Experimental tests with an array of twelve sensors mounted 
along the side of a lorry demonstrated that the combined 
system of QP and Kalman filter can estimate cyclist 
position with an RMS error of less than 5cm for either 
parallel or diagonal motion at relative velocities up to 
5km/h. This is considered to be sufficiently accurate for 
implementation in an automated collision avoidance 
system. A wider range of relative speeds could be achieved 
for sensors that operate at a higher sampling frequency. 

4) The system is designed for real time operation, and the tests 
with the demonstrator proved that QP process can be made 
to work in real time.  
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VII.  TABLES 

Dummy 
speed relative to 

the stationary 
truck (in km/h) 

Mean 
lateral errors 

(in cm) 

Standard 
deviation of 

lateral errors (in 
cm) 

1 -1.3 4.0 
2 -0.7 3.6 
3 1.0 4.1 
4 0 4.8 
5 2.9 3.4 

Table 1  Position estimation accuracy for cyclist moving in parallel with a 
stationary truck 

 
Dummy 

speed relative to 
the stationary 

truck (in km/h) 

Mean 
lateral errors 

(in cm) 

Standard 
deviation of 

lateral errors (in 
cm) 

1 -0.1 4.3 
2 0.2 2.3 
3 1.1 2.8 
4 1.8 3.4 
5 -0.6 1.0 

Table 2  Position estimation accuracy for cyclist moving diagonally w.r.t. a 
stationary truck 
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