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   

Abstract— Using Connected Vehicle (CV) technology, a number 

of Eco-Approach and Departure (EAD) strategies have been 

designed to guide vehicles through signalized intersections in an 

eco-friendly way. Most of the existing EAD applications have 

been developed and tested in traffic-free scenarios or in a fully 

connected environment where the presence and behavior of all 

surrounding vehicles are detectable. In this study, we describe a 

prediction-based EAD strategy that can be applied towards more 

realistic scenarios, where the surrounding vehicles can be either 

a connected or non-connected. Unlike highway scenarios, 

predicting speed trajectories along signalized corridors is much 

more challenging due to disturbances from signals, traffic 

queues and pedestrians. Based on vehicle activity data available 

via inter-vehicle communication or onboard sensing (e.g., by 

radar), we evaluate three state-of-the-art nonlinear regression 

models to perform short-term speed forecasting of the preceding 

vehicle. It turns out Radial Basis Function Neural Network 

(RBF-NN) outperformed both Gaussian process (GP) and 

Multi-Layer Perceptron network (MLP-NN) in terms of 

prediction accuracy and computational efficiency. Using signal 

phase and timing (SPaT) information and the predicted state of 

the preceding vehicle, our prediction-based EAD algorithm 

achieved better fuel economy and emissions reduction in urban 

traffic and queues at intersections. Results from the numerical 

simulation using the Next Generation SIMulation (NGSIM) 

dataset show that the proposed prediction-based EAD system 

achieve 4.0% energy savings and 4.0% - 41.7% pollutant 

emission reduction compared to a conventional car following 

strategy. Prediction-based EAD saves 1.9% energy and reduces 

criteria pollutant emissions by 1.9% - 33.4% compared to an 

existing EAD algorithm without prediction in urban traffic. 

Index Terms— Vehicle speed forecasting, Preceding traffic 

constraints, Eco-approach and departure, Energy Consumption, 

Criteria pollutant emissions reduction 

I. INTRODUCTION  

UR daily transportation activities not only consume a great 

amount of energy, but also produce tailpipe emissions that 

contribute significantly to air pollution and global warming. 

For example, it is reported that transportation sector in the 

United States accounts for approximately 27% of the total U.S. 

greenhouse gas (GHG) emissions, where surface vehicles 

(including light vehicles and medium/heavy duty trucks) play 

a dominant role [1]-[2]. The increasing worldwide concerns on 

these traffic-related socio-economic problems have driven a 
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significant amount of research effort towards developing 

various environmentally sustainable strategies. Among these, 

eco-driving strategies such as vehicle speed limit control [3], 

fuel-efficient platooning [4], cooperative adaptive cruise 

control systems [5], and eco-routing [6], are deemed to be cost-

effective and potentially deployable in the near term. In 

addition, many eco-friendly applications and technologies 

have been well studied and highlighted in major research 

programs, such as the European Commission’s ECOSTAND 

program [7] and the U.S. Department of Transportation’s 

AERIS (Application for the Environment: Real-Time 

Information Synthesis) program [8]. One of the promising 

applications developed in the AERIS program is the Eco-

Approach and Departure (EAD) at signalized intersections, 

which takes full advantage of signal phase and timing (SPaT) 

and Geometric Intersection Description (GID) information via 

wireless communications to provide eco-friendly driving 

suggestions (e.g., speed profiles) as vehicles approach 

signalized intersections.   

     It is well known that vehicle fuel consumption and 

emissions are directly related to a vehicle’s speed trajectory 

[9]. Unlike driving on freeways, traffic streams on arterial 

roads can be interrupted by traffic signals. The frequent stop-

and-go maneuvers and associated accelerations in the arterial 

driving lead to excessive fuel consumption and GHG 

emissions. Such effects are more prominent when a vehicle 

approaches an intersection during a red phase and has to 

decelerate from cruising speed to a full stop, idle to wait for 

the green phase, and then accelerate to depart from the 

intersection. Knowledge of SPaT information has been 

proven to be significantly effective in terms of improving fuel 

economy for arterial driving [9 - 10]. With the recent 

advances in Connected Vehicle (CV) technology, it is 

promising to develop advanced driving assistance systems 

(ADAS) such as EAD application to improve energy 

efficiency for traveling along signalized intersections. Asadi 

et al. [5] adopted a Model Predictive Control (MPC) approach 

to obtain a sub-optimal cruise speed to achieve timely arrival 

at green lights, thus minimizing the idling time and stops at 

red phase along a signalized corridor. Another study utilized 

dynamic programming (A-star algorithm) to find the most 

fuel-efficient speed trajectory through a fixed time control 
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signalized intersection [11]. A multi-stage optimal control 

approach in [12] adds the estimated queue dissipation time 

and location at the intersection as constraints. Yang et al. [13] 

developed an ECO-CACC algorithm with considering queue 

effect to minimize the fuel consumption when vehicles 

proceed through signalized intersections. In [14], authors 

incorporated individual driver characteristics into the design 

of advanced driver assistance system for signalized 

intersections.  

A series of EAD applications were designed in recent years 

for both fixed-time signals and actuated signals [10], [15 - 18]. 

However, the aforementioned studies were applied and 

conducted real world experiments in traffic-free condition. 

Therefore, when considering the real-world deployment of 

the EAD application, it is beneficial to further explore the 

dynamic states from preceding vehicles and incorporate it into 

trajectory planning process. Forecasting vehicle speed 

trajectory in urban arterial is a challenge task as the vehicle’s 

maneuvers may be affected by various dynamic factors, e.g. 

signal status, traffic, driver’s experience, weather and etc. A 

number of recent effort has been made to incorporate the 

vehicle speed prediction to achieve optimal energy 

management strategy of hybrid electric vehicle [19 - 21].  

     In this study, we investigated three approaches for 

instantaneous vehicle speed prediction in urban intersections. 

We propose a Prediction-based EAD as a velocity advisory 

system that makes full use of activity information of 

preceding vehicle. Such information can be acquired via 

vehicle-to-vehicle (V2V) communication (if the preceding 

vehicle is a CV), onboard sensors (e.g., radar), or even 

infrastructure-based assistance (e.g., roadside camera). Using 

SPaT information and future states of the preceding vehicle 

predicted by RBF-NN based forecasting model, the enhanced 

EAD algorithm provides an eco-friendly speed trajectory in 

the presence of preceding traffic and queues at intersections. 

The dataset from the Next Generation SIMulation (NGSIM) 

program [22] have been applied for model training and system 

performance evaluation. The remainder of this paper is 

organized as follows: Section II introduces some background 

information on existing EAD applications and state-of-the-art 

methods in time series prediction. Section III presents the 

prediction-based EAD system architecture with elaboration 

on each components. Section IV presents a detailed 

description of the vehicle speed forecasting model and 

enhanced vehicle trajectory planning algorithm (EVTPA), 

followed by a comparative numerical simulation study and 

result analyses in Section V. The last section concludes the 

paper with further discussion. 

II. BACKGROUND 

A. Existing Eco-Approach and Departure Applications 

The EAD application was initially developed for fixed-

timing signals whose phase sequence and duration are 

predetermined, and thus the advisory speed trajectory can be 

deterministically defined with the available SPaT and GID 

information. The EAD application for fixed-time signals has 

shown 10%-15% reduction on fuel consumption and 

emissions in microscopic simulation models [10] and 13% -

14% saving from real world testing [15]. An enhanced EAD 

application has shown satisfactory results for congested urban 

traffic conditions in a fully connected environment [16]. 

Extended efforts have been made to develop an EAD 

application for actuated signals [17].  Most of the existing 

EAD studies focused on the interaction between the subject 

vehicle and the traffic signals [15]-[18]. Those applications 

work well under light traffic conditions, but are not effective 

in congested traffic, especially when there are preceding 

vehicles or queues. Fig. 1 shows a rule-based strategy to deal 

with preceding vehicles. When there is no preceding vehicle 

ahead (within the detection range) in the same lane, the target 

speed estimated from the EAD algorithm is then displayed on 

the artificial dashboard. When radar detects a preceding 

 
 

Fig. 1.  Human-machine interface under different traffic condition.  

. 
  



  

vehicle in the near front, the display of target speed is turned 

off to avoid any distraction. With such a heuristic strategy, the 

EAD application may not work effectively in congested urban 

traffic, especially when there is often a preceding vehicle 

within the detection range. To address this issue, we need to 

consider both preceding traffic and signal information in the 

EAD application development in order to achieve desired 

system performance even under congested traffic conditions. 

B. State-of-the-art Approaches for Vehicle Movement 

Prediction 

     Accurate and reliable prediction of vehicle speed 

trajectory is an important component in many Intelligent 

Transportation Systems (ITS) applications, particularly for 

safety and environmental related applications. It is a 

challenging task as the vehicle speed trajectory may be 

affected by various dynamic factors, e.g. signal status, 

surrounding vehicles’ maneuver, and perhaps interruption 

from pedestrians. In the literature, various approaches for 

vehicle speed prediction have been investigated and evaluated 

[23-31]. In general, the existing vehicle speed prediction 

strategies can be categorized into two major classes: model-

based approaches and data-driven approaches. The model-

based approaches predict the vehicle speed trajectory based 

on pre-defined model structures such as Constant Speed 

Model (CS), Constant Acceleration Model (CA), Constant 

Yaw Rate and Acceleration Model (CYRA) [23]. However, 

the underlying dynamics of human cognition, decision 

making and execution of drivers and vehicle systems are 

extremely complex and these simplified models may not be 

applicable [24]. On the other hand, data-driven approaches 

have recently been well investigated since they show more 

flexibility and applicability in representing system dynamics. 

Good examples of effective data-driven approaches for 

vehicle speed trajectory prediction include Non-Parametric 

Regression (NPR), Gaussian Mixture Regression (GMR) and 

Artificial Neural Networks (ANNs) [25]-[28]. In [26], the 

defined maneuver recognition algorithm selected the best 

vehicle trajectory that minimizing a cost function by 

comparing the current maneuver to the pre-defined trajectory 

set in the highways. Considering the requirement for large 

sampled vehicle trajectories and complexity of maneuver 

recognition in urban areas, it is challenging to apply it in the 

real world urban traffic. Gaussian Mixture Regression (GMR) 

is another promising parametric method to approximate or 

predict vehicle trajectories by calculating a conditional 

probability density function that consists of a weighted linear 

combination of Gaussian component densities [27]. Artificial 

Neural Networks (ANNs) have been proven to be an effective 

method for accurately forecasting vehicle speed and position, 

due to their strong capability of capturing the complex and 

nonlinear dynamics [28]-[30]. A comparative study of major 

parametric and non-parametric approaches for vehicle speed 

prediction on highways indicates that ANNs outperform all 

the other methods in terms of both predictive accuracy and 

applicability [31]. Some approaches (i.e. TrackT [32] and 

TMicroscope [33]) have been proposed to enhance and 

precise tracking RFID systems to retrieve trajectory 

information. These approaches could provide real time 

trajectory information with high accuracy which can be 

further combined with advanced predictors to improve the 

overall performance.  

III. SYSTEM ARCHITECTURE 

In this work, our goal is to develop an enhanced EAD 

application that is applicable in relatively congested urban 

traffic. The overall architecture of the proposed Prediction-

based EAD application is shown in Fig. 2. The proposed 

system acquires various information from multiple data 

resources: SPaT and GID information from DSRC-equipped 

signal controller at the intersection, subject vehicle dynamics 

from on-board diagnostics (OBD) port, subject vehicle 

positions from on-board GPS receiver and activity data of 

preceding vehicle either from V2V communication if it is an 

DSRC-equipped vehicle or from on-board radar detection if it 

is an unequipped vehicle. In order to get preceding vehicle’s 

second-by-second future states within the prediction horizon, 

a RBF neural network forecasting model is developed 

considering its benefits in terms of predictive accuracy, 

efficiency and applicability for real time implementation. The 

Enhanced Vehicle Trajectory Planning Algorithm (EVTPA) 

is able to provide an eco-friendly speed trajectory in both light 

traffic and relatively congested traffic conditions based on the 

above acquired information and reliable prediction of 

preceding vehicle’s future states. Human-Machine Interface 

(HMI) is designed to inform driver a number of items such as 

vehicle’s current speed, vehicle’s revolutions per minute 

(RPM), SPaT information, vehicle’s distance to intersection 

and the target speed calculated from EVTPA with the 

consideration of preceding traffic. As we highlighted in the 

flow chart, incorporation of real-time prediction of preceding 

vehicle’s state into vehicle dynamic management (i.e. speed, 

acceleration) is the key contributions of this paper. 

 

IV. METHODOLOGY 

A.  Learning-based Vehicle Speed Forecasting Models 

     A reliable and accurate prediction on preceding vehicle’s 

state is essential for efficiently applying EAD strategy in 

congested urban traffic conditions. As aforementioned, a 

number of studies have evaluated various time series 

prediction approaches for predicting segment/link-level 

vehicles’ speeds or under the highway scenarios. However, to 

the best of our knowledge, none of them have discussed the 

prediction performance for microscopic urban driving. The 

real time prediction of vehicle second-by-second speed 

trajectory along the signalized corridors is much more 

challenging due to the various disturbances from signals, 

traffic queues and pedestrians. Other than the vehicle speed 

prediction at a macroscopic level using traffic condition, 

historical traffic data as inputs which are usually not 

applicable for real time implementation, we aim at developing 

a direct time series forecasting model with vehicle second-by-

second speed trajectory detected by onboard sensor  (i.e. 

radar) as inputs. The historical speed horizon of the input and 

forecasting horizon of the output are both three time steps 



  

(i.e., 3 seconds) for training and testing the speed forecasting 

models.  

     In this study, we implement a Radial Basis Function 

Neural Network (RBF-NN) [34] for vehicle speed forecasting 

and compare its performance with other well-known 

nonlinear regression models like Gaussian Processes (GP) 

and Multi-Layer Perceptron Neural Network (MLP-NN) for 

different driving scenarios. The general RBF-NN based 

vehicle speed predictor has a feed-forward neural network 

framework with one hidden layer in which the nodes have 

radial transfer function as shown in Fig. 3. The network input 

is a vector containing the preceding vehicle’s historical speed 

trajectory of last 3 seconds, and the output is predicted speed 

trajectory within a 3-second horizon.  

     The implemented RBF-NN is a three-layer feed-forward 

networks with K hidden nodes. A radial basis function needs 

to be pre-defined for each hidden node to activate neurons in 

the hidden layer. Each hidden node contains a nonlinear 

activation function. Here, we chose the Gaussian function as 

the activation function for the RBF-NN, formulated as: 

𝜑𝑗 (𝑥) = 𝑒𝑥𝑝 [−(𝑥̅ − 𝜇𝑗)
𝑇

∑ (𝑥̅ − 𝜇𝑗)−1
𝑗 ]                          (1) 

𝑦𝑘(𝑥) = ∑ 𝑤𝑘𝑗
𝑀
𝑗=1 𝜑𝑗 (𝑥) + 𝑏𝑘𝑗                                           (2)                                                     

     where 𝜑𝑗  is the activated function of node j; 𝑥̅ is the input 

vector for node j;  𝑤𝑘𝑗  is the output weights and 𝑏𝑘𝑗  is the 

constant bias; 𝜇𝑗 and ∑  𝑗 are the mean vector and covariance 

matrix of the 𝑗𝑡ℎ Gaussian function. The mean 𝜇𝑗  represents 

the center and ∑  𝑗  indicates the shape of the activation 

function. Finally, the output of each node at the RBF-NN’s 

output layer is computed as a linear combination of the 

outputs of the hidden nodes.  

     An advantage of RBF neural network compared to 

Gaussian Process and MLP neural network is that the 

efficiency on training based on two-stage procedure. The time 

complexity of training Gaussian Process for prediction are 

exponential growth with the sample size which is quite an 

issue when applied to large network in real time. MLP 

network could have more than one hidden layers and it uses 

iterative technique and work globally while RBF network has 

only one hidden layer and is based on non-iterative technique 

and acts as local approximation. Besides, RBF network shows 

more robustness to adversarial noise and easier generalization 

compared to MLP neural network. In the first stage of RBF-

NN training, the parameters of the basis function are set to 

model unconditional data density. The centers of our trained 

RBF network are determined by fitting a Gaussian mixture 

model with circular covariance using the Expectation-

Maximization (EM) algorithm. The second stage of training 

determines the weights between the hidden layer and the 

output layer by using Moore-Penrose generalized pseudo-

inverse which overcomes many issues in traditional gradient 
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Fig. 2. Prediction-based EAD system architecture 
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algorithms such as stopping criterion, learning rate, number 

of epochs and local minima. The structure of RBF-NN is 

optimized by pruning the network based on 5-fold cross 

validation in this study. Due to its shorter training time, 

forecasting accuracy and generalization ability, RBF-NN is 

our selected approach for real-time vehicle speed forecasting 

in urban driving.  

B. Enhanced Trajectory Planning Algorithm (EVTPA) with 

Consideration of Preceding Traffic     

     The EVTPA was developed to address the situation where 

there exist mixed connected and conventional preceding 

vehicles. Two situations are considered in designing the 

desired trajectory for the subject vehicle in terms of both 

safety and energy/fuel economy. If the vehicle is approaching 

the intersection during the red phase, the SPaT information 

and estimated preceding queue end location are utilized to 

design the optimal trajectory to avoid unnecessary idling and 

acceleration/deceleration. Otherwise, we apply Gipps’ model 

[35] as show in (3) to develop a trajectory that is safe and 

energy-efficient. 
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(3) 

     Where 𝜏 is the reaction time;𝑣𝑛(𝑡)  and 𝑣𝑛−1(𝑡)  are the 

speed of the following vehicle n and the leading vehicle n-1 

at time step t, respectively; 𝑣𝑛
𝑑 is the vehicle n desired speed; 

𝑎𝑛 is the vehicle n maximum acceleration; 𝑏𝑛 and 𝑏 are the 

most severe braking that the driver of vehicle n wishes to 

undertake and the expected leading vehicle maximum 

deceleration, respectively.  

      The proposed EVTPA is illustrated by the overall flow 

diagram in Fig. 4. When the proposed EAD system is 

triggered in relatively congested urban traffic, location of the 

end of queue with respect to the subject vehicle is estimated 

based on the predicted preceding vehicle trajectories. A 

virtual stop line is defined as a buffer space (i.e. length of 

vehicle) behind the preceding queue end.  𝑉𝑃  and 𝑉𝑆  are 

preceding vehicle speed and subject equipped vehicle speed, 

respectively. Further, d is the distance of the subject vehicle 

to the stop bar at the signalized intersection.  

To predict time delay and queue effect on the preceding 

vehicle, the first thing we need to estimate is whether the 

vehicle is going to join the queue or not. Fig.5 indicates the 

method we applied to determine whether or not the preceding 

vehicle will join the queue. The discharge process has been 

shown to be fairly stable compared to the arriving process. 

Vehicle’s discharge pattern is observed to be close to 

uniformly distributed, leading to a relative constant discharge 

rate of the queue. Therefore, a queue dissipation rate 𝑤 and 

vehicle spacing headway ∆ℎ𝑞  were calibrated using the 

collected historical data. Based on the traffic counts k and the 

calibrated queue spacing, we could estimate the queue 

length 𝑦̂𝑏  in Eq.4. The travel time for the preceding vehicle 

and the dissipation shockwave 𝑤 to reach the location could 

be obtained by Eq. 5, 6, respectively. 

𝑦̂𝑏 = k × ∆ℎ𝑞                                                                     (4) 

𝑣̅𝑐:𝑐+∆𝑇 ∗ (𝑡𝑏 − 𝑡𝑐) = 𝑑1 − 𝑥𝑐 − 𝑦̂𝑏                                    (5)             

w ∗ (𝑡𝑤 − 𝑇𝑔
𝑛) =  𝑦̂𝑏                                                           (6) 

where 𝑡𝑐  represents the current time step, 𝑣̅𝑐:𝑐+∆𝑇  is the 

current average forecasting speed of the preceding vehicle in 
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Fig. 4. Flow diagram of the enhanced vehicle trajectory planning algorithm (EVTPA) 



  

short time horizon ∆T, 𝑡𝑏  is the time step when preceding 

vehicle reach the queue end location, 𝑡𝑤 is the time step when 

dissipation shockwave reaches the queue end location.  

As it is shown in Fig.5, if 𝑡𝑏 < 𝑡𝑤 , which indicates the 

preceding vehicle reach the queue end before the dissipation 

shockwave, then the preceding vehicle will be part of the 

queue in the current cycle. Otherwise, the dissipation 

shockwave reaches the location before the preceding vehicle 

indicates the queue will be discharged already at the time 

when preceding vehicle approaching the intersection. 

Therefore, we could predict the distance to the virtual stop bar 

𝐿∗ 𝑎𝑛𝑑 𝑇𝑑𝑒𝑙𝑎𝑦 for Prediction-based EAD to avoid preceding 

queue effect as follows: 

𝐿∗ = 𝑥𝑐 + 𝑣𝑐 × ∆𝑇 +
(𝑣𝑐+∆𝑇−𝑣𝑐)

2
∆𝑇 +

𝑣𝑐+∆𝑇
2

2𝑑
+ 𝐿𝑏𝑢𝑓𝑓𝑒𝑟        (7) 

𝑇𝑑𝑒𝑙𝑎𝑦 = 𝑇𝑔 +
𝑑1−𝐿∗

𝑤
                                                             (8) 

where, 𝑣𝑐  is the current speed and 𝑣𝑐+∆𝑇  is the last 

forecasting speed within the time horizon; 𝐿𝑏𝑢𝑓𝑓𝑒𝑟  is the 

distance buffer to the preceding queue end considering the 

physical length of a vehicle plus a safe margin in the car 

following model; 𝑑1 is the current distance to the actual stop 

bar and . 

The EAD trajectory planner takes the time delay (𝑇𝑑𝑒𝑙𝑎𝑦) 

caused by the preceding queue and distance to the estimated 

virtual stop line (𝐿∗) as the inputs to generate a trajectory that 

minimizing the fuel consumption and emission. At each time 

step, the vehicle trajectory planning algorithm also predict the 

time to collision (tcol) based on the preceding vehicle’s 

movement to guarantee safety in the planned maneuver. If the 

subject vehicle is under the risk of collision in the near future, 

car following mode will take over to guide the driver through 

the intersection while keeping safety distance from the 

preceding vehicle. The transitions between EAD trajectory 

planner and car following mode enable the proposed EVTPA 

to maximize fuel savings and environmental benefits without 

compromising the safety. With the computed virtual stop line 

and time delay at the signalized intersection, we choose the 

optimal acceleration and deceleration based on Eq. 9-12 that 

define a trigonometric function of the velocity with 

constraints of the vehicle tractive power, preceding vehicle’s 

states, and riding comfort. The developed EVTPA based on 

piecewise sinusoidal acceleration/deceleration profiles was 

proposed to ensure that the subject vehicle ensures that the 

subject vehicle reaches the virtual stop line after the time 

delay caused by the preceding vehicle in order to avoid any 

impact from the downstream queue.   

v = {

𝑣𝑚+𝑣𝑐

2
−

𝑣𝑚−𝑣𝑐

2
cos(𝑚𝑡)                      𝑡 ∈ [0,

𝜋

𝑚
 )  

𝑣𝑚                                                         𝑡 ∈ [
𝜋

𝑚
,∞ )

        (9) 

where  𝑣𝑐 is the current speed and 𝑣𝑚 is the speed limit from 

preceding traffic, m is the parameter that defines the 

acceleration and jerk profile. Eq. 9 generates the proposed 

sinusoidal speed profile. In this study, the maximum 

acceleration (𝑎𝑚𝑎𝑥) is 2.5 m/s2 and a maximum jerk (𝑗𝑚𝑎𝑥) is 

10 m/s3. Then, m is selected as the maximum value that could 

meet the driving comfort and safety.  

m = min (
2𝑎𝑚𝑎𝑥

𝑣𝑚−𝑣𝑐
 , √

2𝑗𝑚𝑎𝑥

𝑣𝑚−𝑣𝑐
)                                               (10) 

The time length of the acceleration period is  
𝜋

𝑚
 , i.e., a half 

cycle. The distance d𝑎 that the vehicle travels is: 

d𝑎 = ∫ [
𝑣𝑚+𝑣𝑐

2
−

𝑣𝑚−𝑣𝑐

2
cos(𝑚𝑡) ]

𝜋

𝑚
0

𝑑𝑡 =  
𝜋

𝑚
∙

𝑣𝑚+𝑣𝑐

2
            (11) 

Therefore, the minimum travel time of subject vehicle to 

reach the virtual stop line (queue end) at the intersection is: 

𝑡𝑚𝑖𝑛 =  
𝜋

𝑚
+ 

𝐿∗−d𝑎 

𝑣𝑚
                                                            (12) 

where 𝐿∗ is the distance away from the virtual stop line.  

V. RESULTS AND DISCUSSION 

A. Data Descriptions 

      The NGSIM data collected from an arterial segment on 

Peachtree in Atlanta, Georgia are used for training and testing 

the vehicle speed forecasting models and evaluating the 

performance of the proposed Prediction-based EAD system. 

As shown in Fig. 6, there are 5 lanes and 4 intersections in the 

study corridor. The NGSIM Peachtree dataset includes the 

spatial and temporal information of all the vehicles as well as 

the traffic light information of four signalized intersections 

along the arterial segment from 12:45 p.m. to 1:00 p.m. and 

4:00 p.m. to 4:15 p.m. on November 8, 2006 [22]. For data 

preparation, we randomly selected 70% of the real world data 

set for training and the rest 30% for testing. The SPaT 

information is also obtained for each signalized intersection 

based on the phase start/end time provided in the data. To 

develop accurate and reliable prediction of vehicle speed Fig. 5. Methodology for deciding whether preceding vehicle in the  
 



  

trajectory, we extract speed trajectory of each individual 

vehicle second by second by vehicle ID. Then, we utilized a 

sliding window to partition the time series dataset into a 

number of segment pairs with finite lengths. For each pair of 

segments, one is the past segment and the other is the future 

segment. This enables us to utilize the historical speed 

trajectory to predict the future speed trajectory within a pre-

defined prediction horizon. The total sample size for training 

the vehicle speed forecasting model is 9878; and for testing is 

4234. In addition, the traffic signal status and distance to the 

stop-bar jointly impact the driver behavior when approaching 

a signalized intersection. Therefore, we classify the predicted 

speed trajectories into three groups based on different driving 

scenarios. In Scenario 1, the vehicle is approaching the 

intersection far from the stop-bar with the red signal phase; In 

Scenario 2, the vehicle is close to the stop-bar but current 

signal phase is still red; In Scenario 3, vehicle approaching 

the intersection with green signal phase. The classified 

vehicle speed trajectories are used for developing and 

evaluating the vehicle speed forecasting models in each 

scenario, respectively.  

B. RBF-based Vehicle Speed Forecasting Model 

The RBF network comprises a typical three layers: input, 

hidden and output. Each neuron of the hidden layer represents 

a kernel or basis function. Here, we apply Gaussian function 

as the basis function to account for the non-linearity and the 

Gaussian function responds only to a small region of the input 

space where the Gaussian is centered. The key to a successful 

forecast vehicle speed trajectory based on RBF network is to 

find suitable centers for each Gaussian function, which is 

characterized by two parameters: center (𝜇𝑗) and peak width 

(∑ )𝑗  as shown in Eq. 1. The output from the jth Gaussian 

neuron for an input speed measurement 𝑥𝑖 can be obtained by 

Eq.2. The RBF hidden layer is fully connected to the output 

layer by the size of the weight coefficient, 𝑤𝑘𝑗  and the 

constant bias  𝑏𝑘𝑗. The weights 𝑤𝑘𝑗  are adjusted to minimize 

the mean square error of the forecasting outputs. There are 

two sets of parameters (the centers and the widths) in the 

hidden layer and a set of weights in output layer are adjusted, 

and the RBF neural network has a guaranteed learning 

procedure for convergence. The calibrated RBF network 

consists 15, 10, 15 neurons in hidden layer for each 

aforementioned driving scenario, respectively. For scenario I 

and III, calibrated center is a 15 by 3 matrix, peak width is a 

vector with length 15, weights of hidden layer is a 15 by 3 

matrix and bias is a 3 by 1 vector. For scenario II, calibrated 

center and weights’ dimension are both 10 by 3, peak width 

is 10 by 1 and bias is 3 by 1. The details of calibrated 

parameters of the developed RBF-network can be accessed in 

the supplement material of this paper.   

To generate the short-term forecasting vehicle trajectory, 

one of the developed RBF networks is called based on the 

current driving scenario at each time step to provide a 3-sec 

vehicle future speed trajectory as illustrated in Fig.6. The 

solid black line is an example vehicle trajectory and the 

colored short lines represent our RBF-based short-term speed 

forecasting results over time. Fig.6 shows the developed 

RBF-based vehicle speed forecasting model can provide 

reliable prediction based on the historical speed profile. 

C. Evaluating the Performance of Vehicle Speed 

Forecasting Models  

     The evaluation and comparison of the vehicle speed 

forecasting models based on three different nonlinear 

regression methods (RBF network, MLP network, Gaussian 

Process) are conducted using real world driving data collected 

in urban traffic (NGSIM Peachtree data). The program was 

written in MATLAB and evaluated on a computer with i7 

CPU @ 2.80GHz and 16 GB memory.  

The parameters for nonlinear regression models were 

selected by K-fold (K=5) cross validation. For the MLP 

network, we selected the log-sigmoid function as the 

nonlinear activation function and trained by a back-

propagation algorithm. The optimal network structure of 

MLP network includes two hidden layers with 20 neurons in 

the first hidden layers and 10 neurons in the second.  

The Root Mean Square Error (RMSE) is also adopted in 

this study to measure the time series forecasting accuracy, 

defined as:        

2ˆ( ) /
N

RMSE y y N                                               (4)          

where 𝑁 is the number of measurements, 𝑦 and 𝑦̂ indicate 

the actual value and predicted value, respectively.  

  A summary of the comparative results of vehicle speed 

forecasting models based on RBF-NN, MLP-NN and GP can 

be seen in Table I in terms of their forecasting accuracy and 

computational cost for both training and testing. RMSEs of 

the predicted vehicle speed trajectories based on RBF-NN 

with respect to the ground truth under three driving scenarios 

are 4.3 ft/s, 1.7 ft/s and 4.9 ft/s, respectively. For all three 

driving scenarios, RBF-NN speed forecasting model 

outperforms the other two approaches: MLP-NN and GP in 

terms of prediction accuracy. Although in scenario III, RMSE 

shows that GP and RBF-NN perform similarly well, it is quite 

time consuming on training a GP based forecasting model for 

large dataset. It is noted that the time cost for training GP is 

significantly higher than training MLP-NN or RBF-NN in 

Scenario II and III, because it is cubically increased with 

respect to the size of the measurements. The forecasting speed 

represents for a given vehicle trajectory, how long it takes the 

trained vehicle speed forecasting model to return the 

predicted results. As shown in Table I, the forecasting time 

for RBF-NN is about 10-3~10-4 s; for MLP-NN is about 10-

1~10-2 s and for GP is about 0.1 s. RBF network has the 

highest forecasting speed among the three forecasting models 

which makes it much more promising for real time 

applications. Therefore, we selected RBF-NN as our 

forecasting model to predict the preceding vehicle’s speed 

trajectory which is applied to Prediction-based EAD system.    

 



  

  

 
 

Fig. 6. Vehicle speed forecasting results with 3 second prediction horizon using RBF-NN 
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TABLE I.  COMPARATIVE RESULTS OF VEHICLE SPEED FORECASTING 

MODELS BASED ON DIFFERENT METHODS 

Performance RBF-NN MLP-NN  GP 

RMSE 

(ft/s) 

Scenario 

I: 
4.3 5.8 5.6 

Scenario 

II: 
1.7 3.7 3.2 

Scenario 

III: 
4.9 6.1 5.5 

Training Time  

(s) 

Scenario 

I: 
0.03 1.6 0.9 

Scenario 

II: 
0.5 2.1 63.5 

Scenario 

III: 
0.3 1.7 22.6 

Forecasting 

Time cost (s) 

Scenario 

I: 
10-4 0.1 0.1 

Scenario 

II: 
10-3 0.03 0.2 

Scenario 

III: 
10-3 0.02 0.2 

       Fig. 7 illustrates the predicted average speed within the 

prediction horizon of 3 seconds based on three different 

forecasting model vs. the ground truth under three driving 

scenarios, respectively. As shown in Fig. 7, RBF-NN is able 

to provide reliable results with satisfactory prediction 

accuracy for each driving scenarios. Although all three 

forecasting models: RBF-NN, MLP-NN and GP show similar 

performance for Scenario III, RBF-NN has much better 

prediction results for Scenario I and II, compared to MLP-

NN and GP.  

 

D. Validation of the Trajectory Planning Algorithm with 

Traffic 

 

      In this study, we only consider the straight movement 

through the intersection. In this case, we take all the 

northbound through movement vehicles in the NGSIM 

Peachtree dataset as preceding vehicles (185 vehicles in total) 

after filtering out the trajectories on the side streets. Then, 

three different types of subject vehicles (baseline vehicle, 

EAD without prediction vehicle, EAD with prediction 

vehicle) are simulated as driving behind that preceding 

vehicle through signalized intersections for further 

comparison. More specifically, the baseline vehicle is the 

subject vehicle that is simulated based on the car following 

strategy (i.e., Gipps’s car following model in this study). For 

the EAD without prediction case, the vehicle switches from 

EAD to car following state if the relative distance to the 

preceding vehicle is less than a threshold (i.e., 70 ft) to 

guarantee safety. The EAD with prediction vehicle is the 

subject vehicle equipped with the proposed prediction-based 

EAD system. It is noted that the preceding vehicle    

trajectories were generated from real world driving data in 

NGSIM and were used as the inputs to the proposed 

prediction method.  

Fig. 8 compares the estimated trajectories and speed 

profiles from different models in response to the trajectory of 

an example preceding vehicle. It illustrates how the proposed 

prediction-based EAD system reduces unnecessary idle time 

and speed oscillation, while keeping a safe distance from the 

preceding vehicle when driving through signalized corridors. 

As shown in Fig. 8, the EAD system without prediction can 

reduce unnecessary acceleration and deceleration compared 

to the baseline when the subject vehicle is far from the 

preceding. However, without prediction of the preceding 

vehicle’s activity, the subject vehicle may lead to a sudden 

deceleration to a very low speed (<5 ft/s) or even a full stop 

due to constraints from the preceding vehicle. In contrast, the 

prediction-based EAD system can enable the subject vehicle 

to drive through the signalized intersection in a much 

smoother maneuver based on the prediction of the preceding 

vehicle’s activity and the queue end. This can significantly 

reduce the fuel consumption and emissions by avoiding 

unnecessary idling and further smoothing the speed profile. 

    In Fig. 9, we summarize the speed distributions of EAD 

with prediction vehicles and EAD without prediction vehicles 

over the total 185 test vehicle trajectories. There is a 

significant drop on the percentage of idling or low-speed (<5 

ft/s) scenarios for vehicles with the prediction-based EAD 

system in Fig. 9(a) compared to EAD without prediction 

vehicles in Fig. 9(b). Meanwhile, the percentage of vehicles 

driving at high speed (i.e. speed larger than 40 ft/s) is 

 
(a) Time-space trajectories 

 
(b) Speed profiles 

Fig. 8. A comparison of different driving strategy 



  

significantly reduced. Those findings imply the proposed 

prediction-based EAD system is able to further reduce 

unnecessary idling, accelerations and decelerations even in 

the congested urban traffic. 

     To quantify the effectiveness of the proposed EAD system 

in terms of energy savings and emissions reduction, the U.S. 

Environmental Protection Agency’s MOtor Vehicle Emission 

Simulator (MOVES) model [36] is applied. The MOVES 

model is the state of art emission simulator developed by the 

U.S. Environmental Protection Agency (USEPA). The model 

is designed to estimate energy consumption and emissions for 

mobile sources on a macroscale, mesoscale or microscale. 

The second-by-second Vehicle Specific Power (VSP) can 

firstly be calculated based on the vehicle’s speed trajectory 

and road grade information. Then, the operating mode 

(OpMode) distribution over 23 bins for running exhaust 

emissions can be derived from a function of VSP, speed and 

acceleration values. Finally, with the OpMode distribution, 

the energy consumption and emissions of all the vehicle 

trajectories are estimated based on the emission factors from 

MOVES database.  

TABLE II.  PERFORMANCE OF THE PROPOSED PREDICTION-BASED EAD 

ALGORITHM 

Vehicle  HC 

(g/ 

mile) 

CO 

(g/ 

mile) 

NOX 

(g/ 

mile) 

CO2 

(g/ 

mile) 

Energy 

(KJ/ 

mile) 

PM2.5 

(mg/ 

mile) 

Baseline 

vehicle 
0.44 8.08 1.14 689 9586 26.7 

EAD 
without 

prediction 

0.43 7.67 1.06 674 9384 23.3 

EAD with 
prediction 

0.41 6.85 0.81 662 9207 15.5 

Saving in 

% 
(baseline) 

5.2 15.3 28.3 4.0 4.0 41.7 

Saving in 

% (EAD 
without 

prediction) 

3.1 10.8 23.3 1.9 1.9 33.4 

Based on the MOVES model, Table II shows the energy and 

environmental benefits of the total 185 vehicle trajectories 

generated by the proposed prediction-based EAD system, 

compared to the baseline and EAD without prediction, 

respectively. Results show that the subject vehicles equipped 

with proposed prediction-based EAD system has average 

4.0% and 1.9% improvement in terms of energy savings with 

respect to baseline and EAD without prediction, respectively. 

In addition, significant reduction in air pollutant emissions of 

the prediction-based EAD-equipped vehicle can be observed 

from Table II. The emissions of HC, CO, NOx, CO2 and 

PM2.5 per mile in the prediction-based EAD equipped 

vehicles are 5.2%, 15.3%, 28.3%, 4.0%, 4.0% and 41.7% less 

than the baseline vehicles, respectively. It turns out that the 

proposed prediction-based EAD system also reduce of 3.1% 

HC, 10.8% of CO, 23.3% of NOx, 1.9% of CO2 and 33.4% 

of PM2.5 per mile compared to EAD without prediction. The 

prediction-based method also shows its advantage in safety 

performance. For the EAD without prediction system, the 

drivers may need to frequently switch from EAD mode to 

their own decision. This may lead to long 

perception/reception time and cause potential sharp braking 

or even accident. The prediction module would provide a 

smoother trajectory in the EAD-car following transition and 

enhance the safety. 

VI. CONCLUSIONS 

     This research proposes a prediction-based EAD system for 

real-time implementation that enables the driver to travel 

through a signalized intersection in a safe and eco-friendly 

manner in urban traffic. The comparative validation results 

indicate that the proposed RBF-NN model outperforms MLP-

NN and GP models in terms of accuracy and computation 

time for predicting preceding vehicle’s speed trajectory under 

different scenarios. Based on SPaT and GID information as 

well as predicted states of preceding vehicle, the proposed 

EAD algorithm can provide a smooth and energy-efficient 

trajectory, considering the preceding traffic and possibly 

queues at intersections. Numerical simulation results show 

that the proposed system is able to save 4.0% of energy and 
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reduce air pollutant emissions by 4.0%~41.7% compared to 

conventional vehicles (simulated by Gipps’ car-following 

model). It turns out that the prediction-based EAD system 

saves 1.9% energy and reduces 1.9% to 33.4% air pollutant 

emissions compared to EAD without prediction in congested 

traffic condition.  
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