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Efficient Scale-Adaptive License Plate
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Abstract—License Plate Detection is a common problem in
traffic surveillance applications. Although some solutions have
been proposed in the literature, their success is usually restricted
to very specific scenarios, with their performance dropping in
more demanding conditions. One of the main challenges to be
addressed for this kind of systems is the varying scale of the
license plates, which depends on the distance between the vehicles
and the camera. Traditionally, systems have handled this issue
by sequentially running single-scale detectors over a pyramid of
images. This approach, although simplifies the training process,
requires as many evaluations as considered scales, which leads
to running times that grow linearly with the number of scales
considered.

In this paper we propose a scale-adaptive deformable part-
based model which, based on a well-known boosting algorithm,
automatically models scale during the training phase by selecting
the most prominent features at each scale, and notably reduces
the test detection time by avoiding the evaluation at differ-
ent scales. In addition, our method incorporates a empirically
constrained-deformation model that adapts to different levels of
deformation shown by distinct local features within license plates.
As shown in the experimental section, the proposed detector is
robust and scale- and perspective-independent, and can work in
quite diverse scenarios. Experiments on two datasets show that
the proposed method achieves a significantly better performance
in comparison with other methods of the state-of-the-art.

Index Terms—License Plate Detection, GentleBoost, scale-
adaptive part-based model, video surveillance.

I. INTRODUCTION

W ITH the increasing number of vehicles in urban and
interurban roads, their identification becomes a key

problem for several applications as security control (e.g.
detecting stolen vehicles or traffic violations), traffic manage-
ment, or organization of parking spaces. Automatic License
Plate Recognition (ALPR) for vehicle identification is an
essential module in many of these applications and has been a
very active subject of research during the last decade [1]–[5].
The first stage in ALPR, known as License Plate Detection
(LPD), entails the localization and cropping of the license
plate area and has an important impact on the overall system
performance.

License Plate Detection becomes challenging in uncon-
strained scenarios where no prior information can be used
to drive the detection process. In such scenarios, many
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background objects might confuse the detector, the lighting
conditions are strongly variable (24-hour operational video
cameras), there is a large intra-class variation (e.g., American
license plates have different designs for the different states),
etc. Moreover, depending on the application, the size of the
vehicles and, consequently, the license plate resolution, signifi-
cantly vary according to vehicles distance to the camera. Thus,
if not properly addressed, the scale problem may severely
degrade the performance of the detector.

Diverse LPD systems are available in the literature [6]–[9].
Despite being efficient for constrained scenarios, these systems
are significantly affected by varying illumination conditions
(low-contrast license plates are hardly legible) or high-textured
backgrounds. Some systems [10]–[12], although robust and
efficient for low-quality images, are unable to handle even
simple backgrounds showing other elements in the scene.
Regarding the scale problem, morphology-based methods [6],
[13], [14] rely on geometrical parameters, such as width,
height or aspect ratio, to detect candidate regions to be license
plates, which prevents an straightforward adaptation to a multi-
scale problem. To address the scale problem, boosting-based
methods (based on features, typically Haar, computed over an
small window) sequentially run the detector over a pyramidal
representation of the image [15], or scale up and down the
feature window [16], [17]. In both cases, the computational
complexity increases linearly with the number of evaluated
scales.

In this paper, we propose a robust LPD system for un-
constrained scenarios including day and night images and
significant variations in viewpoint and scale. The system is
built on the general object detector developed by Torralba
et al. in [15], which uses the GentleBoost algorithm over a
set of normalized correlation-based features. In comparison
with this baseline detector, the main goal of our approach is
to efficiently address the scale problem in multi-scale LPD
systems. To this end, two are the main contributions in this
paper:
• Instead of running the detector over a multi-scale pyramid

representation of the image, we propose to divide the
scale space into a discrete partition during the learning
phase, and concurrently learn the best feature representa-
tion over all the scales. This allows us to take advantage
of the correlation between adjacent scales and, during
test, to perform the detection process just once over
the image at its original resolution, thus avoiding the
overhead due to the multi-scale processing and notably
reducing the computational cost.

• We propose an empirically constrained-deformation part-
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based model to adjust the uncertainty regarding the rel-
ative location of the local parts within the whole license
plate. The parameters of this model are learned on the
training images and then incorporated to the detector,
which makes it very robust and able to adapt to different
scenarios.

The rest of the paper is organized as follows: in Section
II we briefly summarize the related work. In Section III we
describe in detail the proposed detector. In Section IV we
compare its performance with that of some state-of-the-art
approaches in two different tasks. Finally, in Section V we
provide some conclusions and outline future lines of research.

II. RELATED WORK

LPD systems can be broadly organized into three groups: 1)
those mainly based on morphological operations and character
detection; 2) those based on boosting algorithms working on
local features representing parts of the license, such as the one
proposed in this paper; and 3) context-aware methods, which
merge any of the previous alternatives with the detection of
other parts of the vehicles, such as braking lights.

Regarding the first group, in [18] a detector relying on
MSER (Maximally Stable Extremal Regions) [19] was pro-
posed that achieves good performance, but it is very sensitive
to lighting conditions (in particular, the detection rate varies
between 83.3% and 95.6%). In [7], Chang et al. suggested
a colour-edge-based detector, which focuses on certain edges
where the colours match those found in license plates. A more
recent approach by Fomani et al., described in [20], relied
on a local histogram equalization and simple and adaptive
morphological operations. In [6], [13], an initial candidate
selection is performed by identifying areas with high density
of vertical edges, which are then filtered using rules and
constraints on basic geometric properties (aspect ratio, width
or height of the candidate boxes). The main problems of
these approaches is that they are not robust enough to varying
lighting conditions and that they are not able to handle the
scale problem, since many of the basic geometric parameters
depends on the scale.

With respect to the second group, in [16] local and global
features are combined in an efficient cascade detector. The two
first stages of the cascade are based on global features (density
and variance of gradients) and can discard up to 70% of the
background of images, while the four following stages are
based on local Haar features [21]. The reported detection rate
in a multi-scale scenario (scaling up the feature window) is
93.5%; however, since it focuses on vertical edges it becomes
quite sensitive to varying lighting conditions. Dlagnekov et al.
[8] relied on the AdaBoost algorithm to select the 100 most
significant features out of an initial set of 2400 Haar features.
In this case, although the reported detection rate reaches a
remarkable 95.6%, it should be noted that it addressed a
simple task where the size of the plate remained fixed. A very
recent approach [22] combines a pre-processing step based
on morphological operations with a multi-layer hierarchical
classifier with multi-scale block LBP (Local Binary Pattern)
features, but again, it deals with a simple scenario where the

images are taken from a fixed distance and the same point of
view.

With respect to the third group, most of the systems rely on
detecting some specific parts of the vehicle (such as headlights
or braking lights) between which the license plate is located.
In [23] a wavelet transform was used to locate the braking
lights in the rear part of cars. After that, a more accurate
method using mathematical morphology and geometrical clues
was employed. Another approach [24] suggested using a part-
based model with HOG (Histogram of Oriented Gradients)
features to detect the vehicles, and a cascade classifier with
HOG and LBP features to further detect the license plate.
The relative license plate location along with other features
were then used to classify the vehicles according to their make
and model. However, these approaches either do not address
the scale problem or simply use fixed constraints concerning
license plates sizes or positions over the image (license plates
are located in the bottom part of the image or on previously
detected cars).

Recently, Convolutional Neural Networks (CNNs), which
are currently the mainstream approach for tasks such as object
detection or semantic segmentation, have already been applied
to LPD [25], [26]. Li et al. [27] trained a 37-class CNN to
detect all the characters in an image and a second CNN was
used to process the resulting saliency maps. They reported
notable results in LPD, with both recall and precision between
95 and 99%, depending on the task, but the system cannot
be used in real-time. In [28] the problem is addressed by
sequentially applying multiple CNN-detectors (car, plate and
digits). The input images are processed with a Sobel operator
to detect edges and a sliding window approach is used to
propose regions to the first CNN, which is in charge of
detecting cars. The second CNN acts on a sliding window over
the regions provided by the first one to detect the license plates,
and the third one works as a digit recognizer. Polishetty et al.
[29] proposed a system which starts from Canny edge images.
The Region of Interest (ROI) where the license plate is located
is extracted relying on the edge images and those regions acts
as inputs for a 9-layer CNN which classifies between license-
plate/non-license-plate instances. Its reported performance (in
terms of both precision and recall) varies between 91% and
99%. Finally, a recent approach [30] proposed a system based
on faster R-CNN (Region-CNN) [31] where vehicles are
detected first. After applying a pre-filtering based on relative
size and aspect ratio of license plates, some candidates regions
are proposed by means of Selective Search [32] to a second
CNN. Generally, these systems are quite efficient in scenarios
with few background objects.

The proposed approach differs from those described above
in multiple aspects: first, the normalized correlation-based
features used for the detection are robust against varying
lighting conditions, which leads to a better performance in
demanding environments. Furthermore, the discretization of
the scale space allows us to limit the computational cost of
the system at test time while still performing a multi-scale de-
tection. Finally, the empirically constrained-deformation part-
based model provides an improved model of the structure of
the license plate which enables to address rich scenarios with
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complex backgrounds.

III. PROPOSED APPROACH

The proposed detector is built on the general one by Torralba
et al. [15], which relies on a deformable part-based model
over local features and a boosting algorithm. As previously
mentioned, we propose two innovations to the baseline model.
First, we have designed a scale-adaptive part-based model
which, through a discretization of the scale space avoids the
search at several scales at test time, and takes advantage of
the inter-scale correlations; and second, the relative position
of each part of the part-based model with respect to the
center is represented by means of a two-dimensional Gaussian
distribution that allows us to properly model small spatial
deformations according to training data.

Before describing our model in detail, we will introduce the
baseline model [15] and discuss some particularities that arise
from the application of such a general object detector to our
particular LPD problem.

A. Baseline detector

The training process of the baseline detector [15] involves
two steps: feature computation and learning of the boosting
classifier (by means of the GentleBoost algorithm [33]).

1) Features: in order to extract the features, the first step
is to build a vocabulary of visual words. For that end, a
representative subset of training images is selected, and D
patches Pf , with f = 1, . . . , D are randomly extracted repre-
senting parts of the license plates. Let us note that, in order
to improve the system performance and get invariance against
variations in color and illumination, patches are extracted not
only from the original image, but also from filtered versions.
Hence, each patch is defined by the pair (gf ,Pf ), where gf

represents the filter applied to the image previously to the
extraction of the patch. Next, the location lf of each patch
with respect to the center of the license plate is modeled by a
two-dimensional Gaussian distribution (location mask), which
allows some degree of deformation. Hence, a visual word in
the vocabulary is finally defined by the triplet (gf ,Pf , lf ),
including filter, patch and location. Figure 1 shows an example
of a visual word.

Once the vocabulary has been built, we can compute the
input features vf : they are similarity measures obtained by
computing a normalized correlation between the filtered ver-
sions of the image I and the patches Pf . A convolution with
the transpose of the location mask lf is then performed in
order to refer the part scores to the center of the license plate.
The process can be mathematically described as follows:

vf = (I ∗ gf )~Pf ∗ lTf (1)

where ∗ and ~ stand for the convolution and normalized
correlation, respectively. Figure 2 illustrates the whole process
of training.

.

Fig. 1. Visual word illustration. Filtered patch (with an edge-detection filter)
with their relative location respect to the center of the license plate (red arrow)
and a degree of uncertainty (Gaussian distributions).

2) Boosting: the input features described above are used
to train the detector implemented by means of a boosting
algorithm. A boosting algorithm provides a way to sequentially
add weak classifiers hm in order to generate a strong classifier
H:

H(v) =
M∑

m=1

hm(v), (2)

where H(v) is the strong-learner for the feature vector v,
whereas hm(v) is a weak-learner. The objective is to optimize
the following cost function one term (of the additive model)
at a time:

J = E
[
e−zH(v)

]
(3)

where zH(v) represents the “margin”, related to the general-
ization error; and z is the membership-label vector for each
sample (±1, for positive and negative samples, respectively).

In the literature, one can find several approaches to optimize
this function, which leads to different versions of boosting:
AdaBoost [34], GentleBoost [33], LogitBoost [33], etc. In par-
ticular, GentleBoost algorithm has been proved to be the most
appropriate for license plate detection [35]. This algorithm
performs the optimization of J following adaptive Newton
steps, minimizing the square error in each step:

argmin
hm

J(H+hm) = argmin
hm

E
[
e−zH(v)(z− hm)2

]
. (4)

If the expectation is replaced with an empirical average over
the training data and the weights wi = e−ziH(vi) are defined
for the i-th training example, J can be rewritten as:

Jwse =
N∑
i=1

wi (zi − hm(vi))
2
, (5)

where wse stands for weighted square error.
The particular equations that govern the minimization of

the cost depend on the form of the weak-learners. In this
work and in order to minimize the computational cost of the
detector, weak learners are implemented by regression stumps.
A regression stump is defined as follows:

hm(v) = aδ(vf > θ) + bδ(vf ≤ θ) (6)

where a y b are the regression parameters, δ is the indicator
function, and θ denotes the threshold in the decision. To
minimize this cost with respect to the model parameters we
proceed as follows: for each candidate feature f , we evaluate
all possible thresholds θ and estimate the optimal a and b
by minimizing a weighted least squares problem (for more
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Fig. 2. Block diagram for the baseline detector. The training process is performed with fixed-size license plates.

1: // Initialization:
2: wi = 1 and H(vi) = 0
3: for m = 1 to M do
4: // Fit regression stump:
5: hm(v) = aδ(vf > θ) + bδ(vf ≤ θ)
6: // Update class estimates:
7: H(vi) := H(vi) + hm(vi)
8: // Update weights for examples:
9: wi := wie

−zihm(vi)

10: end for
Fig. 3. GentleBoost algorithm for binary classification with regression stumps.

information see [15]). The triplet (a, b, θ) that minimizes the
cost is selected and the cost is stored. Finally, the feature that
provides the minimum cost is chosen with its corresponding
parameters (f, af , bf , θf ), and the strong classifier is then
updated.

The GentleBoost algorithm for our problem is summarized
in Figure 3.

B. Application to the LPD problem
The application of this general object detection framework

to the particular LPD problem requires two main adaptations:
an appropriate selection of training samples, and a non-
maxima suppresion at test time.

1) Selection of training samples: the patches that form the
visual vocabulary are extracted from size-normalized license
plates (from images of the training set) at a rate of 10 patches
per license plate. The patch size varies between 9x9 and 15x15
pixels. In order to highlight gradients, inherent to license
plate areas, a particular set of filters gf are applied to each
patch, namely: Sobel filters for vertical gradients, Sobel filters
for horizontal gradients and Laplacian filters (orientation-
invariant).

The next step is to draw positive and negative samples to
train the detector. Since this task has a significant impact on
the final system performance, we have developed a specific
method for the selection of positive and hard-negative samples.
The process is described in the following paragraphs.

First, for each training image we compute a score map L by
aggregating the normalized score produced by all the features
in the vocabulary:

L =
1

D

D∑
f=1

vf =
1

D

D∑
f=1

(I ∗ gf )~Pf ∗ lTf . (7)

Subsequently, some samples are selected to train the detec-
tor. In particular, the local maximum of the score map closest
to the center of the license plate is selected as a positive
sample, whereas some samples of the background producing
high scores are also selected as negatives (i.e., hard negatives).
Furthermore, the rate of negative to positive samples has been
fixed to 30:1 (i.e., 30 negative samples for each positive
one) since the background exhibits much higher degree of
variability.

2) Non-maxima suppression: once the detector has been
trained, it can be applied to test images, as illustrated in
Figure 4. The detector computes the normalized correlation
between the filtered test image and the corresponding patch
from the vocabulary for every weak classifier. Then, the
regression stump associated with the weak classifier is applied
and the result added to the boosting margin (see Figure 4b).
Subsequently, a threshold is applied to the margin and the
pixels exceeding the threshold become candidates to contain
a license plate, whereas the rest of the image is discarded.
Nevertheless, this method generates multiple detections in
close locations all of them coming from the same license
plate, thus increasing the false alarm rate. To address this
problem, we post-process the thresholded boosting margin by
convolving the resulting margin with a Hamming window to
group close detections (see Figure 4c). Finally, the center of
each resulting cluster is selected as the center for the proposal,
as seen in Figure 4d. A filtering process based on the score of
the resulting bounding boxes can be applied to discard some
of the false alarms.

C. Scale-adaptive part-based model
The first innovation proposed to improve the baseline sys-

tem is the design of a scale-adaptive part-based model working
over a discrete representation of the scale space. This approach
contrasts with previous works, in which every license plate
was first re-sized to a normalized scale during training, and
a pyramid representation of images was then used in test to
perform the multi-scale detection. From our point of view, our
approach shows some advantages over the baseline system:
• First, the classifier can extract some knowledge about the

intra-scale variance present in the database. Hence, the
resulting classifier is more robust against the variability
in the size of plates due to the distance to the camera. This
fact, together with the robustness against illumination and
perspective provided by the weak-classifiers, results in a
powerful license plate detector.
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(a) (b) (c) (d)

Fig. 4. Test process of the detector: (a) original image; (b) image result of the boosting margin; (c) result of the grouping process applied on the thresholded
boosting margin; and (d) resulting bounding boxes.

• Second, the detector becomes faster in the test phase.
The traditional detectors must search in different scales,
which increases linearly the computational time of the
test procedure and hinders real-time operation.

• Third, the detector takes advantage of the correlation
between adjacent scales, thus improving its performance
and the subsequent segmentation process.

The modified features form now the 4-tuple (gf ,Pf , lf , sf ),
where sf is the discrete scale associated with the f-th feature.
Hence, each feature includes the filter, the patch, the location
respect to the center of the license plate and its discrete scale.
At each iteration, the GentleBoost algorithm selects the feature
that provides the highest error reduction (in the whole scale
space), as well as its associated scale. Thus, the number of
features and their scales are automatically selected by the
boosting algorithm from the training data, and the classifier
is not restricted to use a manually-fixed number of features
for each scale.

Therefore, if a scale is less common in the considered
scenario (or little useful for not being correlated with the rest
of them), the GentleBoost algorithm will select a small number
of features for this scale, thus reducing its impact on the final
results. In contrast, the most likely scales (or those which result
useful due to their correlation with other scales) will have a
greater influence in the detector.

In our approach, the scale space has been divided into four
partitions, and the patch size and standard deviations of the
location model have been consequently adapted to each scale.
The resulting scale space Sj is defined as:

Sj =


S1 if h < 25 ∧ w < 80
S2 if 25 ≤ h < 35 ∨ 80 ≤ w < 100
S3 if 35 ≤ h < 45 ∨ 100 ≤ w < 120
S4 if 45 ≤ h ∨ 120 ≤ w

(8)

where h denotes the license plate height and w its width in
pixels. The corresponding model parameters for each scale
will be introduced and discussed in the following sections.

Finally, in order to improve the segmentation of the license
plate, a scale-weighted linear interpolation of the average
license plates sizes in each scale has been proposed. Specifi-
cally, a score image is computed for every scale by aggregating
all the scores coming from the features at each scale and
normalizing the results to sum to one. Then, the resulting
scores associated with each scale are used as weights for a

linear interpolation of the corresponding license plate sizes for
each scale, producing in this way a better adapted bounding
box. The process is mathematically described in (9):

[
h′y, w

′
x

]
=

4∑
j=1

∑
m∈Sj

hm(y, x)∑
m hm(y, x)

[
hj , wj

]
(9)

where h′y and w′x are the dimensions (height and width) of
the bounding box located in coordinates y and x (detector
proposal) and hj and wj the average height and width for j-th
scale.

D. Empirically constrained-deformation part-based model

The second innovation proposed in this paper is the design
of a constrained-deformation part-based model for license
plates. In our particular scenario, parts of the model are
associated with specific details in the plates, and may fall
either on the boundaries of the plate (e.g. corners) or in internal
areas associated to letters or digits. It is easy to imagine that
the former are parts in which the relative location with respect
to the plate center remains quite stable for a given scale,
whereas the location of patches located in digits or letters is
much more variable due to the varying order of characters in
licenses.

Consequently, we have designed a method that automati-
cally handles this variable behavior. In particular, the standard
deviation of the Gaussian function used for modeling the
location of a patch (see lf in section III-A1) has been modeled
as a combination of two terms: σsc, a constant term which
only depends on the scale of the feature; and σemp, which is
learned from the training set and intends to model the variable
location of patches with respect to the center of the license
plate. In particular, the standard deviation of the patch location
is estimated as the average of both terms:

σloc =
σsc + σemp

2
(10)

where σemp =
(
σy
emp, σ

x
emp

)
is the vector containing the

empirical deviation along each coordinate and is computed
as follows:
• First, for a given feature f , we select the set of locations

from every training license plate that show a normalized
cross-correlation value higher than 0.8. These locations
and their scores are stored in x′, y′ and α: the arrays
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Fig. 5. Estimation of the standard deviation of the location for a visual word. The original location of the visual word remains constant and the standard
deviations (for the two-dimensional Gaussian distribution which models the visual-word location uncertainty) in both x- and y-direction are calculated from
the training license plates, by means of a weighted mean of the x and y position of the points, where the normalized correlation is above a threshold α. In
this example, the visual word has high variance in x-direction and low variance in y-direction.

containing the x-position, the y-position and the score of
the Ns samples with score above the threshold, respec-
tively.

• Second, we estimate each coordinate of the deviation
vector from a weighted mean of the relative location of
each sample respect to the original location of the feature
(xf , yf ):

σx
emp(f) =

1∑
α

Ns∑
k

α(k) · (x′(k)− xf ) (11)

σy
emp(f) =

1∑
α

Ns∑
k

α(k) · (y′(k)− yf ) (12)

• Finally, we obtain σloc as defined in (10).

Figure 5 illustrates the process of calculating the empirical
standard deviations for a visual word.

Following this approach, features coming from a visual
word with a small variance result in very sharp blobs with
high score values affecting to very restricted detection areas.
In contrast, features coming from a visual word with a high
variance result in flatter blobs with lower scores shared over
larger detection areas. Generally, features coming from a visual
word with a small variance are preferred by the GentleBoost
algorithm because sharp blobs are easier to distinguish from
the background, but visual words with higher variance are
also useful for the detection process, especially if we apply
the grouping process which accumulates the score in nearby
areas. If enough features are selected, the detector can properly
model the variance of the license plate class as a whole
because a representative set of the features are detected in
each license plate (and usually not detected in other areas of
the image).

Hence, a constrained-deformation part-based model has
been proposed. In particular, the standard deviation, σloc, is
kept within a small range of values (empirically the Gen-
tleBoost algorithm works properly with small values while
larger values make the precision decrease). Thereby, with
the empirically constrained-deformation part-based model the
resulting detector is able to adapt to the variations in each
feature position whereas the precision remains high.

TABLE I
MAXIMUM AND MINIMUM DIMENSIONS OF THE PLATES IN THE OS

DATABASE

Dimension Minimum Maximum

Height (pixels) 13 51

Width (pixels) 47 158

Aspect ratio 2.05 5.30

IV. EXPERIMENTS

The proposed LPD system is assessed in two different
datasets in comparison with several algorithms of the state-
of-the-art. Before describing the experiments and their results,
we will first introduce the datasets and the performance mea-
sures, as well as the algorithms selected for the comparative
evaluation.

A. Datasets and performance measures

Three datasets have been used in our experiments which
will denote OS, Stills [36] and Caltech [37].

The first dataset used in this paper (OS) is composed of 630
images: 246 are used for training and 384 for test. The images
have two possible sizes: 1286x986 or 1296x976 pixel (in color
JPEG format). Each image can contain several legible license
plates. In particular, the number of license plates is 372 for
training and 523 for test. The legible license plates have been
annotated manually by means of the PASCAL Visual Object
Classes software [38], which uses rectangular bounding boxes.

The images have been taken by surveillance cameras in ten
different locations under varying lighting conditions (day and
night), and usually show the cars from the rear. The size of the
license plates changes due to the variable distance from the
camera to the cars, as well as their aspect ratio can vary due to
perspective. The distance between cameras and legible license
plates is between 8 and 25 m. Table I shows the minimum
and maximum value for width, height and aspect ratio of the
license plates. Figure 6 shows some illustrative examples of
images from the database.

The second database (henceforth ‘Stills’) is available by
request [36]. In this case, the images are taken in parkings
at a closer distance (less than 5 meters), their size is 640x480
pixels. License plates are labeled and their sizes are very
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Fig. 6. Some illustrative examples from the OS database. As can be observed the illumination conditions, the distances from the camera to the cars, and the
perspectives are very varied.

Fig. 7. Some examples from Stills [36] (two on the left) and Caltech [37] (two on the right) databases. As can be seen, the scenario is significantly less
demanding than that of the OS database.

TABLE II
MAXIMUM AND MINIMUM DIMENSIONS OF THE PLATES IN THE

STILLS&CALTECH DATABASE

Dimension Minimum Maximum

Height (pixels) 16 36

Width (pixels) 46 112

Aspect ratio 2.26 4.25

similar to each other. The database is divided into a training
set (186 images) and a test set (60 images).

The third dataset (henceforth ‘Caltech’) is publicly available
[37]. It is composed of 126 images taken in parkings at a
distance of less than 5 meters and their size is 896x572 pixels.
The dataset has been manually annotated using PASCAL
software [38], and it has been added to ‘Stills’ test set making
a mixed test set of 186 images. In this manner, we can test
how the proposed method performs when trained in a database
(Stills) and tested on another (Caltech). Table II summarizes
the information regarding the size of the license plates for
‘Stills’ and ‘Caltech’ databases (Stills&Caltech) and some
illustrative examples of images are provided in Figure 7.

For the OS database we have simulated the result of a
background subtraction technique to reduce the false alarm
rate for all detectors (for the comparison to be fair). In
particular, polygonal masks for each one of the 10 distinct
scenarios of the database have been built, indicating the image
areas that may contain a license plate. If a bounding box does
not have at least 60% of its area in this target area, it is
discarded.

The performance is calculated in terms of information
retrieval measures: the precision-recall (PR) curve and the
average precision (AP) for the soft-decision made by the

boosting classifiers and the F1 or F-score in (13) for the
hard-decision classifiers. The criterion used for considering
a detection as a true positive is that its center does not
deviate more than 50% of the true center. Additionally, the
quality of the segmentation is measured with the Sørensen-
Dice coefficient over the pixels of the license plate, as defined
in (14), being A the set of pixels corresponding to the ground-
truth bounding box and B the set of pixels corresponding to
the retrieved bounding box.

F1 =
2 · (precision · recall)
recall + precision

(13)

SDC =
2 · (A ∩B)

|A|+ |B|
(14)

B. Optimization of model parameters

The selection of model parameters is made through a 5-
fold cross-validation procedure over the training set. First,
the version of the baseline detector [15] adapted to the LPD
problem uses filters with sizes between 3x3 and 9x9 pixels
(instead of the fixed 3x3 size of the baseline detector). In this
way, our proposed approach is suitable for patches with longer
gradients, found in larger license plates. The total number of
visual words D is 5330 for OS database and 3120 for Stills
database: 10 patches x 13 filters x 41 or 24, respectively,
dictionary samples. In test, the size of the Hamming window
(used in the non-maxima suppression stage to group close
detections) is fixed to 50x150 pixels, approximately the size
of the largest license plate in the databases.

Table III shows the optimal parameters for the proposed
discretization of the scale space. The patch size varies with
the scale (the patches should remain representative of the
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TABLE III
SUMMARY OF THE PARAMETERS ASSOCIATED WITH EACH OF THE SCALES

CONSIDERED

Scale (Sj ) Patch size σsc = [σy
sc, σ

x
sc]

[
hj,wj

]
1 9 [5,5] [20,70]

2 13 [7,7] [30,90]

3 17 [9,9] [40,110]

4 21 [11,11] [50,130]

license plate content independently of the license plate size).
The standard deviation associated with the scale, σsc, also
varies (larger visual words have larger standard deviation).
The average height and width for the scale-weighted linear
interpolation method is also shown in Table III.

C. Comparison with the state-of-the-art

The evaluation of the methods has been performed over
the test partition of both databases. The parameters of each
detector included in the comparison have been previously
optimized using the same procedure as for our proposal (see
section IV-B).

In our experiments we have considered the following algo-
rithms found in the literature:
• A simple detector based on morphology by Hsieh et al.

[13]. It is a versatile detector based on simple closing,
opening and smoothing operations.

• A second detector based on morphology by Gou et al.
[6]. It is a recent approach which performs a top-hat
transformation, Sobel edge detection and noise filtering.
Additionally, a Gaussian filtering previous to the top-hat
transformation has been added to the process described
in [6] because it increases the performance.

• A boosting detector based on Haar features by Dlagnekov
[8]. This detector is based on the detector by Viola-
Jones [39]. It uses 2400 Haar features (on the original
image, its derivatives and variances) and the classifier
is trained by means of the Adaboost algorithm on the
normalized license plates (with roughly the medium size
of the databases, 25x75 pixels). It uses 100 weak-learners
for the classification.

• The baseline boosting detector by Torralba et al. [15]
(henceforth ‘Baseline’) with two different configurations:
the license plates normalized to the smallest size in the
database (15x45 pixels) and to a medium size (30x90
pixels). The multi-scale detection uses 4 scales in the
first case (downsampling the original image with a factor
of 0.8) or 7 scales in the second case (downsampling the
original image with a factor of 0.8 and upsampling it with
a factor of 1.2). The detector uses 60 weak-learners.

In addition, two versions of our multi-scale detector have
been used in the experiments with the goal of assessing each
of the contributions of this paper:
• Proposed-SA: the baseline detector including the scale-

adaptive part-based model (see III-C).
• Proposed-SA-EC: the proposed detector, the baseline ver-

sion including the scale-adaptive part-based model (see

III-C) and the empirically constrained-deformation part-
based model (see III-D).

It is worth noting that, in order to provide a fair comparison
in terms of computational complexity and memory consump-
tion, the baseline boosting detector and the proposed versions
of this paper, have been trained using 60 weak-learners.

The results in terms of detection performance and com-
putational cost in a mid-range computer are shown in Table
IV. For the soft-decision boosting detectors, the F-score is
calculated from the PR curve by sampling a point with a
recall immediately higher than morphology-based detectors
recall (in this case, 87.38% for OS database and 84.41%
for Stills&Caltech database) and obtaining the corresponding
precision. The table also includes the AP for the PR curve
for the boosting detectors. The results for the detector by
Dlagnekov [8] are not included in the comparison because
this approach is not efficient in demanding scenarios.

As can be seen in the table, our approach obtains the best
results both in terms of F-score and AP, and notably outper-
forms the rest of the compared alternatives in the complex
OS scenario. Although the morphology detectors are very
fast, they rely on vertical edges, which are not discriminant
enough in the considered databases (they appear in many other
elements of the scenes), thus leading to very poor precisions.
Regarding the boosting detectors, we have observed that the
Haar features do not capture well relevant patterns over the
license plate and, in addition, the resulting patterns are not
well associated with fixed and stable locations in the license
plate. Our detector, however, finds representative patterns of
the license plate at quite stable locations with slight variations
with respect to the center of the license plate, which are well
modeled by our deformation terms.

Compared to the baseline detector [15], our proposal does
not need to normalize the size of the license plates in train-
ing, as it automatically accounts for the variations in scale.
We obtain an AP value similar to the baseline method in
Stills&Caltech database (an easier task) and a much better
performance for the challenging OS scenario: multiple license
plates per image, demanding illumination conditions (even
night images) and higher variation in license plate sizes.
The effect of the contributions is notable in OS database.
In particular, the scale-adaptive part-based model achieves a
significant increase (10 %) in the AP value, and the empiri-
cally constrained-deformation one increases this result in an
additional 2%.

In addition, we can see that the results are good in both
datasets using the same parametrization, which demonstrates
that our approach adapts well to different scenarios. Likewise,
the proposed scale-adaptive part-based model reduces the com-
putational cost in comparison with other boosting detectors
where multiple scales are searched for based on on the pyramid
representation of images.

Figure 9 shows the visual words selected by the GentleBoost
algorithm for the detection process. The first visual words have
less information and are located in the license plate borders
(they are used to detect roughly the license plates in the image)
whereas the last ones are more discriminative (they are used
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TABLE IV
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART DETECTORS

Detector Database Recall (%) Precision (%) F-score (%) AP (%) Elapsed time (s)

Hsieh et al. [13]
OS 87.38 52.65 67.71 - 0.08

Stills&Caltech 84.41 36.68 51.13 - 0.03

Gou et al. [6]
OS 86.23 22.44 35.61 - 0.23

Stills&Caltech 80.65 21.93 34.48 - 0.11

Dlagnekov [8] (25x75)
OS - - - - -

Stills&Caltech 84.46 31.90 46.31 60.92 23.41

Baseline [15] (15x45)
OS 87.50 51.25 64.64 80.94 16.46

Stills&Caltech 84.66 100.00 91.69 97.88 5.58

Baseline [15] (30x90)
OS 87.50 53.16 66.14 85.40 77.18

Stills&Caltech 84.66 74.42 79.21 90.99 23.55

Proposed-SA
OS 87.38 95.61 91.31 95.53 8.77

Stills&Caltech 84.41 100.00 91.55 99.14 2.67

Proposed-SA-EC
OS 87.38 94.51 90.81 97.52 9.43

Stills&Caltech 84.41 99.37 91.28 99.23 3.16

(a) (b)

Fig. 8. PR curves for the proposed detector for both databases: (a) OS database and (b) Stills&Caltech database.

to locate more precisely the license plates). Some features can
be re-used in the detector with different thresholds.

As we have already mentioned, one of the advantages of
our approach is that it automatically assigns features to scales
during the learning phase, which allows to adapt the visual
representation of the license plates to the prior probabilities of
the scales (more likely scales will in general be associated to
more weak learners in the boosting detector). When analyzing
the results, our classifier uses 4, 14, 24 and 18 features for
scales 1 to 4, respectively, in the OS database; and 16, 34
and 10 for scales 1 to 3 respectively for Stills database (in
this dataset, there are no license plates belonging to scale 4).
For the OS database, the assignment of the features is closely
related to the “a priori” probability of the license plate size
in the database: the number of features are 260, 1300, 2080
and 1690 for scales 1 to 4, respectively. For Stills database
the number of features is 1170, 1690 and 260 for scales 1 to
3. In this case the assignation also follows the license plate
distribution, but the central scale gains importance because of

the correlation with adjacent scales (in this way, some central-
scale features can be useful for all the scales).

The segmentation performance is measured through the
Sørensen-Dice coefficient (SDC) for each of the compared
detectors. In general, although it depends on the type of
object, a value of the Sørensen-Dice coefficient above 70%
is considered a good segmentation score. For license plates,
and due to the fact that the final goal is to read the license, it
is also necessary to apply a more restrictive limitation: every
digit or character has to be contained in the bounding box.
The results are provided in Table V.

The proposed detector outperforms the rest of them in terms
of segmentation, except for the baseline one which performs
a multi-scale detection. Nonetheless, the loss in segmentation
accuracy is negligible in comparison with the increase in
detection performance and typically the bounding boxes are
large enough to contain all the characters of the license plate.
In OS database license plate sizes are associated with their
quality (the smaller license plates belong to vehicles distant
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(a) (b)

Fig. 9. Visual words selected for the proposed method for both databases: (a) OS database and (b) Stills database.

Fig. 10. Bounding boxes slightly larger than the ground-truth.

TABLE V
SEGMENTATION PERFORMANCE OF THE COMPARED DETECTORS

Detector Database SDC (%)

Hsieh et al. [13]
OS 65.82

Stills&Caltech 61.91

Gou et al. [6]
OS 62.49

Stills&Caltech 59.07

Dlagnekov [8] (25x75)
OS -

Stills&Caltech 78.60

Baseline [15] (15x45)
OS 79.24

Stills&Caltech 84.78

Baseline [15] (30x90)
OS 79.65

Stills&Caltech 46.00

Proposed-SA
OS 73.45

Stills&Caltech 82.90

Proposed-SA-EC
OS 74.29

Stills&Caltech 84.13

to the camera). The visual words with better quality (belonging
to larger scales) are more discriminatory to distinguish license
plates from the background. Hence, the GentleBoost algorithm
tends to include more large-scale visual words in the detector
and the interpolation method provides bounding boxes slightly
larger than the ground-truth. Some examples can be seen in
Figure 10.

Finally, Figure 11 shows a set of images illustrating the
detection performance of several detectors in both databases.
The selected detectors are the two morphology-based ones, the

baseline one, and the one proposed in this paper. The results
of our approach outperforms the rest of detectors especially
for a demanding task such as the OS one.

D. Error analysis and discussion
In order to provide more insight about the operation of

our proposed approach we have analyzed the false alarms
produced in both databases. For Stills&Caltech database, false
alarms are centered in high-textured areas. Figure 12 shows
some of these false alarms. For OS database, false alarms
can be divided into three groups: first, high-textured areas
as in Stills&Caltech database; second, some illegible license
plates that have not been annotated as positives, demonstrating
that our detector is coherent and able to detect low-quality
license plates. If they had been annotated, the performance of
the proposed method would have been even better. The third
group of false alarms include some textual areas which can be
considered as hard negatives. Figure 13 shows some examples
for the three categories.

High-textured false alarms are related with some of the
detector’s visual words (see Figure 9), which represent high-
gradient areas, and textual false alarms only appear in some
areas (those whose elements match the inherent structure of
the detector). Probably both types of errors might be mitigated
adding hard-negatives to the training datasets, i.e., from text
databases.

E. Assessment in a large-scale dataset
Finally, we have tested the proposed detector in AOLP

dataset [40], a large-scale scenario, to check its performance
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Fig. 11. Visual comparison among detectors: MBCS [13], VRBER [6], baseline [15] and proposed (in columns, from left to right). The two first rows refer
to the OS database (where baseline [15] normalizes the plate sizes to 15x45 pixels) and the two last rows to Stills&Caltech (where baseline [15] normalizes
to 30x90 pixels).

Fig. 12. Some false alarms for Stills&Caltech database.

Fig. 13. Some false alarms for OS database.
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TABLE VI
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS FOR

AOLP DATASET [40]

Method F-score (%)

Proposed-SA-EC 98.98
Hsu et al. [40] 92.97

Li et al. [27] 97.27

Polishetty et al. [29] 97.80

Xie et al. [25] 99.47

in a wider setting. AOLP dataset is composed of 2049 images
and is available by request. The images are divided into three
subsets with different target applications: Access Control,
Traffic Law Enforcement and Road Patrol; with distances
between the vehicles and the camera ranging from 5 to 15
meters. In this case, 387 images have been used for training
and 1662 for test, as suggested in [40].

The results of the proposed method in comparison with
those of state-of-the-art are shown in Table VI. Our proposed
approach outperforms the one reported on [40], even though
ours shares parameters among the three scenarios and the
previous OS and Stills&Caltech datasets described in section
IV-B, while theirs adapts its parameters to each scenario.
Furthermore, the results of our detector compare well to those
recently reported with CNNs [27], [29], [25], which have been
specifically trained and designed for this type of scenarios,
and therefore constitute the state-of-the-art on it. Although it
is noteworthy that AOLP does not pose any challenge with
respect to the multiple scales in license plates, the focus of our
paper, its large size allows us to assess the good generalization
capability of our method.

V. CONCLUSION

A robust approach for vehicle license plate detection based
on boosting and part-based models has been proposed in this
paper. A set of filtered visual words have been extracted from a
subset of images of the training set and the boosting classifier
has been trained relying on the normalized correlation of these
visual words with training images.

The proposed system has been built on a general object
detector [15], which has been adapted to the LPD problem. We
have proposed two fundamental extensions over the baseline
which constitute the main contributions of the paper. First, the
design of a scale-adaptive part-based model which discretizes
the scale space, adapts the selection of features to the most
prominent scales, avoids the need of multi-scale testing and,
furthermore, improves the segmentation process. Second, a
constrained-deformation part-based model allows to adapt to
varying deformation in local features and makes the system
capable to cope with quite diverse scenarios.

The proposed system has been assessed on three different
databases, which we have called OS, Stills&Caltech [36], [37]
and AOLP [40]. OS dataset contains Spanish license plates,
Stills&Caltech dataset contains plates from USA and AOLP
one contains plates from Taiwan. The detection performance
in terms of AP is over 97% in all cases, which reveals that the
proposed method is effective in a wide variety of scenarios.

The proposed system has been compared with several
methods of the state-of-the-art, with very favourable results
in terms of detection performance. In particular, our proposal
is clearly superior to all the compared methods, from simple
and fast morphology-based methods [6], [13] to complex and
more computationally demanding boosting-based methods [8].
While the proposed method shows similar results to those of
the best of the compared methods for Stills&Caltech database
(the easiest task), it yields much better performance than any
other compared method when a more challenging scenario is
addressed (OS dataset). In particular, the proposed method
reaches an AP of 97.52% vs. 85.40% achieved by the best
of the compared methods. Moreover, the proposed system has
been trained on AOLP dataset (a large-scale dataset) obtaining
competitive performance when compared with recent CNN-
based methods.

The proposed system does not rely on gradients, which
are not high enough in many practical scenarios due to the
presence of noise, the lack of proper illumination, and blurring
owing to distant license plates. Furthermore, the number of
weak-learners has been reduced and the necessity to look
for the plates at several scales has been avoid to make the
system more efficient with the discretization of the scale space.
Finally, the proposed part-based model increases both the
recall and the precision in demanding scenarios.

However, the developed method can still be improved. Its
application in a real environment requires additional training
to comprise all the possible situations, especially those whose
difficulty lies in illumination conditions (night images, artifacts
due to non uniform illumination, etc.). Furthermore, some
additional information about morphological structures can be
considered to enhance the segmentation process.
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