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Abstract—We analyze a boarding solution for a transport
system in which the number of passengers allowed to enter a
transport cabin is automatically controlled. Expressions charac-
terizing the stochastic properties of the passenger queue length,
waiting time, and cabin capacity are derived using queuing theory
for a transport line with deterministic arrivals of cabins and
Poisson arrivals of passengers. Expected cabin capacity and
stability threshold for each station are derived for a general
passenger arrival distribution. Results show that a significant
reduction of the waiting time at a given station is only possible at
the cost of making the stability of one of the preceding stations
worse than that of the given station. Experimental studies with
real passenger arrivals are needed to draw firm conclusions.

Index Terms—Queuing Theory, Waiting Time, Stability, Fair-
ness, Capacity Sharing, Access Control Policies.

I. INTRODUCTION

A
novel boarding solution for cabin-based transport sys-

tems (e.g., ski lifts, cable cars, subways) is being dis-

cussed in the industry and has already been implemented in

the Austrian skiing resort Bad Gastein [1]: In order to avoid

long queues at succeeding boarding stations, a display in the

boarding area tells the guests how many of them are allowed to

enter the next cabin. This form of access control guarantees

spare seats for passengers waiting at the middle station to

go to the top station. The overall objective is to install fair

access conditions at all stations, which would automatically

improve waiting time and comfort of passengers. The operator

expects some system intelligence to compute the number of

passengers to enter at each station and adapt this number in

real time according to the varying passenger load. Compared

to extensions or modifications of tracks and cabins, access

control would be an inexpensive solution to optimize systems.

This article assesses as to whether such access control can

actually improve the service for a system with a simple linear

topology of stations. Queuing theory is applied to analyze the

impact on waiting time and system stability. The arrival of

passengers at each station is stochastic: We assume a Poisson

arrival process and a system in stationary conditions (fixed

arrival rate). The results can be summarized as follows:

• It is impossible to significantly reduce the waiting time of

a given station m by controlling the access of passengers

at previous stations without making the stability of one of
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the previous stations worse than the stability of station m.

This is valid for a general arrival distribution.

• It is possible to achieve a moderate improvement at

station m to an extent that is relevant in real operation

but at the cost of greatly decreasing the stability of a

preceding station.

• A main cause of improvement is the reduction of the

variance in the cabin capacity. Therefore, access control

policies should focus on reducing the variance.

The article is structured as follows: Section II addresses

related work in the domain of queuing theory. Section III

specifies the transport system, including modeling assumptions

and quantities of interest, such as queue length, waiting

time, and stability threshold. Section IV defines the research

question and explains key results. In Section V, we derive the

spectral representation of the waiting time and queue length at

a station, the probability distributions of quantities describing

the interaction between stations, and the stability threshold.

Section VI applies this theoretical framework to a gondola lift

in a ski resort. Section VII concludes with a suggestion on

how to design good access control policies.

II. RELATED WORK

It follows an overview of results on queuing systems with

Poisson arrivals where the queue is served in batches with a

given maximum size and a random independently distributed

time between consecutive services. For systems that only have

a single queue, expressions for the first two moments of the

queue length ([2], [3]) and the waiting time distribution ([4],

[5]) are known. Furthermore, a time dependent solution of

this model is available [6]. Since these results are complex,

approximations for the mean queue length for numerical

evaluation have been derived [7]. These approximations are

simple in comparison to the exact solution yet achieve accurate

results. All this work assumes that every time the queue is long

enough, the server can serve a batch of fixed size, independent

of other circumstances. This is, however, unrealistic for certain

transport system, e.g., elevators, where part of the capacity

may be occupied when arriving at a floor. Hence, the basic

queuing model has been extended accordingly [8] and the

equilibrium distribution of the queue length has been derived

for this extended model.

A further generalization is to consider that the time between

services follows a general distribution. For this model the

distribution of the number of passengers waiting can be

derived [9]. For general arrivals and exponentially distributed

times between services the waiting time distribution has been



derived [10], [11]. Furthermore, for bulk-arrival bulk-service

queues, the moments of the queue length distribution [12]

and the equilibrium waiting-time distribution [13] are known.

When the queue length is limited, results similar to the above

are harder to obtain. Some results are available, e.g., on the

waiting time [14] and the queue length [15]. This type of

model is, however, not developed far enough to be applied to

the scenario considered in the paper at hand.

III. SYSTEM MODEL AND DEFINITIONS

A. General System Description

The system is composed as shown in Fig. 1. Stations are

located along a closed path (station line). Cabins are uniformly

spaced, move along the line, and stop at stations at constant

time intervals β; each cabin has γ seats (cabin size). At each

station, the passengers in the cabin can leave and, afterward,

those waiting at the station can enter. Each station is divided

into three areas: waiting area, boarding buffer, and platform.

Before the cabin arrives, the boarding buffer is filled with

the passengers to be served (batch). All passengers waiting in

the buffer board during the current service, so that the buffer

gets empty for the next service. At the cabin arrival, the gate

between waiting area and boarding buffer is closed, so that

new passengers cannot join the ongoing service. If the number

of waiting passengers is smaller than the available free seats

(cabin capacity without access control), the cabin does not

wait for passengers to arrive but leaves the station (no waiting

for the batch formation). The service of a batch starts with the

arrival of a cabin and ends with the arrival of the next cabin (a

new batch can be served). Thus, the service time is constant

and equal to the interarrival time of cabins β.
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Figure 1: Model of the transport system

B. Mathematical Notation

The following notation is used to describe the system

behavior at a given station m in a formal way:

• Parameters of the system are Greek letters (e.g., λm);

• random variables and stochastic processes are upper-

case Latin letters (e.g., Xm and {Xm,n, n ≥ 1}), with

Xm = limn→∞ Xm,n;

• probability distribution functions (continuous variables)

and probability mass functions (discrete variables) are

lowercase Latin letters (e.g., x(·));

• Laplace–Stieltjes (LS) transforms (continuous variables)

or probability generating functions (discrete variables) are

uppercase Latin letters with asterisk (e.g., X∗(·)).

C. Queue Length and Waiting Time

Passengers arrive at station m according to a Poisson arrival

process with rate λm = λνm, where λ is the total arrival

rate of the system and νm is the fraction of these passengers

arriving at station m. Note that the Poisson assumption is

not required for the derivation of the stability thresholds and

expected cabin capacities. In stationary conditions, a passenger

arriving at station m finds a queue of Qm waiting passengers

(queue length), including passengers in the batch, and waits

Wm time units (waiting time). These random variables depend

on the number of passengers Cm that can access the cabin at

this station (cabin capacity). Each of the Rm−1 passengers

riding from the previous station (m− 1) leaves the cabin at

station m with probability σm, and thus makes a seat free for

the waiting passengers. The remaining Sm passengers stay in

the cabin because they want to travel further. In general, we

can write that the capacity is Cm = gm(Sm), where gm(·)
is the access control policy at station m. An example policy

is to limit the maximum number of accesses per cabin to

ηm ∈ [1, γ], i.e. Cm = min[ηm, γ − Sm]. If no access control

is applied, the capacity is equal to the number of free seats in

the cabin, i.e. Cm = γ − Sm. A cabin arriving in station m
finds Zm passengers waiting in the queue (passengers left

behind upon the departure of the previous batch). Of those,

Tm enter the cabin, so that Rm = Sm + Tm ride to the

next station m+ 1. Note that the random variables Qm and

Zm are different because they are observations of the same

continuous-time stochastic process at different time instances.

Our goal is to obtain stochastic descriptions of Wm and

Qm under static access control. The probability mass function

of the queue length can be computed from the probability

generating function Q∗

m(·) by

qm(k) =
1

k!

dkQ∗

m(z)

dzk

∣

∣

∣

∣

∣

z=0

. (1)

Furthermore, we are interested in the moments of the waiting

time, which can be computed from the LS transform W ∗

m(·):

E
[

W k
m

]

= (−1)k
dkW ∗

m(s)

dsk

∣

∣

∣

∣

∣

s=0

. (2)

D. Stability and Fairness

A station is stable if the expected waiting time is finite.

This holds if the arrival rate λm is smaller than the stability

threshold λ∗

m = E [Cm] /β. In terms of the load factor ρm, we

require ρm = λm β/E [Cm] < 1. A station is said to be in

low load if λm is much smaller than λ∗

m; in this case, there

is almost always no queue and the expected waiting time is

E [Wm] = β/2. A station is said to be in high load if λm

is close to λ∗

m; in this case, E [Wm] changes dramatically for

small variations of λ.

All stations on a given line share the capacities of the cabins.

It is desirable to have a fair allocation of cabin capacities



among stations, so that the expected waiting time E [Wm] is in

the same order of magnitude for all stations. If we exclude the

trivial case with all stations being in low load (E [Wm] ≃ β/2),

having similar expected waiting times is equivalent to have

similar scaled stability thresholds λ∗

m/νm.

IV. PROBLEM STATEMENT AND KEY RESULTS

The capacity of cabins arriving at a particular station can be

modified by controlling the access of passengers at preceding

stations. A fundamental question in this context is: Is it

possible to significantly decrease the expected waiting time

of a station by controlling the access of passengers at the

preceding stations that have a better stability threshold?

We show that this is impossible under the given modeling

assumptions. To significantly improve the performance of a

station m, we have to increase the scaled stability threshold

λ∗

m/νm of that station. To do so, we have to reduce the scaled

stability threshold λ∗

k/νk of at least one preceding station k to

a value smaller than λ∗

m/νm (Section V-C, Fig. 2 and Fig. 3).

This makes the performance of k similar to (capacity variance

plays a role) or worse than the original performance of m.

If λ∗

k/νk > λ∗

m/νm, a large reduction of λ∗

k/νk leads to a

modest relative gain in the waiting time of m, which might

be interesting in practice though (Section VI and Fig. 4). Since

λ∗

m/νm does not change for variations of λ∗

k/νk as long as

λ∗

k/νk > λ∗

m/νm (see Fig. 2), the relative gain cannot be due

to an increased capacity mean (E [Cm] = λ∗

mβ). It is a reduced

capacity variance that brings the relative gain (Section VI and

Fig. 5).

5 6 7 8
1

1.2

1.4

1.6

expected capacity at Station 1 E [C1]

sc
al

ed
st

ab
il

it
y

tr
es

h
o

ld
λ
∗ m
/
ν
m

Station 1 Station 2 Station 3

Figure 2: Stability thresholds at all stations as a

function of the capacity at Station 1. Parameters:

β = 10, γ = 8, R0 = 0, [ν1, ν2, ν3, ν4] = [0.5, 0.2, 0.3, 0],
[σ1,σ2,σ3,σ4] = [0, 0.04, 0.46, 1].

Fig. 2 illustrates this general result for a ski resort in Bad

Gastein (Austria) with four stations in a line. The parameters

characterizing the main line of the ski resort from real data

are as follows: interarrival between cabins β = 10 s, cabin

size γ = 8, fraction of passengers arriving at the stations

[ν1, ν2, ν3, ν4] = [0.5, 0.2, 0.3, 0], probability of leaving the

cabin at the stations [σ1,σ2,σ3,σ4] = [0, 0.04, 0.46, 1]. The

parameters νm are estimated using smart turnstiles and cam-

eras, and include passengers that do not leave the system

after one travel but stay in the system and come back for

additional rides. The parameter σ3 is high because Station 3

allows to change to another line. Passengers not leaving at this

station travel to the final destination (Station 4). No passenger

enters at Station 4. Since σ4 = 0, cabins at Station 1 are

always empty, i.e. R0 = 0 and in turn C1 = η1. The scaled

stability thresholds are described by (24), (25), and (26).

Fig. 2 shows the scaled stability thresholds of all stations

as a function of the expected capacity at Station 1. As the

capacity decreases (starting from 8), λ∗

1/ν1 decreases, but

λ∗

2/ν2 remains unchanged. λ∗

2/ν2 starts to increase only when

λ∗

1/ν1 < λ∗

2/ν2. The same holds for λ∗

3/ν3. It is important

to note that this result is independent of how the capacity is

obtained, i.e., on the static access control policy applied.

V. DERIVATION OF QUEUE LENGTH, WAITING TIME, AND

STABILITY THRESHOLD

A. Queue Length and Waiting Time at a Single Station

A station m can be modeled as an M/D/1 queue with batch

services (extensively studied in [11, Ch. III.2]). The probability

generating function of the queue length is [11, Ch. III.2]

Q∗

m(z) =
Z∗

m(z)

A∗
m(z)

1−A∗

m(z)

(1− 1/ξ)λmβ
, (3)

and the LS transform of the waiting time is [11, Ch. III.2]

W ∗

m(s) =
1

2πi

∮

C

z

(ξ − z)(1− ξ)

1− C∗

m(ξ)

1−B∗
m(s)C∗

m(ξ)

Z∗

m(1/ξ)

A∗
m(1/ξ)

B∗

m(s)−A∗

m(1/ξ)

(1− 1/ξ)λmβ − sβ
dξ . (4)

The integration domine C is the unit circle centered at the ori-

gin of the complex plane; A∗

m(ξ) is the probability generating

function of the number of arrivals during a service, which is

e(ξ−1)λmβ for Poisson arrivals; B∗

m(s) is the LS transform of

the service time, which is e−sβ for deterministic service; and

C∗

m(·) and Z∗

m(·) are the probability generating functions of

the variables introduced above in stationary conditions.

The capacity is represented by C∗

m(z) =
∑ηm

j=0 cm(j)zj ,

where ηm ≤ γ is the maximum number of free seats imposed

by the access control. The values of the coefficients cm(·)
(probability mass function) depend on arrivals and access

control policies at station m and preceding stations interacting

with station m through the shared cabins (see Sec. III-C and

Sec. V-B). Using the polar notation ξ = es, the function

Z∗

m(·) can be calculated by solving the limit [11, Ch. III.2]

Z∗

m(e−s) = lim
r→1−

(

(1− r) ζm(s, r)
)

with (5)

ζm(s, r) =

∞
∑

n=2

rn E
[

e−sZm,n |Zm,1 = 0
]

, (6)

where the stochastic process {Zm,n, n ≥ 1} represents the

number of passengers left behind upon the departure of the

(n− 1)th batch service, i.e. the number of waiting passengers

at the arrival time of the nth cabin at the station. For sim-

plicity, since we evaluate the system in stationary conditions



(n → ∞), we drop the index n. Sum (6) can be expressed as

the integral [11, Ch. III.2]

ζm(s, r) = r2A∗

m(e−s) (7)

exp



−
1

2πi

ǫ+i∞
∫

ǫ−i∞

s dξ

ξ(s− ξ)
log

[

1− rA∗

m(e−ξ)C∗

m(eξ)
]





with Re s > 0, |r| < 1, and 0 < ǫ < Re s, and ǫ sufficiently

small to include all the poles of the logarithmic function. This

integral can be solved by using Cauchy’s integral formula and

the residual theorem. Its value depends on the residuals of the

integrand in ξ = s and in the poles of the logarithm included

in the semi-plane Re ξ > 0. These poles are the solutions of

the transcendental equation

1− re(z−1)λmβC∗

m(z−1) = 0 (8)

inside the unitary circle |z| < 1 with z = e−ξ . The solution of

the integral is

ζm(s, r) =
r2A∗

m(e−s)

1− rA∗
m(e−s)C∗

m(es)

ηm
∏

j=1

1− esµj(1)

1− µj(1)
, (9)

where {µj(r), j = 1, . . . , ηm} are the solutions of (8) in the

unit circle. For |r| < 1, these roots are inside the unit circle.

For r → 1−, the roots with j ≥ 2 are inside the unit circle

and µ1(r) → 1. As r → 1−, ζm(s, r) → ∞, but the product

ζm(s, r)(1− r) stays finite. To compute the limit (5) we have

to find an analytic description of µ1(r). For r → 1−, µ1(r) is

the z that solves the equation

1− rA∗

m(z)C∗

m(z−1) = 0 . (10)

Expanding (10) into a power series around z = 1 and substi-

tuting z with µ1(r), we obtain

1− r + r(E [Cm]− λmβ)(µ1(r)− 1) + o(µ1(r)− 1) = 0 .
(11)

In the limit (5) (r → 1−), all the terms approaching zero faster

than linearly (o(µ1(r)− 1)) can be neglected. Therefore,

1− µ1(r) =
1− r

r(E [Cm]− λmβ)
. (12)

Substituting 1 − µ1(r) into (9), taking the limit for r → 1−,

and substituting z = e−s yields the final result

Z∗

m(z) = (13)

(E [Cm]− λmβ)
(1− z−1)A∗

m(z)

1−A∗
m(z)C∗

m(z−1)

ηm
∏

j=2

1− z−1µj(r)

1− µj(r)
.

The numerical value of {µj(r), j ≥ 2} can be found by

expanding (8) into a series around zero, solving the relative

polynomial equation, and selecting the values inside the uni-

tary circle. Once Z∗

m(z) is known, W ∗

m(s) is obtained by

numerically solving the integral in (4).

B. Interactions Among Stations

The performance of a station m depends on its capacity Cm,

which is a function of arrivals and access control policies at

station m itself and at the preceding stations. The number of

passengers in the cabins approaching station m are distributed

according to rm−1(·). Each riding passenger leaves the cabin

at station m with probability σm and gives a free seat for

the passengers waiting at the station. Thus, the number of

passengers staying in the cabin follows

sm(k) =

γ
∑

j=k

(

j

k

)

(1− σm)kσj−k
m rm−1(j) . (14)

Special cases are sm(k) = rm−1(k) for σm = 0, and Sm = 0
for σm = 1.

Access control limits the number of passengers in m to

have more free seats at station m + 1. If we limit the

maximum number of accesses per cabin, the capacity is

Cm = min[ηm, γ − Sm] with 1 ≤ ηm ≤ γ. The cumulative

probability distribution is

P [Cm ≤ k] =

{

1 for k ≥ ηm

1− P [Sm ≤ γ − k − 1] else.
(15)

The actual number of passengers entering the cabin during

the current service is Tm = min[Zm, Cm]. Zm is the number

of passengers waiting at the station when the cabin arrives.

Because of causality, this quantity cannot depend on the

capacity of the current cabin but depends on the capacities

of the cabins arrived in the past. Therefore the variables Zm

and Cm are independent. Given this independence, we have

P [Tm ≤ k] = 1− P [Cm > k] P [Zm > k] . (16)

The number of passengers riding to the next station is

Rm = Tm + Sm with distribution

P [Rm ≤ k] = P [Tm + Sm ≤ k] (17)

=

γ
∑

j=0

P [Tm ≤ k − j|Sm = j] P [Sm = j]

=

γ
∑

j=0

(1− P [Zm > k − j, Cm > k − j|Sm = j])P [Sm = j]

=



































1 for k = γ

P [Sm ≤ k − ηm] +
k
∑

j=k−ηm+1

P [Zm ≤ k − j] P [Sm = j]

for ηm ≤ k < γ
k
∑

j=0

P [Zm ≤ k − j] P [Sm = j] for k ≤ ηm − 1 .

An instability of station m does not necessarily imply

instability of all succeeding stations if ηm < γ or σi > 0
for i > m. If m is unstable, Tm = Cm and

P [Rm ≤ k] =











1 for k = γ

P [Sm ≤ k − ηm] for ηm ≤ k < γ

0 for k ≤ ηm − 1 .

(18)
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Figure 3: Effect on Station 2 and 3 of access control at Station 1. Parameters: β = 10, γ = 8, R0 = 0,

[ν1, ν2, ν3, ν4] = [0.5, 0.2, 0.3, 0], [σ1,σ2,σ3,σ4] = [0, 0.04, 0.46, 1]. All results are obtained by mathematics; they show a very

good fit with simulations (not shown).

C. Stability Threshold

The performance of a station is limited by its stability

threshold λ∗

m = E [Cm]/β. The waiting time distribution is

undefined for arrival rates above this threshold. The expected

number of waiting passengers steadily increases over time; the

system thus never reaches a stationary state. To significantly

reduce the waiting time and improve its robustness to arrival

rate variation, the stability threshold must be increased.

In stationary conditions (stable system), the expected num-

ber of passengers entering the station is equal to the expected

number of passengers leaving it (entering the cabins), i.e.,

νmλβ. A station stays stable if this quantity is smaller than

the expected cabin capacity. Therefore, the expected number

of passengers entering the cabin at station m is

E [Tm] = min[νmλβ,E [Cm]] . (19)

If no access control is applied at station m, we have

E [Cm] = γ − E [R0]

m
∏

i=1

(1−σi)−

m−1
∑

j=1

E [Tj ]

m
∏

i=j+1

(1−σi)

(20)

where the sum is zero for m = 1. Access control at a sta-

tion k < m reduces E [Ck], thus decreases E [Tk] and in turn

increases E [Cm].

We refer to λ∗

m/νm as scaled stability threshold. We now

show that it is impossible to increase the scaled stability

threshold of a given station m by controlling the access

of passengers at the preceding stations with better stability

without making the stability of at least one of the preceding

stations worse than the stability of station m. Under the

assumption that station m has the smallest scaled stability

threshold on the line, i.e.,

λ∗

m

νm
= min

i∈{1,2,...}

[

λ∗

i

νi

]

, (21)

then E [Ti] = νiλβ for all i �= m and for λ < λ∗

m/νm.

Therefore, given (20), λ∗

m/νm is the λ that solves

νmλβ = γ − E [R0]
m
∏

i=1

(1− σi)−
m−1
∑

j=1

νjλβ

m
∏

i=j+1

(1− σi) .

(22)



Manipulating the equation above we obtain a closed form

solution for the scaled stability threshold of station m by

λ∗

m

νm
=

γ − E [R0]
∏m

i=1(1− σi)
∑m

j=1 νjβ
∏m

i=j+1(1− σi)
, (23)

where the product at the denominator is unitary for j = m.

The solution does not depend on any capacity. Thus, it is not

affected by the type of access control. To increase λ∗

m/νm, we

have to remove the condition (21), i.e., have at least a station k
with λ∗

k/νk < λ∗

m/νm. This proof only assumes the system to

be stable and in stationary condition, and uses the relationship

between the expected number of passengers entering cabins

and the expected cabin capacity which has general validity.

Passenger arrivals are not required to be Poisson distributed.

VI. SKI RESORT PERFORMANCE ANALYSIS

Let us analyze a stable system with at least one station

in high load. If all stations were in low load, the system

would be underutilized, thus passenger access control would

not be needed. We reconsider part of the Bad Gastein resort

with parameters given in Fig. 2. The equations describing the

number of passengers entering cabins are:

E [T1] =min[ν1λβ, η1] (24)

E [T2] =min[ν2λβ, γ − E [T1] (1−σ2)] (25)

E [T3] =min[ν3λβ, γ − E [T1] (1−σ2)(1−σ3) (26)

− E [T2] (1−σ3)] .

Fig. 3a shows the impact of access control in Station 1

on the expected waiting time and the stability of Stations 2

and 3. The scaled stability thresholds λ∗

m/νm are shown as

vertical lines. Quantities at the arrival rate of interest (near the

instability of Station 2) are indicated by dots. The results can

be interpreted as follows: Without access control at Station 1

(η1 = 8), the expected waiting time E [W2] at Station 2 is

significantly worse than E [W1] (see dots in Fig. 3a). Limiting

the access at Station 1 to η1 = 7 or 6— i.e. reserving one

or two seats for Station 2 — marginally improves E [W2] but

significantly degrades the stability of Station 1 (the blue curve

shifts to the left). Only limiting the access to η1 = 5 creates a

significant improvement of E [W2] (the red curve shifts to the

right). However, at this point, Station 1 is no longer stable at

the arrival rate of interest.

Fig. 3b shows the expected number of passengers entering

a cabin (accesses per service) over the arrival rate. To change

the stability region of Station 2, we must shift the first non-

differentiable point of E [T1] to a value smaller than the first

non-differentiable point of E [T2], i.e., to make the stability

region of Station 1 smaller than that of Station 2.

The same conclusion can be drawn from Fig. 4 (top plots):

Decreasing the capacity of Station 1 by one or two seats

(η1 = 7 or 6) does not change the scaled stability threshold

λ∗

2/ν2, since the expected capacity E [C2] does not change for

λ < λ∗

2/ν2. Although some seats are reserved at Station 1,

these are typically not used due to the low arrival rate. How-

ever, the limitation of E [C1] leads to a gain in E [W2] because

of the reduction of variance Var [C2] (third plot). We define

the relative gain in waiting time as hm(i) = w̄m(8)−w̄m(i)
w̄m(8) with
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Figure 4: Capacity variance and gain in waiting time

at Station 2. Parameters (same as Fig. 3): β = 10,

γ = 8, R0 = 0, [ν1, ν2, ν3, ν4] = [0.5, 0.2, 0.3, 0],
[σ1,σ2,σ3,σ4] = [0, 0.04, 0.46, 1].

w̄m(i) = E [Wm]η1=i. In our scenario, for λ2 near λ∗

2 and

i = 6, this gain is about 50% (bottom plot): For example, if

Station 2 is in high load and passengers wait about one hour,

access control at Station 1 can reduce the average waiting time

to half an hour. If Station 2 becomes unstable, the performance

of Station 3 becomes a bit better. This is because the capacity

distribution at Station 3 changes due to the instability of

Station 2. Note that access control does not influence Var [C3]
and E [W3] in Fig. 4. This is due to the high leaving probability

σ3. Stations are decoupled if σ3 = 1.

Fig. 5 shows the effect of capacity variance on the waiting
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Figure 5: Effect of capacity variance on the expected waiting

time. The capacity variance is modulated by changing the

distribution of free seats at the ground station. β = 10, γ = 8,

E [R0] = 4, R∗

0(z) = z4, (z2 + z6)/2, (z + z7)/2, (1 + z8)/2,

[ν1, ν2, ν3, ν4] = [1/3, 1/3, 1/3, 0],
[σ1,σ2,σ3,σ4] = [0, 0, 0, 1].

time (σm = 0 and νm = 1/3 ∀m). The capacity is varied by

changing the distribution of R0: R∗

0(z) is z4, (z2 + z6)/2,

(z + z7)/2, (1 + z8)/2, with variances 0, 4, 9, and 16,

respectively. We see that the variance of the capacity has an

effect on the expected waiting time; this effect is transferred

to other stations but it decreases with the number of stations.

Therefore, to reduce the waiting time, good access control

policies have to reduce the capacity variance.

VII. CONCLUSIONS: TOWARD GOOD ACCESS CONTROL

The main idea of access control is to limit the number

of passengers entering certain stations so to increase the

capacity of some targeted (succeeding) stations. In principle,

an increase in the average capacity of a targeted station would

increase the stability of that station and, in turn, decrease the

waiting time by orders of magnitude. However, we proof that,

in a linear topology and for a general arrival distribution, the

average capacity of a station cannot be decreased without

making one of the preceding stations less stable than the

targeted station. Therefore, decreasing the average capacity is

not a viable option. In addition, we show for Poisson arrivals

that access control can decrease waiting time to an extend that

is interesting for real operations, e.g., 50%. This decrease is

due to a reduction of capacity variance at the targeted station.

Even though the capacity variance is not a direct indicator

of passengers’ satisfaction, it plays an important role in the

waiting time that passengers experience. Therefore, policies

that aim to decrease the waiting time shall include the capacity

variance in their performance indicators.

Our analysis of real passenger data in Bad Gastein shows

that the arrival process is not a Poisson process. We conjecture

that a greater variance in the arrivals (than in the Poisson case)

directly effects the arrival station and indirectly the succeeding

stations through the cabin capacity. In this case, a reduction of

capacity variance becomes even more important. An algorithm

based on this modeling, called Gamora, was tested on real

passenger data from Bad Gastein. The algorithm uses the

results on the scaled stability thresholds and on the expected

cabin capacities, which are valid for a general distribution

of passengers arrival. It shows very good performance and

robustness with respect to estimation of passengers arrival and

debording rate [16]. Experimental studies will follow.
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