
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, DECEMBER 2016 1

Improving Localization Accuracy in Connected
Vehicle Networks Using Rao-Blackwellized Particle

Filters: Theory, Simulations, and Experiments
Macheng Shen, Ding Zhao, Jing Sun and Huei Peng

Abstract—A crucial function for automated vehicle technolo-
gies is accurate localization. Lane-level accuracy is not read-
ily available from low-cost Global Navigation Satellite System
(GNSS) receivers because of factors such as multipath error and
atmospheric bias. Approaches such as Differential GNSS can
improve localization accuracy, but usually require investment in
expensive base stations. Connected vehicle technologies provide
an alternative approach to improving the localization accuracy.
It will be shown in this paper that localization accuracy can
be enhanced using crude GNSS measurements from a group
of connected vehicles, by matching their locations to a digital
map. A Rao-Blackwellized particle filter (RBPF) is used to
jointly estimate the common biases of the pseudo-ranges and
the vehicle positions. Multipath biases, which introduce receiver-
specific (non-common) error, are mitigated by a multi-hypothesis
detection-rejection approach. The temporal correlation of the
estimations is exploited through the prediction-update process.
The proposed approach is compared to existing methods using
both simulations and experimental results. It was found that the
proposed algorithm can eliminate the common biases and reduce
the localization error to below 1 meter under open sky conditions.

Index Terms—Localization, GNSS, connected vehicles, particle
filter, Rao-Blackwellized

I. INTRODUCTION

An essential function of intelligent transportation systems
is accurate localization. A Global Navigation Satellite System
(GNSS) receiver calculates its position from pseudo-range
measurements of multiple satellites. Pseudo-ranges contain
error which can be decomposed into common error (due to
satellite clock error, ionospheric and tropospheric delays) and
non-common error (due to receiver noise, receiver clock error
and multipath error). The nominal accuracy of pseudo-ranges
for a single-band receiver is about 10 to 20 meters, which
results in a position error of several meters [1]. Without further
improvement, this crude GNSS error is too large for many
safety functions as the lane of vehicles cannot be robustly
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identified. Fig. 1 shows the biased positioning caused by
pseudo-range error.

Fig. 1. Illustration of correlated GNSS localization error due to correlated
pseudo-range error

Differential GNSS (DGNSS) is an enhancement to GNSS
that can achieve sub-meter level accuracy by correcting the
common biases through a network of fixed reference stations.
Moreover, centimeter-level accuracy is achievable by the Real
Time Kinematic (RTK) technique, which uses carrier phase
measurements to provide real-time corrections [2]. These
techniques, however, rely on an expensive infrastructure. In
this paper, we explore an alternative low-cost solution for
lane-level accurate localization by using only crude GNSS
measurements from a set of connected vehicles.

The following sections are arranged as follows. In Section
2, related works are reviewed. The challenges of localization
using only single frequency market mass receivers are dis-
cussed. In Section 3, the derivation of the localization en-
hancement algorithm is presented in detail. Simulation results
are presented in Section 4. The simulation scenario and error
models are introduced, followed by performance analysis of
the proposed method compared with existing methods. In
Section 5, experimental results are presented using u-blox
EVK-6T, an automotive grade receivers with automotive patch
antenna. The implementation details are first described. Then
the raw data is processed to verify the error models. Finally,
the performance of the algorithms using the raw data is shown.
Conclusions are presented in Section 6.
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II. RELATED WORKS

The GNSS localization accuracy can also be improved using
either sensor fusion or map matching, with some promising
results shown in recent years [3]–[5].

Inertial Navigation System (INS) in combination with vehi-
cle dynamics can be used to improve vehicle location estima-
tion. Data fusion algorithms such as Extended Kalman Filter
(EKF) [6], Unscented Kalman Filter (UKF) [7] and particle
filter [8] can be used to fuse GNSS and INS measurements,
leading to high accuracy navigation solutions.

With the rapid development of digital maps, navigation
algorithms based on map matching have also been extensively
studied [6], [7], [9], [10]. Map matching algorithms match the
noisy GNSS positioning results to a trajectory that satisfies
known road geometry constraints. Additional sensors such as
cameras or lidars in combination with high-definition maps can
reduce localization error down to the centimeter-level [10].
This approach requires both accurate sensors and accurate
maps.

With the deployment of Dedicated Short Range Commu-
nications (DSRC) technique in the real world [11], connected
vehicles provide an alternative for improving localization error
by correcting common localization error of multiple GNSS
receivers installed on multiple vehicles [12]. Alam et al. [13]
developed a cooperative positioning method that improves
the relative positioning between two vehicles by fusing the
shared pseudo-range observations. The relative positioning
accuracy of this method outperforms that of DGNSS alone.
Wang [14] proposed an augment DGPS that tightly integrated
DGPS, range and bearing observations in a small network of
vehicles or infrastructure points, which outperforms the DGPS
in terms of absolute positiong. An alternative to improving
GNSS absolute positioning without incurring infrastructure
costs is cooperative map matching (CMM). Assuming that
most vehicles travel within lanes, the correction to the common
localization biases can be determined so that the corrected
positions of a group of vehicles best fit the map. Recently, the
capability of CMM to mitigate the biases from the localization
results obtained from low-cost GNSS receivers alone has been
demonstrated in Rohani et al. [15].

The three main difficulties arise for CMM using low-cost
GNSS receivers alone are:

• Effect of non-common error: Because of non-common
error, a correction for the common localization error that
makes all vehicle positions compatible with the road con-
straints may not exist. If the road constraints are enforced
aggressively without considering the non-common error,
the localization solution may overly converge, i.e., the
variance of the estimation error may be underestimated.

• Correlation between common biases and vehicle position
estimation: the estimated common bias may induce error
in the estimated vehicle positions and vice versa. If they
are estimated sequentially, the data fusion scheme should
be designed to avoid over-convergence due to fusion of
correlated data.

• Incorporation of road constraints: Lane position con-
straints of real roads cannot be easily described analyti-

cally. Incorporation of these constraints in map matching
requires a flexible filter scheme.

Wang et al. [16] presented a decentralizaed approach that
uses local EKFs and an optimal global fusion scheme to deal
with the correlation. Nonetheless, their global fusion approach
requires a full order covariance matrix inversion and no road
constraints are considered in their work. Rohani et al. [15]
presented a particle-based CMM algorithm to address the three
difficulties mentioned above. The first difficulty was addressed
by a weighted road map approach to preserve consistency.
The second difficulty is handled by tracking the origin of the
common bias corrections from different vehicles and fusing
only those corrections from independent sources to avoid data
incest, which avoids over-convergence. In their approach, some
of the correlated corrections containing additional information
have to be discarded. The third difficulty is handled by a
particle-based approach that uses only the vehicle position
estimation of the current epoch. Algorithms that better utilizes
all available data are expected to yield improved localization
performance.

In our previous work which was presented at the conference
[17], the problem of inferring the true vehicle positions, as
well as the GNSS common biases from the pseudo-range
measurements from a group of vehicles, is addressed by a
Bayesian filtering approach. The aforementioned difficulties
are solved by jointly estimating the common biases and vehicle
positions using a Rao-Blackwellized particle filter (RBPF).
In the RBPF, the correlation between common biases and
vehicle positions is modeled implicitly through the diversity
of the particles. As a result, there is no need for explicit
data fusion. The effect of the multipath biases is mitigated
through a detection-rejection method based on a statistical
test. The particle filter structure allows multiple hypotheses
with respect to the detection of multipath biases, thus making
the detection more robust. In addition, the particle filter is
flexible enough to handle road constraints in a straightforward
manner by manipulating the particle weights according to the
road constraints. It also fully exploits the temporal correlation
through a prediction-update process, eliminating impossible
configurations in the joint space of common biases and vehicle
state variables, drastically reducing the estimation variance.
The computational complexity varies linearly with the number
of vehicles, which makes the proposed RBPF both effective
and efficient.

This paper expands the initial results from the conference
paper. More specifically, the performance of the algorithm
in multipath environments with signal blockage is shown
through simulations based on 3-D Ray Tracing method for
multipath error. The performance of the RBPF under open sky
conditions is validated through experiments, which validates
the pseudo-range error model. The robustness of the algorithm
with respect to signal blockage is also studied. One potential
drawbacks of this CMM method is that the localization accu-
racy and robustness highly depend on the configuration of the
available road constraints. The impact of road constraints on
CMM is discussed in our more recent work [18].
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III. THEORY AND METHOD

In this section, the structure of the CMM problem is illus-
trated by a Dynamic Bayesian Network (DBN), which encodes
the conditional independence that motivates the RBPF. The
theoretical aspect of the RBPF is then introduced, and the
prediction-update structure of the RBPF is shown in detail.

Fig. 2 shows the DBN corresponding to the CMM problem
that involves only two vehicles with index i1 and i2. C repre-
sents the set of pseudo-range common biases, X is the vehicle
state vector including vehicle positions, and Z represents the
set of error corrupted pseudo-ranges, which is observed by the
receivers. The subscript represents the time. The directed edges
represent causal relationships between the node variables. For
example, the pseudo-ranges Zi1t are determined by the vehicle
state Xi1

t and the pseudo-range common biases Ct. As a result,
Xi1
t is correlated with Ct through the observation Zi1t and the

the states of all the vehicles within the network are correlated
with each other through their correlation with the pseudo-
range common biases. This correlation is encoded by the paths
between one vehicle state to another through the common
biases nodes. If the common biases are conditioned on, then
the paths would be blocked, indicating that the states of all
the vehicles are independent with each other if the common
biases are given.

The following assumptions are made in this work:
1) The non-common error of different vehicles are uncor-

related.
2) The common biases vary slowly over time.
3) The vertical positions of the vehicles can be obtained

with reasonable accuracy from the digital map.

Fig. 2. DBN representation of the CMM problem in Fig. 1

Assuptions (1) - (3) are unrestrictive in the following senses.
The first assumption is valid as long as the participating
vehicles are not concentrated in the same area; otherwise, the
multipath error may be correlated. It will be true for most
rural areas and some urban areas. The second assumption is
reasonable because the tropospheric and ionospheric delays,
as the major components of the common biases, typically
change very slowly over time [1]. The third assumption is also
reasonable, as the difference between the vertical positions

recorded by the digital map and the ground truth can be
considered equivalent measurement noise and accounted for
by increasing the noise variance parameter.

Assumption 1, together with the DBN representation Fig. 2,
results in the following factorization of the joint posterior dis-
tribution of the pseudo-range common biases and the vehicle
states conditioned on the pseudo-range observations:

p(C1:Ns
1:t , X1:Nv

1:t |Z1:t) = p(X1:Nv
1:t |C

1:Ns
1:t , Z1:t)p(C

1:Ns
1:t |Z1:t)

=

Nv∏
i=1

p(Xi
1:t|C

1:Ns
1:t , Z1:t)p(C

1:Ns
1:t |Z1:t),

(1)
where Ns and Nv are the number of satellites and vehicles
respectively, and the superscript 1 : Ns and 1 : Nv are
shorthands for the corresponding variables of all the satellites
and all the vehicles. The subscript 1 : t is the shorthand for
the corresponding variables of all the time instances.

The RBPF exploits this conditional independence property
for efficient inference of the pseudo-range common biases and
the vehicle states given the pseudo-range observations. The
posterior distribution of the common biases p(C1:Ns

1:t |Z1:t) is
estimated by particle filter, and the distributions of the vehicle
states conditioned on the common biases p(Xi

1:t|C
1:Ns
1:t , Z1:t)

are independent with each other and estimated by a set of
EKFs whose dimension is the dimension of the state vector
[19]. The recursive prediction-update equations are presented
as follow.

A. Prediction of States

With assumption 2, we model the time variation of the
common biases as a first-order Gaussian-Markov process:

Cjt = Cjt−1 + wjt∆t, (2)

where wjt∼N(0, σ2
c ), with σ2

c denoting the variance of
the common bias drift, ∆t is the length of the time
interval between two successive updates of the states and
j = 1, 2, ..., Ns is the index for satellites.

Assumption 3 implies that only the horizontal positions
and velocities need be modeled explicitly. Therefore, the state
vector of the ith vehicle at time t is

Xi
t = ( xit ẋit yit ẏit bit ḃit )T , (3)

where xit and yit are the horizontal positions; ẋit and ẏit are
the horizontal velocities; and bit and ḃit are the receiver clock
bias and drift, respectively.

The mean is propagated by

X̄i
t = AXi

t−1,with A =

B 0 0
0 B 0
0 0 B

 , B =

[
1 ∆t
0 1

]
, (4)

where X̄i
t is the predicted mean.

The associated covariance matrix is propagated by
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Σ̄it = AΣit−1A
T +Rt,with Rt =

Rx 0 0
0 Ry 0
0 0 Rb

 ,
Rx =

[
σ2
ax∆t4

4
σ2
ax∆t3

2
σ2
ax∆t3

2 σ2
ax∆t2

]
, Ry =

[
σ2
ay∆t4

4

σ2
ay∆t3

2
σ2
ay∆t3

2 σ2
ay∆t2

]
,

Rb =

[
σ2
d∆t4

4 + σ2
b∆t2

σ2
d∆t3

2
σ2
d∆t3

2 σ2
d∆t2

]
,

(5)

where Σit−1 is the covariance matrix of the state vector; Σ̄it is
the predicted covariance matrix; σ2

ax and σ2
ay are the variances

of the horizontal accelerations; and σ2
b and σ2

d are the variances
of the clock bias and drift time derivatives [20], which are
assumed to be uncorrelated in the derivation.

B. Multipath Rejection and Measurement Update

The pseudo-range measurement model between satellite j
and vehicle i is

Zj,it = ‖pit − s
j
t‖+ Cjt + bit + λj,it m

i
t + vit, (6)

where pit is the position of the vehicle and sjt is the satellite
position. mi

t is the potential multipath bias and vit∼N(0, σ2
z)

is the receiver noise, which is assumed to be white. λj,it is a
binary indicator variable that is to be determined through a χ2

test to indicate the presence of multipath bias.
In the absence of multipath biases, the predicted mean of

the pseudo-range measurement will be

Z̄j,it = ‖pit − s
j
t‖+ Cjt + bit (7)

The difference between the actual pseudo-range
measurement and the predicted mean will obey a Gaussian
distribution, and the Mahalanobis distance of this random
variable will obey the χ2 distribution with one degree of
freedom:

D2
j,i = (Zj,it − Z̄

j,i
t )TP−1

j,i (Zj,it − Z̄
j,i
t )∼χ2

1 (8)

Pj,i = Hj,iΣ
i
xyH

T
j,i + σ2

z , Hj,i =
∂Zj,it

∂(xit, y
i
t)
, (9)

where Σixy is the submatrix of the covariance matrix
representing the uncertainty of the horizontal position, and
Hj,i is the Jacobian of the measurement function with respect
to the horizontal position, which projects the uncertainty of
the position space to the range space.

The indicator variable is determined by

λj,it =

{
0 D2

j,i≤F−1(α1)

1 D2
j,i≥F−1(α2)‖uj,i≤

F (D2
j,i)−α1

α2−α1

, (10)

where F is the Cumulative Distribution Function (CDF) of
the χ2

1 distribution. α1 , α2 (with α1 < α2) are the confidence
levels for the rejection and acceptance of the multipath
presence hypothesis, respectively. uj,i is a random number
generated according to the uniform distribution on [0, 1], ‖ is
the logical “or”.

The choices of α1 and α2 determine the aggressiveness to

reject outliers. The particle filter keeps multiple hypotheses
with respect to the assumptions on multipath biases. Particles
that make wrong hypotheses will be eliminated by applying
the map constraints.

The weights of the particles are calculated according to
the importance sampling principal. The detailed mathematical
derivation can be found in [21]. For the pseudo-range
measurement from the jth satellite, the weights of the
particles are updated as follows

w
[k]
j =

{
w

[k]
j−1

1
2πPj,i

exp(− 1
2D

2
j,i) λj,it = 0

w
[k]
j−1

1
2πPj,i

exp(− 1
2F

−1(α3)) λj,it = 1
,

(11)
where α3 is a parameter that can be tuned depending on
the environment and frequency of multipath occurrence, and
superscript [k] is the index of particles.

The vehicle states are then updated using all the pseudo-
range measurements regarded as free of multipath biases, that
is, with λjn,it = 0, n = 1, 2...N by

Xi
t = X̄i

t +Ki
t(Z

i
t − Z̄it), (12)

where X̄i
t and Z̄it are calculated by Eq. (4) and Eq. (7),

respectively. Zit is the actual measurement. The Kalman gain
matrix Ki

t is calculated as:

Ki
t = Σ̄it(H̃

i
t)
T (H̃i

t Σ̄
i
tH̃

i
t)
T +Qt) (13)

Σit = (I −Ki
tH̃

i
t)Σ̄

i
t (14)

H̃i
t =


∂Zj1,i

∂xi
t

0 ∂Zj1,i

∂yit
0 0 0

... ... ... ... ... ...
∂ZjN ,i

∂xi
t

0 ∂ZjN ,i

∂yit
0 0 0


N×6

(15)

Qt =

σ2
z 0 0
... ... ...
0 0 σ2

z


N×N

, (16)

where Σ̄it is calculated by Eq. (5); H̃i
t is the measurement

Jacobian for batch update; I is the identity matrix.

C. Applying Map Constraint

After the EKF update for the vehicle states estimation and
updating the weight of the particles for the common biases
estimation, the positioning of each vehicle represented by a
set of EKFs with different weights will still be biased as no
correction has been applied to compensate the pseudo-range
common biases. In order to correct the biases, the map
constraint is used to further modify the particle weights such
that those particles with vehicle configurations incompatible
with the map constraint are assigned a low weight and will
be eliminated with high probability during the resampling. In
this paper, the particle weights are modified by

w
[k]
i = w

[k]
i−1

∫
ε(xit, y

i
t)p(x

i
t, y

i
t)dx

i
tdy

i
t, i = 1, 2...Nv,

with ε(xit, y
i
t) =

{
1 (xit, y

i
t)on lane

0 (xit, y
i
t)out of lane ,

(17)
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where p(xit, y
i
t) is the joint Gaussian distribution drawn from

the EKF.
The integral in Eq. (17) is difficult to calculate analytically

due to the potentially complicated geometry. Therefore, it
is again calculated by Monte Carlo Integration, where the
proposal distribution is p(xit, y

i
t) and the importance weight

is ε(xit, y
i
t).

∫
ε(xit, y

i
t)p(x

i
t, y

i
t)dx

i
tdy

i
t ≈

1

Nm

Nm∑
l=1

ε(x
i,[l]
t , y

i,[l]
t ), (18)

where (x
i,[l]
t , y

i,[l]
t ), l = 1, 2...Nm is the set of samples drawn

from the distribution p(xit, y
i
t), and Nm is the size of the

sample set. The pseudo code of the proposed RBPF is shown
as follows:
(C

[k]
t , X

[k]
t , w

[k]
t ) = RBPF (C

[k]
t−1, C

[k]
t−1, C

[k]
t−1)

1) Predict Ct and Xt according to Eqs. (2, 4)
for vehicle i = 1 : Nv

2) Determine the indicator variable according to Eq. (10)
3) Calculate particle weights and update Xt according to

Eqs. (11, 12)
4) Modify particle weights according to Eq. (17)
5) Resample

end RBPF

D. Computational Complexity

The computational complexity of the RBPF is linear in the
number of particles. For each particle at each time instance,
a set of Nv EKFs with dimensions equal to 6 have to
be updated. As a result, the computational complexity is
O(NpNv), which is also linear in the number of vehicles.
The linear complexity with respect to the number of connected
vehicles is an attractive property as the potential number of
vehicles can be hundreds. This prohibits the use of many
filtering schemes such as Kalman filters, which has quadratic
complexity, and particle filter without Rao-Blackwellization,
which has exponential complexity.

The number of particles Np has an effect on the estimation
accuracy and robustness of the RBPF. The minimal Np to
ensure robustness depends on the number of visible satellites
and increases exponentially with the number of satellites.
Nonetheless, this exponential growth does not pose a com-
putational difficulty in practice because the number of visible
satellites is always bounded. We show that the required number
of particles for an accurate localization can be quite small
(O(10)) in the next section.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are presented and dis-
cussed. The simulation scenario is described first. The im-
provements in localization accuracy and the common biases
estimation are illustrated by comparing the RBPF with algo-
rithms proposed in Rohani et al. [15].

A. Simulation Scenario and Error Models

The configuration of the simulated scenario is shown in
Fig. 3, where four vehicles are traveling in each lane of two
orthogonal roads, respectively. The width of each lane is 3.5
m and all the four vehicles are traveling on the center of

the lanes. The boundary of the roads are represented by the
white solid lines, outside which the positioning is considered
as violating the road constraints. The performance of the
proposed algorithm is illustrated through comparison with
the CMM algorithm proposed in Rohani et al. [15]. In their
approach, the common correction of the vehicle positions is
searched in the position space using a particle-based approach
by applying map constraints. Due to the uncertainty caused
by the non-common error, the map constraints are blurred
to avoid over-convergence. This approach is not a Bayesian
filtering approach as the estimation is not updated according
to the Bayesian rule and the estimation at each time instance
does not require any historical information.

Fig. 3. Intersection used for CMM

Three CMM algorithms are compared. The first algorithm
is the aforementioned one proposed by Rohani et al. (referred
to as the static method); the second algorithm is a smoothed
version of the first one, where the GNSS positioning is
smoothed by a Kalman filter before implementing CMM. The
third algorithm is the proposed RBPF.

The simulation parameters appear in Table 1 where x and
y are local coordinates alone and transversal to the lane on
which the vehicle travels. The simulation uses 200 particles.
In the RBPF, the initial common biases are the true common
biases corrupted by white noise, with variance σ2

n = 0.25 m2.
In the simulation, the clock error is not included.

TABLE I
SIMULATION PARAMETERS

Parameter Value Unit Parameter Value Unit
Nm 100 / σax 1 m/s2

Ns 6 / σay 0.1 m/s2

α1 0.95 / σb 1 m/s
α2 1 / σc 0.1 m/s
α3 0.99 / σd 1 m/s2

∆t 0.1 s σz 1 m

The performances of these three algorithms under two mea-
surement noise models are simulated. The first noise model
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simulates common biases and uncorrelated white noise with
variance σ2

z ; the second noise model simulates common biases,
uncorrelated white noise with variance σ2

z and multipath
biases.

The common biases and the satellite constellation are emu-
lated using the GPSoft Satellite Navigation Toolbox [22]. This
toolbox emulates the constellation using Keplerian orbital pa-
rameters and the satellite orbit error is neglected. The common
biases are generated according to its empirical ionospheric
and tropospheric error models. The multipath signals are
simulated by Ray-tracing method given a 3-D digital map
of the environment. The delay-lock loop (DLL) with half
chip length correlation function is simulated to mimic the
code tracking mechanism of the GNSS receiver. This DLL
causes the code multipath error to oscillate as a function of
the receiver location. More details about the code tracking
mechanism can be found in [23]. The reflected signal strength
and phase difference relative to those of the direct path are
required to simulate the DLL mechanism if both of the two
signals exist. Therefore, following simplifications are made
with respect to the multipath simulation:

1) The amplitude of the signal is reduced by a half upon
reflection, that is, the reflection coefficients of all the
building surfaces are assumed to be a constant value
0.5.

2) Signals that have been reflected twice are not considered
for multipath contribution due to their negligible signal
strength.

3) If the direct path does not exist, the received signal,
no matter exists or not, is not used to calculate the
corresponding pseudo-range because of the low signal
to noise ratio.

Based on the first simplification, the GPS signal including the
multipath signal can be written as

s(t) = a0e
−I(ω0t+φ0)[x(t−t0)+

1

2
e−Iφdx(t−t0−td)], (19)

where a0 is the amplitude of the direct path, I =
√
−1 is the

imaginary unit, ω0 is the angular frequency of the GPS carrier
wave, φ0 is the received carrier phase of the direct path, x(t) is
the complex wave form of the transmitted signal, t0 is the time
for the signal to propagate from the satellite to the receiver
through the direct path, φd and td are the multipath phase
delay and propagation time delay relative to the direct path,
respectively.

The composite wave form inside the square bracket in
Eq. (19) is correlated with the receiver generated wave forms
x(t − tp + tc) and x(t − tp − tc), where tp is the multipath-
corrupted signal propagation time to be determined by the
DLL, and tc is the time for light to travel a half chip
length. The results of these correlations are two functions of
tp, which are defined as early and late correlator function,
denoted as RE(tp) and RL(tp), respectively. Their difference
D(tp) = RE(tp)−RL(tp) is defined as discriminator function.
In the absence of the multipath signal, the propagation time
of the direct path will be the unique zero of the discriminator
function within a neighbor of radius 2tc, that is, D(t0) = 0.
Hence the receiver DLL determines the signal propagation

time by finding the zero of the discriminator function, that
is, tp = arg

t
{D(t) = 0}.

For the single multipath-corrupted signal represented by
Eq. (19), simple analytic formula for the pseudo-range multi-
path error can be obtained as

ρ = c(tp − t0) =
cosφd

2 + cosφd
td, (20)

where c is the nominal speed of light in a vacuum. The
multipath time delay td is determined by

td =
dd − dm

c
, (21)

where dd and dm is the path length through the direct path
and the multipath, respectively, which can be obtained from
the Ray-tracing method.

The multipath phase delay φd is determined by

φd = ω0td + π, (22)

where the π is to account for half-wave loss upon reflection.
The aim of this multipath model is not to provide a faithful

deterministic multipath simulation but rather to capture the
major features of this multipath error signal that determine
how well the localization algorithms might perform. Those
features should include the approximate order of magnitude,
the location dependence and the time variation characteristics
of the multipath signal, which are expected to be reflected by
this simplified model.

As the wavelength of the GPS signal carrier wave (λ =
0.19 m for GPS L1 signal) is typically much smaller than the
distances between the receiver to the buildings, the multipath
phase delay is expected to be sensitive to the receiver motion.
As a result, the multipath error should oscillate rapidly as
the phase delay changes. This oscillating error may have
similar effect as an additive white noise, which increases the
apparent noise covariance of the observed pseudo-ranges. In
order to account for this effect, the noise covariance used by
the Kalman filter is estimated from the innovation. One of the
unbiased estimations using k steps previous innovations is

Q̃t =
1

k − 1

t∑
j=t−k+1

(Zj − Z̄j)(Zj − Z̄j)T −HtΣ̄tH
T
t , (23)

where Z, Σ̄ and H have been defined in Eq. (12) and Eq. (13),
with the vehicle identification omitted.

Then the diagonal noise covariance matrix is formed such
that

Qt(n, n) = max(Q̃t(n, n), σ2
z), n = 1, 2, ...N, (24)

where (n, n) denotes the n-th diagonal element of a square
matrix.

The 3-D map around the intersection between South 4th
Avenue and East William Street in Ann Arbor is obtained from
Google Earth, shown in Fig. 4. The surrounding buildings are
modeled as rectangular blocks. The geometric quantities of
the map, including the lane widths and building locations and
dimensions, are measured using the “Ruler” tool provided in
Google Earth Pro.
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Fig. 4. Intersection between South 4th Avenue and East William Street in
Ann Arbor used for multipath simulation (Google Earth)

B. Localization Results

The horizontal position error and the associated covariance
of one of the four vehicles using the three described algorithms
are shown in Fig. 5 - 7.

Fig. 5 shows that the localization error using the static
method is much larger and noisier than either that using the
smoothed static method or the proposed RBPF. This is to be
expected, as the white noise results in non-common error,
which is not filtered in the static method. As the smoothed
algorithm filters out this non-common error, it outperforms
the static method. Nevertheless, the RBPF outperforms both
of them.
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Fig. 5. Horizontal position errors with common biases and white noise

Another benefit of the proposed RBPF is that it significantly
outperforms the other two algorithms in terms of estimation
covariance (see Fig. 6), because all the particles have a
smooth estimation of the common error. In contrast, the
other two methods search for all the compatible corrections
for the common error at each instant. This search is both
unnecessary and ineffective because most of the corrections,
though compatible with the current map constraints, would be
eliminated if the previous measurements were also considered.
In other words, the temporal correlation of the common biases
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Fig. 6. Determinant of horizontal position covariance with common biases
and white noise
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Fig. 7. Horizontal position error with common biases and white
noise+multipath error

is not exploited. In contrast, the proposed RBPF keeps track
of the most probable common biases. The common biases of
small probability are eliminated through resampling, and the
time correlation of the common biases is enforced by Eq. (2).
Thus, the estimation covariance turns out to be much smaller
than that of the other two algorithms.

Fig. 7 shows the localization error using the smoothed
static method and the RBPF in the presence of multipath
error and signal blockage. The static method is not able to
give localization results at all the time instants due to the
signal blockage, so it is not compared. As the number of
iteration increases, the vehicles approaches the intersection,
where the multipath reflection and signal blockage from the
high structure are severe. As a result, the localization error
increases. The performance of the smoothed static method
degrades severely while that of the RBPF does not degrade
as much. This result is also expected as the smoothed static
method uses the positions instead of the raw pseudo-range
measurements to do the CMM. In the presence of signal block-
age, different vehicles might use different sets of satellites
for their ego-localization, which results in an unknown non-
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Fig. 8. Common bias estimation error

common position bias in addition to the multipath error. This
additional non-common bias makes CMM more difficult. In
contrast, the RBPF is formulated based on the raw pseudo-
range measurements, which is more flexible to handle the
signal blockage issue.

Table 2 shows the mean of the localization error of these
three methods, where ± is followed by the 3− σ confidence
interval.

TABLE II
MEAN LOCALIZATION ERROR (M)

Static Smoothed static RBPF
Multipath free 2.37 0.79±0.15 0.45±0.18

Multipath included - 2.92 0.87

C. Estimation Results of Common Biases
The left and right figures in Fig. 8 show the common bias

estimation error corresponding to one of the satellites in the
multipath-free case using the smoothed static method and the
proposed RBPF, respectively.

Both of the two estimation errors are consistent with their
covariance, while the estimation from the RBPF is more
accurate and effective than that using the smoothed static
method. In addition, since the RBPF estimates the common
biases through filtering while the smoothed static method uses
only instantaneous measurements, the estimation using the
latter is noisier than that using the former.

D. Computational Complexity
Fig. 9 shows the effect of the number of particles on the

computation time and localization error. We ran 10 simulations
for each point with 4 vehicles and 6 satellites under multipath
free conditions on MATLAB 2016a with an Intel i-7 6500U
processor. There are 300 time instances in each simulation and
the time step is 0.1 s, which is equivalent to 30 s simulation
time. As the number of particles increases, the computation
time grows linearly and the localization error decreases. Even
if the number of particles is small, the localization accuracy
and robustness do not degrade too much.
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Fig. 9. Computational complexity, mean and maximum localization error with
respect to the number of particles used in the RBPF

V. EXPERIMENT VALIDATION

In this section, experimental results conducted at North
Campus parking lot 90 in the University of Michigan are
presented. First, the experiment scenario is described. Then
the raw measurement data collected from the low-cost GPS
receivers is processed and used to validate the presumed GPS
pseudo-range error model presented in Section 3. After that,
the CMM algorithms are applied on the raw data, and the
CMM localization results are compared with each other and
with ego localization results.

A. Experiment Scenario Description

The experiment was conducted at open sky at the parking
lot shown in Fig. 10. We drew straight lines on the ground
as virtual road boundaries according to the sketch Fig. 3.
Four u-blox EVK-6T receivers were placed 2 m (about half
a lane width) away from the corresponding road boundaries,
with their configuration the same as that of the four vehicles
shown in Fig. 3. The distance of the receivers from the
road boundaries could affect the compactness of the CMM
positioning. As the distance decreases, the road constraints
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Fig. 10. The surroundings of the experiment place and the parking lot
(encircled by the red circle) where the experiment was conducted, image
from Google Earth

become tight and so does the positioning covariance. In the
limiting case that the distance goes to zero, the positioning
covariance reaches its non-zero lower bound. In the limiting
case that the distance goes to infinity, the CMM becomes
almost equivalent to ego-localization.

A Novatel DL-4 RTK GPS, with horizontal localization
error less than 2 cm, was used to measure the position of the
u-blox receiver on the upper left side, hereafter referred as the
host receiver. The antenna of the host receiver was mounted on
the steel top of a vehicle and those of the other three receivers
were placed on the ground. This placement eliminated the
multipath interference from the ground reflection. The raw
measurements, including the pseudo-ranges, the corresponding
satellite identifications and the time stamps, were logged at a
sampling rate of 5 Hz, while the four receivers were kept
static. The satellite ephemeris broadcast by the satellites were
logged to calculate the satellite positions.
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Fig. 11. Pseudo-range error, including the slowly varying atmospheric delay
(several minutes), the multipath error (about one minutes) and the white
receiver noise (less than seconds)

B. Validation of pseudo-range error model

In Section 3, it is assumed that the range error is comprised
of slowly varying common biases, non-common white Gaus-
sian noise and clock biases at open sky. In this section, these
assumptions are examined by processing the raw pseudo-range
measurements.

Fig. 11 shows the composite pseudo-range signal by dif-
ferencing the pseudo-range corresponding to two satellites
collected by two receivers. This signal includes the variation
of the atmospheric delay, the multipath error and the receiver
noise.

The histogram of the receiver noise signal is plotted in
Fig. 12. It shows that the histogram can be reasonably fitted
by a Gaussian distribution.
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Fig. 13. Skyplot of the GPS constellation at University of Michigan North
Campus during the experiment. Satellite identification number as well as their
availability are marked.

C. Localization Results

In order to validate the CMM algorithms in real world,
a segment of the experiment data, collected from the Co-
ordinated Universal Time (UTC) 20:56:40 to 21:01:40 on
September 24th, 2016, is used for CMM. During this time
period, the skyplot of the visible satellites at the experiment
location according to the almanac is shown in Fig. 13.
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Fig. 14. Localization error using ego-localization, the static method and the RBPF on experimental data

In Fig. 13, the three satellites denoted by the crosses,
G16, G24 and G26, were not received due to blockage and
low elevation angle. Those seven satellites of high elevation
angle, that is, G5, G13, G15, G18, G20, G21 and G29, are
used for localization. The corresponding horizontal dilution of
precision (HDOP) is 2.79. The HDOP indicates how much
the error of the pseudo-range will result in the horizontal
positioning error.

The multipath error appears as a bias within a short time
interval, which causes the localization results to be biased.
This localization bias may result in over-confidence. The
adaptive covariance approach used for localization in multipath
environment is applied here.

The simulation parameters used are the same as those listed
in Table 1, except that the time interval between two successive
time instants is 0.2 s; the number of satellites is 7; and the
covariance of the receiver noise is estimated from the data.
The initial values of the receiver position, clock bias and clock
drift are obtained from the ego-localization results. The initial
values of the receiver horizontal velocity are given as zeros.
The initial values of the common bias are estimated from
the difference between the RTK solution and the measured
pseudo-ranges.

The resulted localization error using ego-localization, the
static method and the RBPF using 100 particles are shown
in Fig. 14.a. It shows that the RBPF effectively eliminates
the bias, while the static method partially eliminates the bias.
Nevertheless, neither of these two algorithms is able to make
effective reduction on the non-common error which is driven
by the low frequency part of the receiver noise, as expected.

Performance degradation in the presence of signal blockage
is also of practical interest. In order to study the effect of signal
blockage, the pseudo-range measurements from satellites G18
and G21 received by the host vehicle receiver are not used. The
resulted localization error is shown in Fig. 14.b. In this case,
the localization results given by the static method track the
biased ego-localization results more closely. This degradation

should be attribute to the use of different sets of satellites,
which results in additional non-common error that is not
modeled in the static method. In contrast, the localization
results from the RBPF is almost unbiased, although the error
is also amplified due to the absence of the two satellites, which
increases the HDOP to 10.71.

VI. CONCLUSIONS

In this paper, a Rao-Blackwellized particle filter has been
proposed for the simultaneous estimation of GNSS common
biases and vehicles cooperative localization using map match-
ing. The following conclusions can be drawn based on the
simulation and experimental results:

1) The proposed method fully exploits the temporal correla-
tion of the common biases and vehicle positions through
the prediction-update process such that the estimation
covariance is reduced by at least two orders compared
with previously proposed algorithms.

2) The proposed method almost entirely eliminates the
slowing varying common localization bias, thus achiev-
ing a higher accuracy than both ego-localization and the
previous CMM algorithm. Nevertheless, none of these
three methods can effectively eliminate the low fre-
quency part of the receiver noise error. The localization
error with experiment at open sky is within 2 meters.

3) The proposed method is more robust with respect to
signal blockage than the previous CMM algorithm. With
moderate signal blockage, the proposed method is still
able to eliminate the common bias effectively, while the
localization will be less accurate as the HDOP increases
due to the loss of satellites.
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